
Joint Models for NLP
Yue Zhang

Westlake Institute for Advanced Study



Outline 

• Motivation
• Statistical Models
• Deep Learning Models



Outline 

• Motivation
• Statistical Models
• Deep Learning Models



Motivation 

• Related tasks in NLP
• Constituents and named entities
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• Related tasks in NLP
• NER, Chunking and POS Tagging
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Motivation 

• Pipelines in NLP
• Entity and Relation

Associated Press writer Patrick McDowell in Kuwait City
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Motivation 

• Pipelines in NLP
• Entity and Sentiment

So excited to meet my baby Farah !!!

So excited to meet my [baby Farah] !!!

So excited to meet my [baby Farah]+ !!!
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Motivation 

• Joint model
• Reduce error propagation
• Allow information exchange between tasks

• Challenge
• Joint learning
• Search 



Solutions
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• Covered by this talk
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Graph-Based Methods

• Traditional solution
• Score each candidate, select the highest-scored output
• Search-space typically exponential

ü Over 100 possible trees for this seven-word sentence.
ü Over one million trees for a 20-word sentence. 
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Joint Segmentation and POS tagging

• Tasks

Input 

Segmenter

Tagger

Words

POS

Characters



Joint Segmentation and POS tagging

• Traditional pipeline

Ng, Hwee Tou, and Jin Kiat Low. "Chinese part-of-speech tagging: One-at-a-time or all-at-once? word-based or 
character-based?." EMNLP. 2004.
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Joint Segmentation and POS tagging

• One-at-a-Time, Word-Based POS Tagger : Feature 

Ng, Hwee Tou, and Jin Kiat Low. "Chinese part-of-speech tagging: One-at-a-time or all-at-once? word-based or 
character-based?." EMNLP. 2004.



Joint Segmentation and POS tagging

• Collapsing labels

Ng, Hwee Tou, and Jin Kiat Low. "Chinese part-of-speech tagging: One-at-a-time or all-at-once? word-based or 
character-based?." EMNLP. 2004.
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Joint Segmentation and POS tagging

• One-at-a-Time, Character-Based POS Tagger : Feature 

Ng, Hwee Tou, and Jin Kiat Low. "Chinese part-of-speech tagging: One-at-a-time or all-at-once? word-based or 
character-based?." EMNLP. 2004.



Joint Segmentation and POS tagging

• All-at-Once, Character-Based POS Tagger and Segmenter : 
Feature 

Ng, Hwee Tou, and Jin Kiat Low. "Chinese part-of-speech tagging: One-at-a-time or all-at-once? word-based or 
character-based?." EMNLP. 2004.



Joint Segmentation and POS tagging

• Results on CTB

Ng, Hwee Tou, and Jin Kiat Low. "Chinese part-of-speech tagging: One-at-a-time or all-at-once? word-based or 
character-based?." EMNLP. 2004.



Joint Parsing and NER

Finkel, Jenny Rose, and Christopher D. Manning. "Joint parsing and named entity recognition." Proceedings of 
Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association 
for Computational Linguistics. Association for Computational Linguistics, 2009.

• A joint model of both parsing and named entity recognition. 



Joint Parsing and NER

Finkel, Jenny Rose, and Christopher D. Manning. "Joint parsing and named entity recognition." Proceedings of 
Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association 
for Computational Linguistics. Association for Computational Linguistics, 2009.

• A feature-based CRF-CFG parser operating over tree structures 
augmented with NER information. 



Joint Parsing and NER

Finkel, Jenny Rose, and Christopher D. Manning. "Joint parsing and named entity recognition." Proceedings of 
Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association 
for Computational Linguistics. Association for Computational Linguistics, 2009.

• Results on OntoNotes
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Joint Segmentation and POS Tagging 

• Conditional Random Field(CRF) models for both Segmentation
and POS Tagging .

• Separately trained, reranking.
• Use tag sequence score to rank segmentation.

Shi, Yanxin, and Mengqiu Wang. "A Dual-layer CRFs Based Joint Decoding Method for Cascaded Segmentation 
and Labeling Tasks." IJcAI. 2007.



Shi, Yanxin, and Mengqiu Wang. "A Dual-layer CRFs Based Joint Decoding Method for Cascaded Segmentation 
and Labeling Tasks." IJcAI. 2007.

• Dual-layer CRFs

Joint Segmentation and POS Tagging 



Shi, Yanxin, and Mengqiu Wang. "A Dual-layer CRFs Based Joint Decoding Method for Cascaded Segmentation 
and Labeling Tasks." IJcAI. 2007.

• Results for Segmentation

Joint Segmentation and POS Tagging 



Shi, Yanxin, and Mengqiu Wang. "A Dual-layer CRFs Based Joint Decoding Method for Cascaded Segmentation 
and Labeling Tasks." IJcAI. 2007.

• Results for POS Tagging

Joint Segmentation and POS Tagging 



Joint Parsing and SRL

Sutton, Charles, and Andrew McCallum. "Joint parsing and semantic role labeling." Proceedings of the Ninth 
Conference on Computational Natural Language Learning. Association for Computational Linguistics, 2005.

• Task 

Input 

Parser

SRL

Syntax

Semantic Roles



Joint Parsing and SRL

Sutton, Charles, and Andrew McCallum. "Joint parsing and semantic role labeling." Proceedings of the Ninth 
Conference on Computational Natural Language Learning. Association for Computational Linguistics, 2005.

• The goal: narrow the gap between SRL results from gold parses 
and from automatic parses. 

• aims to achieve this by jointly performing parsing and semantic 
role labeling in a single probabilistic model. 

• This paper rerank the k-best parse trees from a probabilistic 
parser using an SRL system.



Joint Parsing and SRL

Sutton, Charles, and Andrew McCallum. "Joint parsing and semantic role labeling." Proceedings of the Ninth 
Conference on Computational Natural Language Learning. Association for Computational Linguistics, 2005.

• Results on CoNLL

• Did not beat a pipeline baseline
Many subsequent CoNLL shared tasks show difficulties for this joint task
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Joint Modeling

• Joint Search, separate training
• Search complex problem

• ILP
• BP
• Dual Decomposition

Auli, Michael, and Adam Lopez. "A comparison of loopy belief propagation and dual decomposition for integrated 
CCG supertagging and parsing." Proceedings of the 49th Annual Meeting of the Association for Computational 
Linguistics: Human Language Technologies-Volume 1. Association for Computational Linguistics, 2011.



Joint Entity and Sentiment

Yang, Bishan, and Claire Cardie. "Joint Inference for Fine-grained Opinion Extraction." ACL (1). 2013.

• Opinion linking relations 
• The numberic subscripts denote linking relations, one of IS-ABOUT OR 

IS-FROM

• Opinion entities:
• Opinion expressions: O
• Opinion targets: T
• Opinion holders: H

[The workers][H1,2] were irked [O1] by [the government report][T1] 

and were worried[O2] as they went about their daily chores. 

jointly identifies opinion-
related entities, as well as 
opinion linking relations



Joint Entity and Sentiment

Yang, Bishan, and Claire Cardie. "Joint Inference for Fine-grained Opinion Extraction." ACL (1). 2013.

• Model
• Opinion entity identification: sequence labeling using conditional 

random fields (CRFs);
• Relation extraction: binary classification using L1-regularized logistic 

regression; 
• Optimize the joint objective function which is defined as a linear 

combination of the potentials from different predictors with a parameter 
λ to balance the contribution of these two components: opinion entity 
identification and opinion relation extraction.



Joint Entity and Sentiment

Yang, Bishan, and Claire Cardie. "Joint Inference for Fine-grained Opinion Extraction." ACL (1). 2013.

• CRF for Opinion Entity Identification
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D – Opinion expression

T – Opinion target

H – Opinion Holder

N – Opinion None



Joint Entity and Sentiment

Yang, Bishan, and Claire Cardie. "Joint Inference for Fine-grained Opinion Extraction." ACL (1). 2013.

• Relation Extraction
• A classification model for opinion target relation
• A classification model for opinion holder relation
• Syntactic and semantic features are used



Joint Entity and Sentiment

Yang, Bishan, and Claire Cardie. "Joint Inference for Fine-grained Opinion Extraction." ACL (1). 2013.

• Joint scoring function by linearposition

!"#$% = ' ( !"#$% )*+,+-
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Joint Entity and Sentiment

Yang, Bishan, and Claire Cardie. "Joint Inference for Fine-grained Opinion Extraction." ACL (1). 2013.

• ILP for search
• Constraint 1: Uniqueness
• Constraint 2: Non-overlapping
• Constraint 3: Consistency between the opinion-arg and opinion-implicit-

arg classifiers
• Constraint 4: Consistency between opinion-arg classifier and opinion 

entity extractor
• Constraint 5: Consistency between the opinion-implicit-arg classifier 

and opinion entity extractor



Joint Entity and Sentiment

Yang, Bishan, and Claire Cardie. "Joint Inference for Fine-grained Opinion Extraction." ACL (1). 2013.

• Results on MPQA



Joint Entity and Sentiment

Yang, Bishan, and Claire Cardie. "Joint Inference for Fine-grained Opinion Extraction." ACL (1). 2013.

• Results on MPQA



• CCG parsing (for English, Chinese and other languages) is to 
find the syntactic structures of written text based on 
combinatory categorial grammars.

Supper tagging and parsing

Joint Supertagging and Parsing

Marcel proved completeness

NP (S\ NP)/NP NP

S\ NP

S

Auli, Michael, and Adam Lopez. "A comparison of loopy belief propagation and dual decomposition for integrated 
CCG supertagging and parsing." Proceedings of the 49th Annual Meeting of the Association for Computational 
Linguistics: Human Language Technologies-Volume 1. Association for Computational Linguistics, 2011.



Joint Supertagging and Parsing

Auli, Michael, and Adam Lopez. "A comparison of loopy belief propagation and dual decomposition for integrated 
CCG supertagging and parsing." Proceedings of the 49th Annual Meeting of the Association for Computational 
Linguistics: Human Language Technologies-Volume 1. Association for Computational Linguistics, 2011.

• CCG traditionally done by supertagging -> parsing



Joint Supertagging and Parsing

• Tasks

Input 

Super tagger

Parser

CCG Supertagging

CCG Parsing



Joint Supertagging and Parsing

Auli, Michael, and Adam Lopez. "A comparison of loopy belief propagation and dual decomposition for integrated 
CCG supertagging and parsing." Proceedings of the 49th Annual Meeting of the Association for Computational 
Linguistics: Human Language Technologies-Volume 1. Association for Computational Linguistics, 2011.

• Loopy belief propagation: factor graph for the combined parsing 
and supertagging model



Joint Supertagging and Parsing

Auli, Michael, and Adam Lopez. "A comparison of loopy belief propagation and dual decomposition for integrated 
CCG supertagging and parsing." Proceedings of the 49th Annual Meeting of the Association for Computational 
Linguistics: Human Language Technologies-Volume 1. Association for Computational Linguistics, 2011.
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Figure 3: Factor graph for the combined parsing and su-
pertagging model.

The current belief Bx(x) for variable x can be com-
puted by taking the normalized product of all its in-
coming messages.

Bx(x) =
1
Z

�

h�n(x)

mh�x(x) (5)

In the supertagger model, this is just:

p(Ti) =
1
Z

fi(Ti)bi(Ti)ei(Ti) (6)

Our parsing model is also a distribution over vari-
ables Ti, along with an additional quadratic number
of span(i, j) variables. Though difficult to represent
pictorially, a distribution over parses is captured by
an extension to graphical models called case-factor
diagrams (McAllester et al., 2008). We add this
complex distribution to our model as a single fac-
tor (Figure 3). This is a natural extension to the use
of complex factors described by Smith and Eisner
(2008) and Dreyer and Eisner (2009).
When a factor graph is a tree as in Figure 2, BP

converges in a single iteration to the exact marginals.
However, when the model contains cycles, as in Fig-
ure 3, we can iterate message passing. Under certain
assumptions this loopy BP it will converge to ap-
proximate marginals that are bounded under an in-
terpretation from statistical physics (Yedidia et al.,
2001; Sutton and McCallum, 2010).
The TREE factor exchanges inside ni and outside

oi messages with the tag and span variables, tak-
ing into account beliefs from the sequence model.

We will omit the unchanged outside recursion for
brevity, but inside messages n(Ci,j) for category
Ci,j in span(i, j) are computed using rule probabil-
ities r as follows:

n(Ci,j) =

�
��

��

fi(Ci,j)bi(Ci,j)ei(Ci,j) if j=i+1
�

k,X,Y

n(Xi,k)n(Yk,j)r(Ci,j , Xi,k, Yk,j)

(7)
Note that the only difference from the classic in-

side algorithm is that the recursive base case of a cat-
egory spanning a single word has been replaced by
a message from the supertag that contains both for-
ward and backward factors, along with a unary emis-
sion factor, which doubles as a unary rule factor and
thus contains the only shared features of the original
models. This difference is also mirrored in the for-
ward and backward messages, which are identical to
Equations 3 and 4, except that they also incorporate
outside messages from the tree factor.
Once all forward-backward and inside-outside

probabilities have been calculated the belief of su-
pertag Ti can be computed as the product of all in-
coming messages. The only difference from Equa-
tion 6 is the addition of the outside message.

p(Ti) =
1
Z

fi(Ti)bi(Ti)ei(Ti)oi(Ti) (8)

The algorithm repeatedly runs forward-backward
and inside-outside, passing their messages back and
forth, until these quantities converge.

4.2 Dual Decomposition
Dual decomposition (Rush et al., 2010; Koo et al.,
2010) is a decoding (i.e. search) algorithm for prob-
lems that can be decomposed into exactly solvable
subproblems: in our case, supertagging and parsing.
Formally, given Y as the set of valid parses, Z as the
set of valid supertag sequences, and T as the set of
supertags, we want to solve the following optimiza-
tion for parser f(y) and supertagger g(z).

arg max
y�Y,z�Z

f(y) + g(z) (9)

such that y(i, t) = z(i, t) for all (i, t) � I (10)

Here y(i, t) is a binary function indicating whether
word i is assigned supertag t by the parser, for the
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converges in a single iteration to the exact marginals.
However, when the model contains cycles, as in Fig-
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thus contains the only shared features of the original
models. This difference is also mirrored in the for-
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pertag Ti can be computed as the product of all in-
coming messages. The only difference from Equa-
tion 6 is the addition of the outside message.
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The algorithm repeatedly runs forward-backward
and inside-outside, passing their messages back and
forth, until these quantities converge.

4.2 Dual Decomposition
Dual decomposition (Rush et al., 2010; Koo et al.,
2010) is a decoding (i.e. search) algorithm for prob-
lems that can be decomposed into exactly solvable
subproblems: in our case, supertagging and parsing.
Formally, given Y as the set of valid parses, Z as the
set of valid supertag sequences, and T as the set of
supertags, we want to solve the following optimiza-
tion for parser f(y) and supertagger g(z).

arg max
y�Y,z�Z

f(y) + g(z) (9)

such that y(i, t) = z(i, t) for all (i, t) � I (10)

Here y(i, t) is a binary function indicating whether
word i is assigned supertag t by the parser, for the
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set I = {(i, t) : i � 1 . . . n, t � T} denoting
the set of permitted supertags for each word; sim-
ilarly z(i, t) for the supertagger. To enforce the con-
straint that the parser and supertagger agree on a
tag sequence we introduce Lagrangian multipliers
u = {u(i, t) : (i, t) � I} and construct a dual ob-
jective over variables u(i, t).

L(u) = max
y�Y

(f(y)�
�

i,t

u(i, t)y(i, t)) (11)

+ max
z�Z

(f(z) +
�

i,t

u(i, t)z(i, t))

This objective is an upper bound that we want to
make as tight as possible by solving for minu L(u).
We optimize the values of the u(i, t) variables using
the same algorithm as Rush et al. (2010) for their
tagging and parsing problem (essentially a percep-
tron update).4 An advantages of DD is that, on con-
vergence, it recovers exact solutions to the combined
problem. However, if it does not converge or we stop
early, an approximation must be returned: following
Rush et al. (2010) we used the highest scoring output
of the parsing submodel over all iterations.

5 Experiments

Parser. We use the C&C parser (Clark and Curran,
2007) and its supertagger (Clark, 2002). Our base-
line is the hybrid model of Clark and Curran (2007);
our integrated model simply adds the supertagger
features to this model. The parser relies solely on the
supertagger for pruning, using CKY for search over
the pruned space. Training requires repeated calcu-
lation of feature expectations over packed charts of
derivations. For training, we limited the number of
items in this chart to 0.3 million, and for testing, 1
million. We also used a more permissive training
supertagger beam (Table 3) than in previous work
(Clark and Curran, 2007). Models were trained with
the parser’s L-BFGS trainer.
Evaluation. We evaluated on CCGbank (Hocken-
maier and Steedman, 2007), a right-most normal-
form CCG version of the Penn Treebank. We
use sections 02-21 (39603 sentences) for training,
4The u terms can be interpreted as the messages from factors
to variables (Sontag et al., 2010) and the resulting message
passing algorithms are similar to the max-product algorithm, a
sister algorithm to BP.

section 00 (1913 sentences) for development and
section 23 (2407 sentences) for testing. We sup-
ply gold-standard part-of-speech tags to the parsers.
Evaluation is based on labelled and unlabelled pred-
icate argument structure recovery and supertag ac-
curacy. We only evaluate on sentences for which an
analysis was returned; the coverage for all parsers is
99.22% on section 00, and 99.63% on section 23.
Model combination. We combine the parser and
the supertagger over the search space defined by the
set of supertags within the supertagger beam (see Ta-
ble 1); this avoids having to perform inference over
the prohibitively large set of parses spanned by all
supertags. Hence at each beam setting, the model
operates over the same search space as the baseline;
the difference is that we search with our integrated
model.

5.1 Parsing Accuracy
We first experiment with the separately trained su-
pertagger and parser, which are then combined us-
ing belief propagation (BP) and dual decomposition
(DD). We run the algorithms for many iterations,
and irrespective of convergence, for BP we compute
the minimum risk parse from the current marginals,
and for DD we choose the highest-scoring parse
seen over all iterations. We measured the evolving
accuracy of the models on the development set (Fig-
ure 4). In line with our oracle experiment, these re-
sults demonstrate that we can coax more accurate
parses from the larger search space provided by the
reverse setting; the influence of the supertagger fea-
tures allow us to exploit this advantage.
One behavior we observe in the graph is that the

DD results tend to incrementally improve in accu-
racy while the BP results quickly stabilize, mirroring
the result of Smith and Eisner (2008). This occurs
because DD continues to find higher scoring parses
at each iteration, and hence the results change. How-
ever for BP, even if the marginals have not con-
verged, the minimum risk solution turns out to be
fairly stable across successive iterations.
We next compare the algorithms against the base-

line on our test set (Table 4). We find that the early
stability of BP’s performance generalises to the test
set as does DD’s improvement over several itera-
tions. More importantly, we find that the applying
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• Dual decomposition



Joint Supertagging and Parsing

Auli, Michael, and Adam Lopez. "A comparison of loopy belief propagation and dual decomposition for integrated 
CCG supertagging and parsing." Proceedings of the 49th Annual Meeting of the Association for Computational 
Linguistics: Human Language Technologies-Volume 1. Association for Computational Linguistics, 2011.

• Results on CCGBank
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Graph-Based Methods

• Joint Label Structure
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Joint Modeling (Single task)

• A Single Model

!"#$% = Φ(')•(
where ' is the model features



Joint Segmentation and POS Tagging

Zhang, Yue, and Stephen Clark. "Joint Word Segmentation and POS Tagging Using a Single Perceptron." ACL. 
2008.

• Directly model combined output using features.

Input ����� Ilikereadingbooks

Output       �/PN��/V�/V �/N    I/PN like/V reading/V books/N



Joint Segmentation and POS Tagging

Zhang, Yue, and Stephen Clark. "Joint Word Segmentation and POS Tagging Using a Single Perceptron." ACL. 
2008.

• Feature templates for the baseline segmentor



Joint Segmentation and POS Tagging

Zhang, Yue, and Stephen Clark. "Joint Word Segmentation and POS Tagging Using a Single Perceptron." ACL. 
2008.

• Feature templates for the baseline POS tagger



Joint Segmentation and POS Tagging

Zhang, Yue, and Stephen Clark. "Joint Word Segmentation and POS Tagging Using a Single Perceptron." ACL. 
2008.

• Averaged perceptron algorithm for training

The perceptron learning algorithm



Joint Segmentation and POS Tagging

Zhang, Yue, and Stephen Clark. "Joint Word Segmentation and POS Tagging Using a Single Perceptron." ACL. 
2008.

• Beam search decoding: agendas[i] stores the best sequences
that end at i
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Joint Segmentation and POS Tagging

Zhang, Yue, and Stephen Clark. "Joint Word Segmentation and POS Tagging Using a Single Perceptron." ACL. 

2008.

• Results by 10-fold cross validation using CTB



Joint Entity Relation Extraction

Li, Qi, and Heng Ji. "Incremental Joint Extraction of Entity Mentions and Relations." ACL (1). 2014.

• Task



Joint Entity Relation Extraction

Li, Qi, and Heng Ji. "Incremental Joint Extraction of Entity Mentions and Relations." ACL (1). 2014.

• A Single Model

• Beam Search



Joint Entity Relation Extraction

Li, Qi, and Heng Ji. "Incremental Joint Extraction of Entity Mentions and Relations." ACL (1). 2014.

• Example of decoding steps



Joint Entity Relation Extraction

Li, Qi, and Heng Ji. "Incremental Joint Extraction of Entity Mentions and Relations." ACL (1). 2014.

• Feature
• Local features

• Gazetteer features
• Case features
• Contextual features
• Parsing-based features

• Global entity mention features
• Coreference consistency
• Neighbor coherence
• Part-of-whole consistency

• Global relation features
• Role coherence
• Triangle constraint
• Inter-dependent compatibility
• Neighbor coherence



Joint Entity Relation Extraction

Li, Qi, and Heng Ji. "Incremental Joint Extraction of Entity Mentions and Relations." ACL (1). 2014.

• Experiments 
• Data: 

• Training data: ACE’05
• Validation data: ACE’04



Joint Entity Relation Extraction

Li, Qi, and Heng Ji. "Incremental Joint Extraction of Entity Mentions and Relations." ACL (1). 2014.

• Results on ACE 



Statistical Models

• Graph-Based Methods
• Transition-Based Methods



A Transition System

• Automata
• State

• Start state —— an empty structure
• End state —— the output structure
• Intermediate states —— partially constructed structures

• Actions
• Change one state to another

Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.



• Automata

A Transition System

start
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A Transition System
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A Transition System

start …
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• State
• Corresponds to partial results during decoding

• start state, end state, Si

• Actions
• The operations that can be applied for state transition
• Construct output incrementally

• ai

A Transition System

start …

a0

S1 Si … Sn end

a1 ai-1 ai an-1 an

Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.



Transition-based Dependency Parsing

• An Example 

• S-SHIFT

• R-REDUCE

• AL-ARC-LEFT

• AR-ARC-RIGHT
He does it here

Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.
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• Similar challenged to graph-based models 
• Typical exponential 

Search Space
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A Learning+Search Framework

start

Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.
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A Learning+Search Framework

• Dependency Parsing Example
• Decoding

Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

He does it here



A Learning+Search Framework

• Dependency Parsing Example

• Decoding

He does it here does it hereHe S

Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.
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A Learning+Search Framework

• Dependency Parsing Example

• Decoding
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• Search not optional (vs graph-based structured prediction)
• Learn to fix search errors

A Learning+Search Framework

start
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A Learning+Search Framework 

• Advantages

• Low computation complexity

• Arbitrary non-local features

• Learning-guided-search

Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.



A Learning+Search Framework

• State-of-the-art accuracies and speeds
• Constituent parsing
• Dependency parsing
• Word Segmentation
• CCG parsing

• Enable joint models
• Address complex search space and use joint features, which have 

been difficult for traditional models

Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.
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A Learning+Search Framework

• Global Normalization for Neural Structured Prediction
• Zhou et al., (2015)
• Watanabe et al., (2015)
• Andor et al., (2016)
• Rush et al., (2016)

Hao Zhou, Yue Zhang, Shujian Huang and Jiajun Chen. A Neural Probabilistic Structured-Prediction Model for Transition-based Dependency Parsing. In
Proceedings of ACL 2015, Beijing, China, July.
Watanabe, Taro, and Eiichiro Sumita. "Transition-based neural constituent parsing." Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Vol. 1. 2015.
Andor Daniel, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman Ganchev, Slav Petrov, Michael Collins "Globally normalized transition-
based neural networks." arXiv preprint arXiv:1603.06042 (2016).
Wiseman, Sam, and Alexander M. Rush. "Sequence-to-sequence learning as beam-search optimization." arXiv preprint arXiv:1606.02960 (2016).



Joint Segmentation and POS Tagging

• The transition system
• State

• Partial segmented results
• Unprocessed characters 

• Two actions 
• Separate (t) : t is a POS tag
• Append

Zhang and Clark, EMNLP 2010
Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single 
Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.



Joint Segmentation and POS Tagging

• The transition system
• Initial state 

�����

Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single 
Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.



Joint Segmentation and POS Tagging

• The transition system
• Separate(PN)

��������

Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single 
Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.



Joint Segmentation and POS Tagging

• The transition system
• Separate (V)
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Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single 
Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.



Joint Segmentation and POS Tagging

• The transition system

• Append

	����� ����

Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single 
Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.



Joint Segmentation and POS Tagging

• The transition system
• Separate (V)
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Joint Segmentation and POS Tagging

• The transition system
• Separate (N)
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Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single 
Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.



Joint Segmentation and POS Tagging

• The transition system
• End state

���� ���� 	�� ���

Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single 
Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.



Joint Segmentation and POS Tagging

• Segmentation Feature templates

Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single 
Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.

Non-local



Joint Segmentation and POS Tagging

• POS Feature templates

Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single 
Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.

Word-level



Joint Segmentation and POS Tagging

• Experiments on CTB 5

SF JF
K09 (error-driven) 97.87 93.67

This work 97.78 93.67
Zhang 2008 97.82 93.62

K09 (baseline) 97.79 93.60

J08a 97.85 93.41

J08b 97.74 93.37

N07 97.83 93.32

SF = segmentation F-score; JF = joint segmentation and POS-tagging F-score

Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single 
Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.



Joint Segmentation/Tagging/Chunking

• Input ��������

Output     [NP �/NR] [VP ��/VV] [NP ��/NR ��/NN] [O �/PU] 
[He] [arrived] [Beijing airport] [.]

• Chunking knowledge can potentially improve 
segmentation/tagging. 

• To address the sparsity of full chunk features, a semi-
supervised method is proposed to derive chunk cluster features 
from large-scale automatically-chunked data. 

Chen Lyu, Yue Zhang and Donghong Ji. Joint Word Segmentation, POS-Tagging and Syntactic Chunking. In 
Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.



Joint Segmentation/Tagging/Chunking

• Character-based chunking 
• Action: initial state

Chen Lyu, Yue Zhang and Donghong Ji. Joint Word Segmentation, POS-Tagging and Syntactic Chunking. In 
Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

stack queue1 queue2
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[He] [arrived] [Beijing airport] [.]



Joint Segmentation/Tagging/Chunking

• Character-based chunking 
• Action: SEP(NR)
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• Character-based chunking 
• Action: FIN W
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Joint Segmentation/Tagging/Chunking

• Character-based chunking 
• Action: SEP(VV)
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Joint Segmentation/Tagging/Chunking

• Character-based chunking 
• Action: APP W

Chen Lyu, Yue Zhang and Donghong Ji. Joint Word Segmentation, POS-Tagging and Syntactic Chunking. In 
Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.
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Joint Segmentation/Tagging/Chunking

• Character-based chunking 
• Action: SEP(VP)
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• Character-based chunking 
• Action: FIN W
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• Character-based chunking 
• Action: SEP(O)
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Joint Segmentation/Tagging/Chunking

• Character-based chunking feature template 
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Joint Segmentation/Tagging/Chunking

• Results on CTB 
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Joint Segmentation, Tagging and 
Normalization
• Text normalization is introduced as a pre-processing step for 

microblog processing, which transforms informal words into 
their standard forms. For example, “tmrw” has been frequently 
used in tweets for is for “tomorrow”. 

• This paper proposed a transition-based model for joint word 
segmentation, POS tagging and text normalization. 

Tao Qian, Yue Zhang, Meishan Zhang and Donghong Ji. A Transition-based Model for Joint Segmentation, POS-
tagging and Normalization. In proceedings of EMNLP 2015, Lisboa, Portugal, September.
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Joint Segmentation, Tagging and 
Normalization
• Normalization dictionary

Tao Qian, Yue Zhang, Meishan Zhang and Donghong Ji. A Transition-based Model for Joint Segmentation, POS-
tagging and Normalization. In proceedings of EMNLP 2015, Lisboa, Portugal, September.



Joint Segmentation, Tagging and 
Normalization
• Transition actions for joint segmentation, tagging and 

normalization
• Actions: initial state
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Joint Segmentation, Tagging and 
Normalization
• Features

• The segmentation feature templates of Zhang and Clark (2011)

• Extracting language model features by using word-based language 
model learned from a large quantity of standard texts

Tao Qian, Yue Zhang, Meishan Zhang and Donghong Ji. A Transition-based Model for Joint Segmentation, POS-
tagging and Normalization. In proceedings of EMNLP 2015, Lisboa, Portugal, September.



Joint Segmentation, Tagging and 
Normalization
• Results on CTB
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Joint Segmentation, POS-tagging and 
Constituent Parsing
• Traditional: word-based Chinese parsing

CTB-style word-based syntax tree for “�� (China) �
� (architecture industry) �	 (show) 
� (new) �� (pattern)”.

Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. Chinese Parsing Exploiting Characters. In proceedings 
of ACL 2013. Sophia, Bulgaria. August.



Joint Segmentation, POS-tagging and 
Constituent Parsing
• This: character-based Chinese parsing

Character-level syntax tree with hierarchal word structures for “� (middle) � (nation) � (construction) 

 (building) � (industry) � (present) 	 (show) � (new) � (style) � (situation)”.

Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. Chinese Parsing Exploiting Characters. In proceedings 
of ACL 2013. Sophia, Bulgaria. August.



Joint Segmentation, POS-tagging and 
Constituent Parsing
• Why character-based?

• Chinese words have syntactic structures.
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of ACL 2013. Sophia, Bulgaria. August.
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• Deep character information of word structures.
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Joint Segmentation, POS-tagging and 
Constituent Parsing
• The character-based parsing model

• A transition-based parser

Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. Chinese Parsing Exploiting Characters. In proceedings 
of ACL 2013. Sophia, Bulgaria. August.



Constituent Parsing
• Example

• SHIFT

Transition-based Constituent Parsing

Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam 
Search. In Computational Linguistics, 37(1), March.
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Constituent Parsing
• Example

• TERMINATE
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Joint Segmentation, POS-tagging and 
Constituent Parsing
• The transition system

lSHIFT-SEPARATE(t), SHIFT-APPEND, REDUCE-SUBWORD(d),  
REDUCE-WORD, REDUCE-BINARY(d;l),  REDUCE-UNARY(l), TERMINATE

n State:

nActions:

Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. Chinese Parsing Exploiting Characters. In proceedings 
of ACL 2013. Sophia, Bulgaria. August.



Joint Segmentation, POS-tagging and 
Constituent Parsing
• Actions

• SHIFT-SEPARATE(t)

Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. Chinese Parsing Exploiting Characters. In proceedings 
of ACL 2013. Sophia, Bulgaria. August.



Joint Segmentation, POS-tagging and 
Constituent Parsing
• Actions

• SHIFT-SEPARATE(t)

Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. Chinese Parsing Exploiting Characters. In proceedings 
of ACL 2013. Sophia, Bulgaria. August.



Joint Segmentation, POS-tagging and 
Constituent Parsing
• Actions

• SHIFT-APPEND

Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. Chinese Parsing Exploiting Characters. In proceedings 
of ACL 2013. Sophia, Bulgaria. August.



Joint Segmentation, POS-tagging and 
Constituent Parsing
• Actions

• SHIFT-APPEND

Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. Chinese Parsing Exploiting Characters. In proceedings 
of ACL 2013. Sophia, Bulgaria. August.



Joint Segmentation, POS-tagging and 
Constituent Parsing
• Actions

• REDUCE-SUBWORD(d) 

Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. Chinese Parsing Exploiting Characters. In proceedings 
of ACL 2013. Sophia, Bulgaria. August.



Joint Segmentation, POS-tagging and 
Constituent Parsing
• Actions

• REDUCE-SUBWORD(d) 

Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. Chinese Parsing Exploiting Characters. In proceedings 
of ACL 2013. Sophia, Bulgaria. August.



Joint Segmentation, POS-tagging and 
Constituent Parsing
• Actions

• REDUCE-WORD

Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. Chinese Parsing Exploiting Characters. In proceedings 
of ACL 2013. Sophia, Bulgaria. August.



Joint Segmentation, POS-tagging and 
Constituent Parsing
• Actions

• REDUCE-WORD

Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. Chinese Parsing Exploiting Characters. In proceedings 
of ACL 2013. Sophia, Bulgaria. August.



Joint Segmentation, POS-tagging and 
Constituent Parsing
• Actions

• REDUCE-BINARY(d; l)

Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. Chinese Parsing Exploiting Characters. In proceedings 
of ACL 2013. Sophia, Bulgaria. August.



Joint Segmentation, POS-tagging and 
Constituent Parsing
• Actions

• REDUCE-BINARY(d; l)

Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. Chinese Parsing Exploiting Characters. In proceedings 
of ACL 2013. Sophia, Bulgaria. August.



Joint Segmentation, POS-tagging and 

Constituent Parsing

• Actions

• REDUCE-UNARY(l)

Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. Chinese Parsing Exploiting Characters. In proceedings 

of ACL 2013. Sophia, Bulgaria. August.



Joint Segmentation, POS-tagging and 

Constituent Parsing

• Actions

• REDUCE-UNARY(l)

Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. Chinese Parsing Exploiting Characters. In proceedings 

of ACL 2013. Sophia, Bulgaria. August.



Joint Segmentation, POS-tagging and 
Constituent Parsing
• Actions

• TERMINATE
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Joint Segmentation, POS-tagging and 
Constituent Parsing
• Results on CTB

Task Seg Tag Parse

Kruengkrai+ ’09 97.87 93.67 –
Sun ’11 98.17 94.02 –
Wang+ ’11 98.11 94.18 –
Li ’11 97.3 93.5 79.7
Li+ ’12 97.50 93.31 –
Hatori+ ’12 98.26 94.64 –
Qian+ ’12 97.96 93.81 82.85

Ours pipeline 97.69 93.83 82.26

Ours joint flat 97.73 94.48 83.61

Ours joint annotated 97.84 94.80 84.43

Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. Chinese Parsing Exploiting Characters. In proceedings 
of ACL 2013. Sophia, Bulgaria. August.



Joint POS tagging and Dependency 
Parsing
• Actions

• INITIALIZATION

Bohnet, Bernd, and Joakim Nivre. "A transition-based system for joint part-of-speech tagging and labeled non-
projective dependency parsing." Proceedings of the 2012 Joint Conference on EMNLP and CoNLL. ACL, 2012.
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• Actions

• SHIFT(TAGPRP)
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Joint POS tagging and Dependency 
Parsing
• Actions

• SHIFT(TAGVBD)
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Joint POS tagging and Dependency 
Parsing
• Actions

• LEFT(LABELnsubj)

Bohnet, Bernd, and Joakim Nivre. "A transition-based system for joint part-of-speech tagging and labeled non-
projective dependency parsing." Proceedings of the 2012 Joint Conference on EMNLP and CoNLL. ACL, 2012.
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Joint POS tagging and Dependency 
Parsing
• Actions

• SHIFT(TAGDT)

Bohnet, Bernd, and Joakim Nivre. "A transition-based system for joint part-of-speech tagging and labeled non-
projective dependency parsing." Proceedings of the 2012 Joint Conference on EMNLP and CoNLL. ACL, 2012.
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Joint POS tagging and Dependency 
Parsing
• Actions

• SHIFT(TAGNN)

Bohnet, Bernd, and Joakim Nivre. "A transition-based system for joint part-of-speech tagging and labeled non-
projective dependency parsing." Proceedings of the 2012 Joint Conference on EMNLP and CoNLL. ACL, 2012.
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Joint POS tagging and Dependency 
Parsing
• Actions

• LEFT(LABELdet)

Bohnet, Bernd, and Joakim Nivre. "A transition-based system for joint part-of-speech tagging and labeled non-
projective dependency parsing." Proceedings of the 2012 Joint Conference on EMNLP and CoNLL. ACL, 2012.
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Joint POS tagging and Dependency 

Parsing

• Actions

• RIGHT(LABELdobj)

Bohnet, Bernd, and Joakim Nivre. "A transition-based system for joint part-of-speech tagging and labeled non-

projective dependency parsing." Proceedings of the 2012 Joint Conference on EMNLP and CoNLL. ACL, 2012.
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Joint POS tagging and Dependency 
Parsing
• Results

Bohnet, Bernd, and Joakim Nivre. "A transition-based system for joint part-of-speech tagging and labeled non-
projective dependency parsing." Proceedings of the 2012 Joint Conference on EMNLP and CoNLL. ACL, 2012.

Parser TLAS UAS LAS POS
MSTParser1 75.56 93.51
MSTParser2 77.73 93.51
Li et al. (2011) 3rd-order 80.60 92.80
Li et al. (2011) 2nd-order 80.55 93.08
Hatori et al. (2011) HS 79.60 94.01
Hatori et al. (2011) ZN 81.20 93.94
Baseline (k = 1), b1 = 40 61.95 80.33 76.79 92.81
Best dev setting, b1 = 40 62.54 80.59 77.06 93.11
Adding G, b1 = 80 63.20 81.42 77.91 93.24

Table 4: Accuracy scores for Penn Chinese Treebank
converted with the head rules of Zhang and Clark (2008).
Best dev setting: k = 3, � = 0.1. MSTParser results from
Li et al. (2011). UAS scores from Li et al. (2011) and Ha-
tori et al. (2011) recalculated from the separate accuracy
scores for root words and non-root words reported in the
original papers.

(Søgaard, 2011).
Table 4 shows the results for the Chinese Penn

Treebank CTB 5.1 together with related work. In ex-
periments with the development set, we could con-
firm the results from the Chinese CoNLL data set
and obtained the best results with the same settings
(k = 3, � = 0.1). With b1 = 40, UAS improves by
0.25 and POS by 0.30, and the TLAS improvement
is again highly significant (p < 0.01, paired t-test).
We get the highest UAS, 81.42, with a beam of 80
and added graph features, in which case POS accu-
racy increases from 92.81 to 93.24. Since our tagger
was not optimized for Chinese, we have lower base-
line results for the tagger than both Li et al. (2011)
and Hatori et al. (2011) but still manage to achieve
the highest reported UAS.

The speed of the joint tagger and dependency
parser is quite reasonable with about 0.4 seconds
per sentence on the WSJ-PTB test set, given that we
perform tagging and labeled parsing with a beam of
80 while incorporating the features of a third-order
graph-based model. Experiments were performed
on a computer with an Intel i7-3960X CPU (3.3 GHz
and 6 cores). These performance values are prelim-
inary since we are still working on the speed-up of
the parser.

3.3 Analysis

In order to better understand the benefits of the joint
model, we performed an error analysis for German

Confusion Baseline Joint
Freq F-score Freq F-score

VVINF� VVFIN 28 91.1 2 97.7
VVINF� VVPP|ADJ*|NN 5 9
VVFIN� VVINF 43 94.2 5 98.5
VVFIN� VVPP 20 2
VAINF� VAFIN 10 99.1 1 99.9
NE� NN 184

90.7
128

92.4NE� ADJ*|ADV|FM 24 18
NE� XY 12 21
NN� NE 85 97.5 67 98.1
NN� ADJ*|XY|ADV|VV* 39 29
PRELS� ART 13 92.9 5 95.4
PRELS� PWS 0 2

Table 5: Selected entries from the confusion matrix for
parts of speech in German with F-scores for the left-hand-
side category. ADJ* (ADJD or ADJA) = adjective; ADV
= adverb; ART = determiner; APPR = preposition; NE
= proper noun; NN = common noun; PRELS = relative
pronoun; VVFIN = finite verb; VVINF = non-finite verb;
VAFIN = finite auxiliary verb; VAINF = non-finite auxil-
iary verb; VVPP = participle; XY = not a word. We use
�* to denote the set of categories with � as a prefix.

and English, where we compared the baseline and
the joint model with respect to F-scores for individu-
al part-of-speech categories and dependency labels.
For the part-of-speech categories, we found an im-
provement across the board for both languages, with
no category having a significant decrease in F-score,
but we also found some interesting patterns for cat-
egories that improved more than the average.

Table 5 shows selected entries from the confu-
sion matrix for German, where we see substantial
improvements for finite and non-finite verbs, which
are often morphologically ambiguous but which can
be disambiguated using syntactic context. We al-
so see improved accuracies for common and proper
nouns, which are both capitalized in standard Ger-
man orthography and therefore often mistagged, and
for relative pronouns, which are less often confused
for determiners in the joint model.

Table 6 gives a similar snapshot for English, and
we again see improvements for verb categories that
are often morphologically ambiguous, such as past
participles, which can be confused for past tense
verbs, and present tense verbs in third person sin-
gular, which can be confused for nouns. We also
see some improvement for the singular noun catego-
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Abstract

Traditional methods for deep NLG adopt
pipeline approaches comprising stages
such as constructing syntactic input, pre-
dicting function words, linearizing the
syntactic input and generating the sur-
face forms. Though easier to visual-
ize, pipeline approaches suffer from er-
ror propagation. In addition, informa-
tion available across modules cannot be
leveraged by all modules. We construct
a transition-based model to jointly per-
form linearization, function word predic-
tion and morphological generation, which
considerably improves upon the accuracy
compared to a pipelined baseline system.
On a standard deep input linearization
shared task, our system achieves the best
results reported so far.

1 Introduction

Natural language generation (NLG) (Reiter and
Dale, 1997; White, 2004) aims to synthesize nat-
ural language text given input syntactic, seman-
tic or logical representations. It has been shown
useful in various tasks in NLP, including machine
translation (Chang and Toutanova, 2007; Zhang
et al., 2014), abstractive summarization (Barzilay
and McKeown, 2005) and grammatical error cor-
rection (Lee and Seneff, 2006).

A line of traditional methods treat the problem
as a pipeline of several independent steps (Bohnet
et al., 2010; Wan et al., 2009; Bangalore et al.,
2000; H. Oh and I. Rudnicky, 2000; Langkilde
and Knight, 1998). For example, shown in Fig-
ure 1b, a pipeline based on the meaning text the-
ory (MTT) (Melčuk, 1988) splits NLG into three

⇤Part of the work was done when the author was a vis-
iting student at Singapore University of Technology and De-
sign.
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Figure 1: Linearization pipelines (a) NLG pipeline
with deep input graph, (b) pipeline based on the
meaning text theory, (c) this paper.
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think
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Figure 2: Sample deep graph for the sentence:
meanwhile, prices are thought to have increased.
Note that words are replaced by their lemmas. The
function word to and comma are absent in graph.

independent steps 1. syntactic generation: gen-
erating an unordered and lemma-formed syntactic
tree from a semantic graph, introducing function
words; 2. syntactic linearization: linearizing the
unordered syntactic tree; 3. morphological gener-
ation: generating the inflection for each lemma in
the string.

In this paper we focus on deep graph as input.
Exemplified in Figure 2, the deep input type is
intended to be an abstract representation of the
meaning of a sentence. Unlike semantic input,
where the nodes are semantic representations of
input, deep input is more surface centric, with lem-
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Abstract

Traditional methods for deep NLG adopt
pipeline approaches comprising stages
such as constructing syntactic input, pre-
dicting function words, linearizing the
syntactic input and generating the sur-
face forms. Though easier to visual-
ize, pipeline approaches suffer from er-
ror propagation. In addition, informa-
tion available across modules cannot be
leveraged by all modules. We construct
a transition-based model to jointly per-
form linearization, function word predic-
tion and morphological generation, which
considerably improves upon the accuracy
compared to a pipelined baseline system.
On a standard deep input linearization
shared task, our system achieves the best
results reported so far.

1 Introduction

Natural language generation (NLG) (Reiter and
Dale, 1997; White, 2004) aims to synthesize nat-
ural language text given input syntactic, seman-
tic or logical representations. It has been shown
useful in various tasks in NLP, including machine
translation (Chang and Toutanova, 2007; Zhang
et al., 2014), abstractive summarization (Barzilay
and McKeown, 2005) and grammatical error cor-
rection (Lee and Seneff, 2006).

A line of traditional methods treat the problem
as a pipeline of several independent steps (Bohnet
et al., 2010; Wan et al., 2009; Bangalore et al.,
2000; H. Oh and I. Rudnicky, 2000; Langkilde
and Knight, 1998). For example, shown in Fig-
ure 1b, a pipeline based on the meaning text the-
ory (MTT) (Melčuk, 1988) splits NLG into three
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independent steps 1. syntactic generation: gen-
erating an unordered and lemma-formed syntactic
tree from a semantic graph, introducing function
words; 2. syntactic linearization: linearizing the
unordered syntactic tree; 3. morphological gener-
ation: generating the inflection for each lemma in
the string.

In this paper we focus on deep graph as input.
Exemplified in Figure 2, the deep input type is
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Joint Morphology and Linearization  

• Transition Actions
• SHIFT-Word-POS [SH]

• Shifts Word from ρ, as- signs POS to it and pushes it to top of stack as S0; 

• LEFTARC-LABEL [LA]

• Constructs dependency arc S1 S0 and pops out second element from 
top of stack S1

• RIGHTARD-LABEL [RA]

• Constructs dependency arc S1 S0 and pops out top of stack S0

• INSERT [IN]

• Inserts comma at the present position

• SPLITARC-Word [SP]

• splits an arc in the input graph C, inserting a function word between the words 

connected by the arc. 

Ratish Puduppully, Yue Zhang, Manish Shrivastava. Transition-Based Deep Input Linearization. In Proceedings of 

the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL). Valencia, 

Spain, April.
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Joint Morphology and Linearization  

• Transition Example

Ratish Puduppully, Yue Zhang, Manish Shrivastava. Transition-Based Deep Input Linearization. In Proceedings of 
the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL). Valencia, 
Spain, April.

think[1] price[2] .[3] increase[4] be[5] have[6] meanwhile[7]

meanwhile, prices are thought to have increased. Sentence:

Input
Lemmas:



Joint Morphology and Linearization  

• Transition Action
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Joint Morphology and Linearization  

• Transition Action
• SH-meanwhile
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Joint Morphology and Linearization  

• Transition Action
• INSERT
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think[1] price[2] .[3] increase[4] be[5] have[6] meanwhile[7]

Meanwhile ,

7 1 2 3 4 5 6

σ ρ



Joint Morphology and Linearization  

• Transition Action
• SH-prices
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Joint Morphology and Linearization  

• Transition Action
• SH-are
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• Transition Action
• SH-thought
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Joint Morphology and Linearization  

• Transition Action
• SH-to
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Joint Morphology and Linearization  

• Transition Action
• SH-have
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Joint Morphology and Linearization  

• Transition Action
• SH-increased
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Joint Morphology and Linearization  

• Transition Action

• RA (6 à 4) [VC]
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Joint Morphology and Linearization  

• Transition Action

• RA (1 à 6) [C-A1]

Ratish Puduppully, Yue Zhang, Manish Shrivastava. Transition-Based Deep Input Linearization. In Proceedings of 

the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL). Valencia, 

Spain, April.

think[1] price[2] .[3] increase[4] be[5] have[6] meanwhile[7]

Meanwhile , prices are thought to have increased

7 2 5 1 6 3

σ ρ

VCC-A1



Joint Morphology and Linearization  

• Transition Action

• RA (5 à 1) [VC]
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• Transition Action
• SH-.
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Joint Morphology and Linearization  

• Transition Action
• RA (5 à 3) [P]
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Joint Morphology and Linearization  

• Transition Action

• LA (2 ß 5) [SBJ]
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Joint Morphology and Linearization  

• Transition Action
• LA (7 ß 5) [AM-TMP]
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• Results on dataset of the Surface Realisation Shared Task 
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Figure 6: Influence of beam sizes.

Pipeline Joint
to infinitive 92.7 94.1
that complementizer 70.6 76.5
count of comma 60.2 63.3

Table 11: Average F-measure for function word
prediction for development set.

6.2 Pipeline vs Joint Model

We compare the results of the joint model with the
pipeline baseline system. Table 11 shows the de-
velopment results of function word prediction, and
Table 12 shows the overall development results.
Our joint model of Transition-Based Deep Input
Linearization (TBDIL) achieves an improvement
of 5 BLEU points over the pipeline using the same
feature source and training algorithm. Thanks to
the sharing of word order information, the joint
model improves function word prediction com-
pared to the pipeline, which forbids such feature
integration because function word prediction is the
first step, taken before order becomes available.

7 Final Results

Table 13 shows the final results. The best perform-
ing system for the Shared Task was STUMABA-D
by Bohnet et al. (2011), which leverages a large-
scale n-gram language model. The joint model
TBDIL significantly outperforms the pipeline sys-
tem and achieves an improvement of 1 BLEU
point over STUMABA-D, obtaining 80.49 BLEU
without making use of external resources.

8 Analysis

Table 14 shows sample outputs from the Pipeline
system and the corresponding output from TBDIL.
In the first instance, the function word to is incor-
rectly predicted in the arc between nodes does and
yield in the pipeline system. In case of TBDIL,
the n-gram feature helps avoid incorrect insertion
of to which demonstrates the advantage of inte-
grating information across stages. In the second

System BLEU Score
Pipeline 75.86
TBDIL 80.77

Table 12: Development results.

System BLEU Score
STUMABA-D 79.43

Pipeline 70.99
TBDIL 80.49

Table 13: Test results.

output
ref. if it does n’t yield on these matters and even-

tually begin talking directly to the anc
Pipeline if it does not to yield on these matters and

eventually begin talking directly to the anc
TBDIL if it does n’t yield on these matters and even-

tually begin talking directly to the anc
ref. economists who read september ’s low level

of factory job growth as a sign of a slowdown
Pipeline september ’s low level of factory job growth

who as a sign of a slowdown reads economists
TBDIL economists who read september ’s low level

of factory job growth as a sign of a slowdown

Table 14: Example outputs.

instance, because of incorrect linearization, there
is error propagation to morphological generation
in the pipeline system. In particular, economists is
linearized to the object part of the sentence and the
subject is singular. This, in turn, results in the in-
correct prediction of morphological form of verb
read as its singular variant. In TBDIL, in contrast,
the joint modelling of linearization and morphol-
ogy helps ordering the sentence correctly.

9 Conclusion

We showed the usefulness of a joint model for the
task of Deep Linearization, by taking (Puduppully
et al., 2016) as the baseline and extending it to
perform joint graph linearization, function word
prediction and morphological generation. To our
knowledge, this is the first work to use Transition-
Based method for joint NLG from semantic struc-
ture. Our system gave the highest scores reported
for the NLG 2011 shared task on Deep Input Lin-
earization (Belz et al., 2011).
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Joint Entity and Relation Extraction  

• This paper investigate joint models for simultaneously extracting 
drugs, diseases and adverse drug events. 

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. Joint Models for Extracting Adverse Drug Events from 
Biomedical Text. In Proceddings of IJCAI 2016. New York City, USA, July.

Gliclazidedrug-induced acute hepatitisdisease



Joint Entity and Relation Extraction 

• We define the action as:
• O, which marks the current word as not belong to either a drug or 

disease mention.
• BC, which marks the current word as the beginning of a drug mention.
• BD, which marks the current word as the beginning of a disease 

mention.
• I, which marks the current word as part of a drug or disease mention 

but not the beginning.
• For example

• Given a sentence: Gliclazide-induced acute hepatitis.
• The action sequence: “BC O O BD I O “ yields the result ”Gliclazidedrug-induced 

acute hepatitisdisease.”

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. Joint Models for Extracting Adverse Drug Events from 
Biomedical Text. In Proceddings of IJCAI 2016. New York City, USA, July.



Joint Entity and Relation Extraction 

• The state of the joint model as a tuple <labels, disease, drugs, s 
ADEs>

• labels is a label sequence
• disease is a list of readily-recognized disease entity mentions
• drugs is a list of readily-recognized drug entity mentions
• ADEs is a set of ADEs

• Two more actions are defined to achieve this
• N, which indicates that a pair of entities does not have an ADE relation
• Y, which indicates that a pair of entities has an ADE relation

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. Joint Models for Extracting Adverse Drug Events from 
Biomedical Text. In Proceddings of IJCAI 2016. New York City, USA, July.
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<[BD],[],[],[]> O

next actionstate 

Hepatitis caused by methotrexate and etretinate .
BD

<labels, disease, drugs, relations>
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<[BD,O],[Hepatitis],[],[]> O

next actionstate 

Hepatitis caused by methotrexate and etretinate .
BD   O   

<labels, disease, drugs, relations>
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<[BD,O,O],[Hepatitis],[],[]> BC

next actionstate 

Hepatitis caused by methotrexate and etretinate .
BD   O   O

<labels, disease, drugs, relations>
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<[BD,O,O,BC],[Hepatitis],[],[]> O

next actionstate 

Hepatitis caused by methotrexate and etretinate .
BD   O   O    BC

<labels, disease, drugs, relations>
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<[BD,O,O,BC,O],[Hepatitis],[methotrexate],[]> Y

next actionstate 

Hepatitis caused by methotrexate and etretinate .
BD   O   O    BC    O
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<[BD,O,O,BC,O],[Hepatitis],[methotrexate],[(Hepatitis,methotrexate)]> BC

next actionstate 

Hepatitis caused by methotrexate and etretinate .
BD   O   O    BC    O

<labels, disease, drugs, relations>
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<[BD,O,O,BC,O,BC],[Hepatitis],[methotrexate],[(Hepatitis,methotrexate)]
>

O

next actionstate 

Hepatitis caused by methotrexate and etretinate .
BD   O   O    BC    O    BC 

<labels, disease, drugs, relations>
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<[BD,O,O,BC,O,BC,O],[Hepatitis],[methotrexate,etretinate],[(Hepatitis,m
ethotrexate)]>

Y

next actionstate 

Hepatitis caused by methotrexate and etretinate .
BD   O   O    BC    O    BC O

<labels, disease, drugs, relations>
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<[BD,O,O,BC,O,BC,O],[Hepatitis],[methotrexate,etretinate],[(Hepatitis,m
ethotrexate),(Hepatitis,etretinate)]>

<EOS>

next actionstate 

Hepatitis caused by methotrexate and etretinate .
BD   O   O    BC    O    BC O

<labels, disease, drugs, relations>
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Figure 3: The neural joint model.

fixed-length embeddings. Given an entity e=e1, e2, ..., eN ,
ei ∈ RD is a D-dimensional word vector corresponding to the
i-th word in the entity. In a convolution layer, a kernel with
a parameter matrix W1 ∈ RH1×CD and bias vector b1 ∈ RH1

convolves the C continuous words ei∶i+C−1 from e1 to eN .
Here H1 is the output unit number of the kernel. To process
all the words in an entity mention, the kernel needs K (K =
N-C+1) separate convolutional actions. For each convolution
k, the kernel output mk is computed as follows:

mk = tanh(W1ei∶i+C−1 + b1), (3)
where D, C and H1 are hyper-parameters of the model.

The final outputs of CNN are computed through a max-
pooling layer by:

fj = max
1�k�Kmkj , (4)

where j indicates the j-th output of the pooling layer, namely
the j-th component of the output vector of CNN.

Finally, the input layer x ∈ RG consists of a concatenation
of vectors [s : f], where f indicates output vector of CNN
and s denotes other fixed-length feature embeddings. G is the
total unit number of the input layer.

5.2 Hidden Layer
The hidden layer makes use of a RELU activation function,
which is defined as:

relu(z) =max(0, z) (5)

Given the input vector x, the hidden layer makes a non-
linear combination, which can be formulated as:

h = relu(W2x + b2), (6)
where W2 ∈ RH2×G is a parameter matrix and b2 ∈ RH2 is
a bias vector. H2 is a hyper-parameter, denoting number of
nodes in the hidden layer.

5.3 Output Layer
The output layer calculates the probabilities of transition ac-
tions, so that the one with the maximum probability is se-
lected. The probability of an action ai is computed by:

p(ai) = softmax(ai) = e
w3ih

∑A

j=1 ew3j h , (7)

which is similar with that of the baseline max-entropy model.
Here A is the number of all possible actions given the state,
and w3i denotes the i-th row of parameter matrix W3 ∈
RA×H2 .

For training the neural joint model, Equation 2 is used as
the loss function. Mini-batched AdaGrad for neural models
[Duchi et al., 2011] with dropout [Hinton et al., 2012] is used
to optimize the training objective.

6 Experiments
6.1 Experimental Settings
Data: We use the ADE corpus [Gurulingappa et al., 2012],
which consists of 1644 PubMed abstracts for evaluation.
Sentences in the corpus are divided into two categories,
namely 6821 sentences which contain at least one ADE
drug/disease pair (i.e., ADE sentences), and 16695 sentences
which contain no ADEs. Only ADE sentences annotated with
drug/disease mentions are used in our experiments because
we need to evaluate the performance of both entity recogni-
tion and relation extraction. We evaluate all the models using
10-fold cross-validation, where 10% of the data are used as
the development set, 10% as the test set and the remainder
for training.
Metrics: Standard precision (P), recall (R), F1-measure (F1)
are used for evaluation. An entity is counted as true-positive
only if both its boundary and type are correct. An ADE re-
lation is counted as true-positive only if both the boundaries
and the types of its entities are correct.
Parameters: For all the models, we set the initial AdaGrad
learning rate ↵ and regularization parameter � to 0.01 and
10−8, respectively. For the neural models, embeddings are
randomly initialized in the range (-0.01, 0.01), and we set the
dimension D to 200 by default. The dropout rate is 0.5. The
window size C of the CNN filter is 2 and the size H1 of the
CNN output layer is 200. The hidden layer size H2 is 200.
As it is infeasible to perform full search for all parameters, the
values are chosen empirically following prior work on neural
networks [Chen and Manning, 2014; Zhang et al., 2015].
Preprocessing: The Stanford CoreNLP toolkit7 is utilized
for preprocessing, such as POS tagging. All the letters are
transformed into lowercase forms.

6.2 Development Results
In Table 3, the performance of the discrete joint model with
only local features is slightly better than that of the base-
line, showing the effectiveness of error propagation reduc-
tion. When the global features are added, the performance
of the discrete joint model is improved significantly. This
demonstrates the important roles of the global features by in-
tegrating entity mention and ADE information, which is en-
abled by the joint model, and not feasible for the baseline
model. The neural joint model achieves the best development
F1 scores, improving recalls drastically with a slight decrease
in precisions.

7http://stanfordnlp.github.io/CoreNLP/
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Method Entity Recognition ADE extraction
P R F1 P R F1

Baseline 78.0 71.8 74.8 60.8 51.6 55.8
Discrete Joint

(local) 78.0 72.0 74.9 60.9 51.9 56.0

Discrete Joint
(+global) 80.5 75.2 77.8 65.7 57.0 61.1

Neural Joint 79.6 79.7 79.7 64.4 63.3 63.9

Table 3: Performance (%) on the development set.

Method Entity Recognition ADE extraction
P R F1 P R F1

Li et al.
[2015] 75.9 71.6 73.6 55.2 47.9 51.1

Baseline 77.8 72.0 74.8 60.7 51.5 55.7
Discrete Joint 80.0 75.1 77.5 65.1 56.7 60.6
Neural Joint 79.5 79.6 79.5 64.0 62.9 63.4

Table 4: Performance (%) on the test set.

6.3 Final Results
There are two main related methods. Kang et al. [2014] pro-
posed a knowledge-based method using the Unified Medical
Language System. Their results cannot be directly compared
with ours since their experimental data were partitioned dif-
ferently from ours and they did not distinguish the ADE rela-
tions from drug-disease-treatment relations. Li et al. [2015]
proposed a joint model using the perceptron algorithm to ex-
tract drug/disease mentions and ADEs simultaneously. Our
experimental settings are similar with theirs, and we compare
our results on the test set with their best reported results.

As shown in Table 4, the performance of our pipelined
baseline is competitive to that of Li et al. [2015]. Our dis-
crete joint model gives the best precisions, and the neural
joint model gives the best recalls and F1 scores. Compared
with Li et al. [2015], our neural joint model improves the
F1 scores in drug/disease recognition and ADE extraction by
about 6% and 12%, respectively. The final results demon-
strate the advantages of the neural model — on the one hand,
two submodels in the joint model can facilitate each other
by making use of their interactions and combining features;
on the other hand, dense neural features can be effective for
overcoming the problem of feature sparsity.

7 Discussion
We compare the baseline with the discrete and neural joint
models by analyzing their error distributions. 10% of the test
data are randomly selected as the analysis data. We divide
the errors into false-positives (FP) and false-negatives (FN),
where an entity is counted as false-positive if its boundary or
type is incorrectly identified, and an ADE relation is counted
as false-positive if its related entity mention boundaries or
types are incorrect. An entity or ADE is counted as false-
negative if it has not been recognized.

The statistics are shown in Table 5, where the discrete
joint model gives the least false-positives and the neural joint
model gives the least false-negatives. This is consistent with

Method Entity Recognition ADE extraction
FP FN FP FN

Baseline 229 286 253 324
Discrete Joint 203 275 226 311
Neural Joint 211 229 248 278

Table 5: Error analysis using randomly selected data.

the overall results in Table 4. Compared with the baseline,
one of the advantages of the discrete joint model is that it can
utilize extracted ADEs for better recognizing entities. For in-
stance, in “Gabapentindrug has been previously reported and
usually consists of anxietydisease, diaphoresisdisease, and
palpitationsdisease”, the last disease “palpitations” is recog-
nized by the discrete joint model but not by the baseline, be-
cause the ADE information between “Gabapentin” and “di-
aphoresis” can be exploited by the joint model. In the dis-
crete joint model, the global features of coordinating relations
are also effective. For example, in “an interaction between
clarithromycindrug and isradipinedrug, potentially increas-
ing the hepatic toxicitydisease”, the ADE between “isradip-
ine” and “hepatic toxicity” is successfully extracted by the
joint model but not by the baseline.

The discrete joint model achieves slightly higher precision
compared with the neural joint model. One important reason
is that its features consist of discrete word patterns, which
fire only when exact matches occur. However, this leads to
lower recall. One of the reasons for the lower false-negatives
of the neural model can be that it can recognize more com-
plex and ambiguous entities. For example, an abbreviation
“NMS” (neuroleptic malignant syndrome) can be recognized
by the neural model but not by the discrete model. A chemi-
cal “6-thioguanine” with mixed digits and letters can also be
recognized correctly. More recognized entities give the neu-
ral model more opportunities to extract ADE relations.

8 Conclusion
We explored joint models to extract drugs, diseases and
ADEs simultaneously. Experimental results on a standard
benchmark corpus show that they are more effective com-
pared to traditional pipeline models. In addition, when dis-
crete features are replaced by the neural features, the per-
formance is further improved significantly. We found that
a crucial reason behind the effectiveness of the neural net-
work model is its improved recall, which is enabled by dense
neural features. Our code is publicly available under GPL at:
https://github.com/foxlf823/ade.
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St Mt Bt Action St+1 Mt+1 Bt+1 Dependency

S M (v, v), B S-SHIFT (v, v), S M (v, v), B —
(u, u), S M B S-REDUCE S M B —
(u, u), S M (v, v), B S-RIGHT(`) (v, v), (gs(u, v, l), u), S M (v, v), B S [ u

`! v

(u, u), S M (v, v), B S-LEFT(`) S M (gs(v, u, l), v), B S [ u
` v

S M (v, v), B M-SHIFT S (v, v), M B —
S (u, u), M B M-REDUCE S M B —
S (u, u), M (v, v), B M-RIGHT(r) S (gm(u, v, r), u), M (v, v), B M [ u

r! v

S (u, u), M (v, v), B M-LEFT(r) S (u, u), M (gm(v, u, r), v), B M [ u
r v

S (u, u), (v, v), M B M-SWAP S (v, v), (u, u), M B —
S M (v, v), B M-PRED(p) S M (gd(v, p), v), B —
S M (v, v), B M-SELF(r) S M (gm(v, v, r), v), B M [ v

r$ v

Table 1: Parser transitions along with the modifications to the stacks and the buffer resulting from each.
Syntactic transitions are shown above, semantic below. Italic symbols denote symbolic representations
of words and relations, and bold symbols indicate (learned) embeddings (§3.5) of words and relations;
each element in a stack or buffer includes both symbolic and vector representations, either atomic or
recursive. S represents the set of syntactic transitions, and M the set of semantic transitions.

an element to the top of the stack, resulting in a
new summary. Pop, which does not correspond to
a conventional LSTM operation, moves the stack
pointer to the preceding timestep, resulting in a
stack summary as it was before the popped item
was observed. Implementation details (Dyer et al.,
2015; Goldberg, 2015) and code have been made
publicly available.6

Using stack LSTMs, we construct a represen-
tation of the algorithm state by decomposing it
into smaller pieces that are combined by recursive
function evaluations (similar to the way a list is
built by a concatenate operation that operates on a
list and an element). This enables information that
would be distant from the “top” of the stack to be
carried forward, potentially helping the learner.

3.2 Stack LSTMs for Joint Parsing

Our algorithm employs four stack LSTMs,
one each for the S, M , and B data struc-
tures.Like Dyer et al. (2015), we use a fourth stack
LSTM, A, for the history of actions—A is never
popped from, only pushed to. Figure 4 illustrates
the architecture. The algorithm’s state at timestep
t is encoded by the four vectors summarizing the
four stack LSTMs, and this is the input to the clas-
sifier that chooses among the allowable transitions
at that timestep.

Let st, mt, bt, and at denote the summaries
of St, Mt, Bt, and At, respectively. Let At =
Allowed(St, Mt, Bt, At) denote the allowed tran-
sitions given the current stacks and buffer. The
parser state at time t is given by a rectified linear
unit (Nair and Hinton, 2010) in vector yt:

yt = elementwisemax {0,d + W[st;mt;bt;at]}
6https://github.com/clab/lstm-parser
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Figure 4: Stack LSTM for joint parsing. The state
illustrated corresponds to the ***-marked row in
the example transition sequence in Fig. 3.

where W and d are the parameters of the classi-
fier. The transition selected at timestep t is

arg max
⌧2At

q⌧ + ✓⌧ · yt (1)

⌘ arg max
⌧2At

score(⌧ ;St, Mt, Bt, At)

where ✓⌧ and q⌧ are parameters for each transi-
tion type ⌧ . Note that only allowed transitions are
considered in the decision rule (see §2.3).

3.3 Composition Functions

To use stack LSTMs, we require vector representa-
tions of the elements that are stored in the stacks.
Specifically, we require vector representations of
atoms (words, possibly with part-of-speech tags)
and parse fragments. Word vectors can be pre-
trained or learned directly; we consider a concate-
nation of both in our experiments; part-of-speech

190



Joint Parsing and SRL

• Results on CONLL

Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with 
Stack LSTMs In proceedings of CoNLL (CoNLL 2016).

Model LAS
Sem. Macro

F1 F1

joint models:

Lluı́s and Màrquez (2008) 85.8 70.3 78.1
Henderson et al. (2008) 87.6 73.1 80.5
Johansson (2009) 86.6 77.1 81.8
Titov et al. (2009) 87.5 76.1 81.8
CoNLL 2008 best:

#3: Zhao and Kit (2008) 87.7 76.7 82.2
#2: Che et al. (2008) 86.7 78.5 82.7
#2: Ciaramita et al. (2008) 87.4 78.0 82.7
#1: J&N (2008) 89.3 81.6 85.5
Joint (this work) 89.1 80.5 84.9

Table 2: Joint parsers: comparison on the CoNLL
2008 test (WSJ+Brown) set.

sitions is derived, showing the benefit of learn-
ing a representation for the entire algorithmic
state. Several other joint learning models have
been proposed (Lluı́s and Màrquez, 2008; Jo-
hansson, 2009; Titov et al., 2009) for the same
task; our joint model surpasses the performance
of all these models. The best reported systems on
the CoNLL 2008 task are due to Johansson and
Nugues (2008), Che et al. (2008), Ciaramita et
al. (2008) and Zhao and Kit (2008), all of which
pipeline syntax and semantics; our system’s se-
mantic and overall performance is comparable to
these. We fall behind only Johansson and Nugues
(2008), whose success was attributed to carefully
designed global SRL features integrated into a
pipeline of classifiers, making them asymptoti-
cally slower.

CoNLL 2009 English (Table 3) All of our
models (Syntax-only, Semantics-only, Hybrid and
Joint) improve over Gesmundo et al. (2009)
and Henderson et al. (2013), demonstrating the
benefit of our entire-parser-state representation
learner compared to the more locally scoped
model.

Given that syntax has consistently proven useful
in SRL, we expected our Semantics-only model
to underperform Hybrid and Joint, and it did. In
the training domain, syntax and semantics bene-
fit each other (Joint outperforms Hybrid). Out-
of-domain (the Brown test set), the Hybrid pulls
ahead, a sign that Joint overfits to WSJ. As a
syntactic parser, our Syntax-only model performs
slightly better than Dyer et al. (2015), who achieve
89.56 LAS on this task. Joint parsing is very
slightly better still.

The overall performance of Joint is on par with
the other winning participants at the CoNLL 2009
shared task (Zhao et al., 2009; Che et al., 2009;
Gesmundo et al., 2009), falling behind only Zhao
et al. (2009), who carefully designed language-
specific features and used a series of pipelines for
the joint task, resulting in an accurate but compu-
tationally expensive system.

State-of-the-art SRL systems (shown in the last
block of Table 3) which use advances orthog-
onal to the contributions in this paper, perform
better than our models. Many of these systems
use expert-crafted features derived from full syn-
tactic parses in a pipeline of classifiers followed
by a global reranker (Björkelund et al., 2009;
Björkelund et al., 2010; Roth and Woodsend,
2014); we have not used these features or rerank-
ing. Lei et al. (2015) use syntactic parses to obtain
interaction features between predicates and their
arguments and then compress feature representa-
tions using a low-rank tensor. Täckström et al.
(2015) present an exact inference algorithm for
SRL based on dynamic programming and their lo-
cal and structured models make use of many syn-
tactic features from a pipeline; our search pro-
cedure is greedy. Their algorithm is adopted
by FitzGerald et al. (2015) for inference in a model
that jointly learns representations from a combina-
tion of PropBank and FrameNet annotations; we
have not experimented with extra annotations.

Our system achieves an end-to-end runtime of
177.6±18 seconds to parse the CoNLL 2009 En-
glish test set on a single core. This is almost 2.5
times faster than the pipeline model of Lei et al.
(2015) (439.9±42 seconds) on the same machine.8

CoNLL 2009 Multilingual (Table 4) We tested
the joint model on the non-English CoNLL 2009
datasets, and the results demonstrate that it adapts
easily—it is on par with the top three systems in
most cases. We note that our Chinese parser relies
on pretrained word embeddings for its superior
performance; without them (not shown), it was on
par with the others. Japanese is a small-data case
(4,393 training examples), illustrating our model’s
dependence on reasonably large training datasets.

We have not extended our model to incorporate
morphological features, which are used by the sys-
tems to which we compare. Future work might in-

8See https://github.com/taolei87/
SRLParser; unlike other state-of-the-art systems, this
one is publicly available.
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Model LAS
Sem. F1

(WSJ)

Sem. F1

(Brown)

Macro

F1

CoNLL’09 best:

#3 G+ ’09 88.79 83.24 70.65 86.03
#2 C+ ’09 88.48 85.51 73.82 87.00
#1 Z+ ’09a 89.19 86.15 74.58 87.69
this work:

Syntax-only 89.83
Sem.-only 84.39 73.87
Hybrid 89.83 84.58 75.64 87.20
Joint 89.94 84.97 74.48 87.45
pipelines:

R&W ’14 86.34 75.90
L+ ’15 86.58 75.57
T+ ’15 87.30 75.50
F+ ’15 87.80 75.50

Table 3: Comparison on the CoNLL 2009 English
test set. The first block presents results of other
models evaluated for both syntax and semantics on
the CoNLL 2009 task. The second block presents
our models. The third block presents the best pub-
lished models, each using its own syntactic pre-
processing.

corporate morphological features where available;
this could potentially improve performance, espe-
cially in highly inflective languages like Czech.
An alternative might be to infer word-internal rep-
resentations using character-based word embed-
dings, which was found beneficial for syntactic
parsing (Ballesteros et al., 2015).

Language #1 C+’09 #2 Z+ ’09a #3 G+ ’09 Joint
Catalan 81.84 83.01 82.66 82.40
Chinese 76.38 76.23 76.15 79.27

Czech 83.27 80.87 83.21 79.53
English 87.00 87.69 86.03 87.45
German 82.44 81.22 79.59 81.05
Japanese 85.65 85.28 84.91 80.91
Spanish 81.90 83.31 82.43 83.11
Average 82.64 82.52 82.14 81.96

Table 4: Comparison of macro F1 scores on the
multilingual CoNLL 2009 test set.

6 Related Work

Other approaches to joint modeling, not consid-
ered in our experiments, are notable. Lluı́s et al.
(2013) propose a graph-based joint model using
dual decomposition for agreement between syn-
tax and semantics, but do not achieve competi-
tive performance on the CoNLL 2009 task. Lewis
et al. (2015) proposed an efficient joint model for
CCG syntax and SRL, which performs better than

a pipelined model. However, their training neces-
sitates CCG annotation, ours does not. Moreover,
their evaluation metric rewards semantic depen-
dencies regardless of where they attach within the
argument span given by a PropBank constituent,
making direct comparison to our evaluation infea-
sible. Krishnamurthy and Mitchell (2014) pro-
pose a joint CCG parsing and relation extraction
model which improves over pipelines, but their
task is different from ours. Li et al. (2010) also
perform joint syntactic and semantic dependency
parsing for Chinese, but do not report results on
the CoNLL 2009 dataset.

There has also been an increased interest in
models which use neural networks for SRL. Col-
lobert et al. (2011) proposed models which per-
form many NLP tasks without hand-crafted fea-
tures. Though they did not achieve the best results
on the constituent-based SRL task (Carreras and
Màrquez, 2005), their approach inspired Zhou and
Xu (2015), who achieved state-of-the-art results
using deep bidirectional LSTMs. Our approach
for dependency-based SRL is not directly compa-
rable.

7 Conclusion

We presented an incremental, greedy parser for
joint syntactic and semantic dependency parsing.
Our model surpasses the performance of previous
joint models on the CoNLL 2008 and 2009 En-
glish tasks, without using expert-crafted, expen-
sive features of the full syntactic parse.
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Model Seg POS

Hatori+12 SegTag 97.66 93.61
Hatori+12 SegTag(d) 98.18 94.08
Hatori+12 SegTagDep 97.73 94.46
Hatori+12 SegTagDep(d) 98.26 94.64
M. Zhang+14 EAG 97.76 94.36
Y. Zhang+15 98.04 94.47

SegTag(g) 98.41 94.84

SegTag 98.60 94.76

Table 5: Joint segmentation and POS tagging
scores. Both scores are in F-measure. In Ha-
tori et al. (2012), (d) denotes the use of dictio-
naries. (g) denotes greedy trained models. All
scores for previous models are taken from Hatori
et al. (2012), Zhang et al. (2014) and Zhang et al.
(2015).

3.2 Results

3.2.1 Joint Segmentation and POS Tagging

First, we evaluate the joint segmentation and POS
tagging model (SegTag). Table 5 compares the
performance of segmentation and POS tagging us-
ing the CTB-5 dataset. We train two modles: a
greedy-trained model and a model trained with
beams of size 4. We compare our model to three
previous approaches: Hatori et al. (2012), Zhang
et al. (2014) and Zhang et al. (2015). Our SegTag
joint model is superior to these previous models,
including Hatori et al. (2012)’s model with rich
dictionary information, in terms of both segmen-
tation and POS tagging accuracy.

3.2.2 Joint Segmentation, POS Tagging and

Dependency Parsing

Table 6 presents the results of our full joint model.
We employ the greedy trained full joint model
SegTagDep(g) and the beam decoding model Seg-
TagDep. All scores for the existing models in this
table are taken from Zhang et al. (2014). Though
our model surpasses the previous best end-to-end
joint models in terms of segmentation and POS
tagging, the dependency score is slightly lower
than the previous models. The greedy model
SegTagDep(g) achieves slightly lower scores than
beam models, although this model works consid-
erably fast because it does not use beam decoding.

Model Seg POS Dep

Hatori+12 97.75 94.33 81.56
M. Zhang+14 EAG 97.76 94.36 81.70

SegTagDep(g) 98.24 94.49 80.15
SegTagDep 98.37 94.83 81.42

Table 6: Joint Segmentation, POS Tagging and
Dependency Parsing. Hatori et al. (2012)’s CTB-5
scores are reported in Zhang et al. (2014). EAG in
Zhang et al. (2014) denotes the arc-eager model.
(g) denotes greedy trained models.

Model Seg POS Dep

Hatori+12 97.75 94.33 81.56
M. Zhang+14 STD 97.67 94.28 81.63
M. Zhang+14 EAG 97.76 94.36 81.70
Y. Zhang+15 98.04 94.47 82.01

SegTagDep(g) 98.24 94.49 80.15
SegTagDep 98.37 94.83

‡ 81.42‡

SegTag+Dep 98.60
‡ 94.76‡

82.60
‡

Table 7: The SegTag+Dep model. Note that the
model of Zhang et al. (2015) requires other base
parsers. ‡ denotes that the improvement is statisti-
cally siginificant at p < 0.01 compared with Seg-
TagDep(g) using paired t-test.

3.2.3 Pipeline of Our Joint SegTag and Dep

Model

We use our joint SegTag model for the pipeline
input of the Dep model (SegTag+Dep). Both Seg-
Tag and Dep models are trained and tested by the
beam cost function with beams of size 4. Table
7 presents the results. Our SegTag+Dep model
performs best in terms of the dependency and
word segmentation. The SegTag+Dep model is
better than the full joint model. This is because
most segmentation errors of these models occur
around named entities. Hatori et al. (2012)’s align-
ment step assumes the intra-word dependencies in
words, while named entities do not always have
them. For example, SegTag+Dep model treats
named entity “w[K”, a company name, as one
word, while the SegTagDep model divides this to
“w” (sea) and “[K”, where “[K” could be
used for foreigner’s name. For such words, Seg-
TagDep prefers SH because AP has size-2 step
of the character appending and intra-word depen-
dency resolution, which does not exist for named
entities. This problem could be solved by adding
a special transition AP_named_entity which
is similar to AP but with size-1 step and used
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Transitions Preconditions of transition actions
LEFTl-⇤ [i 6= 0] ^ ¬[(i!⇤ j) 2 R] ^ (j 2 E)
RIGHTl-⇤ ¬[(j !⇤ i) 2 R] ^ (j 2 E)
⇤-REDUCE ¬[9k 2 �.(i! k) _ (i k)] ^ (j 2 E)
⇤-SHIFT ¬[9k 2 �.(k 6= i) ^ ((k ! j) _ (k  j))] ^ (j 2 E)
O-DELETE (j /2 E) ^ (e = [ ])
GEN-SHIFT (j /2 E)
GEN-NER (j /2 E) ^ (e 6⌘ [ ])

Table 2: Preconditions of transition actions.

holding entities that are popped out of � but will be pushed
back in the future, e is a stack storing the partial entity chunk,
and � is a buffer holding unprocessed words. R is a set of
relation arcs. E is a set of entity arcs. We use an index i to
represent word wi and entity ei, respectively. A is used to
store the action history.

The set of actions is shown in Table 1. The first seven ac-
tions are used to generate relations, and the last three actions
are used to generate entities. In particular, LEFTl-REDUCE
adds a relation arc with label l from ej to ei, and pops ei out
of �. RIGHTl-SHIFT adds a relation arc with label l from ei

to ej , and pushes all entities in � and ej into �. NO-SHIFT
pushes all entities in � and ej into �. NO-REDUCE pops
ei out of �. LEFTl-PASS adds a relation arc with label l
from ej to ei, and moves ei to the front of �. RIGHTl-PASS
adds a relation arc with label l from ei to ej , and moves ei

to the front of �. NO-PASS simply moves ei to the front of
�. (i⇤ l�! j

⇤) is used to denote a relation arc from ei to ej

with label l. (i⇤ ! j
⇤) and (i⇤ !⇤

j
⇤) indicate that ei is a

head and an ancestor of ej respectively. Note that all the re-
lation actions are forbidden when the top element of � is a
word. O-DELETE pops wj out of �. GEN-SHIFT moves
wj from � to e. GEN-NER(y) pops all items from the top of
e creating a “chunk”, labels this with label y, pushes a repre-
sentation of this chunk onto �, and an entity is added to E.
All the entity actions are forbidden when the top element of
� is an entity.

Each action needs to satisfy certain preconditions to ensure
the properties of a well-formed directed graph of entities and
relations, as described in Table 2. To produce arcs pointing
to entities with multiple heads, we design the preconditions
of LEFTl-⇤ and RIGHTl-⇤ so that the dependency between a
head and its modifier can be generated even if the modifier
already has a head. Furthermore, we want to confirm that all
heads and children of a word are found before the word is
reduced. To this end, we set the head confirmation in the pre-
condition of ⇤-REDUCE to make sure no extra head of ei is in
the buffer �.

Table 3 shows the sequence of state transitions
given the sentence in Figure 1. The initial state is
([ ], [ ], [ ], [1, · · · , n], ;, ;), while the terminal state is
(�, �, [ ], [ ], R,E). Transition actions are generated by
consulting the gold-standard graph during training and a
neural network classifier during decoding.

3.2 Search Algorithm
Based on the above transition system, our decoder searches
for an optimal action sequence for a given sentence. The sys-
tem is initialized by pushing all the input words and their rep-

TOP

        
mt=max{0,W[st;bt;pt;et;at]+d}

δ

NO-REDUCENO-SHIFT

σ

empty-stack e(John)

β

empty-stack 

h(Los) empty-stack

btetptst at

…. 

A

GEN-SHIFTO-DELETE

h(Angeles) h(California)

e

Figure 3: Representation of model state 6 in Table 3. h(⇤) indicates
the Bi-LSTM representation of each token, e(⇤) indicates the com-
position of entities and their relations.

resentations onto � in reverse order, such that the first word
is at the top of �. �, �, e and A each contains an empty-stack
token. At each step, the system computes a composite repre-
sentation of the model states (determined by the current con-
figurations of �, �, �, e and A), which is used to predict an
action to take. Decoding completes when � and e are both
empty (except for the empty-stack symbol), regardless of the
other states.

As shown in Figure 3, the model state representation at
time t, which is written as mt, is defined as:

mt = max{0,W [st; bt; pt; et; at] + d},
where W is a learned parameter matrix, st is the representa-
tion of �, bt is the representation of �, pt is the representation
of �, et is the representation of e, at is the representation of A,
d is a bias term. (W [st; bt; pt; et; at] + d) is passed through a
component-wise rectified linear unit (ReLU) for nonlinearity.

The model state mt is used to compute the probability of
candidate actions at time t as:

p(zt|mt) =
exp(gTztmt + qzt)P

z02A(S,B) exp(gTz0mt + qz0)
,

where gz is a column vector representing the embedding of
the transition action z, and qz is a bias term for the action
z. The set A(S,B) represents the set of valid actions that
may be taken given the current state. Since mt encodes in-
formation about all previous decisions made by the transition
system, the probability of any valid sequence of transition ac-
tions z conditioned on the input can be written as:

p(z|w) =
|z|Y

t=1

p(zt|mt)

We then have

(E⇤
, R

⇤) = argmaxE,R

|z|Y

t=1

p(zt|mt),

where E
⇤ is the best output entities, and R

⇤ is the best rela-
tions. Thus the extraction of entities and relations are merged
in one transition-based system. To label a new input sequence
at test time, the maximum probability action is chosen greed-
ily until the algorithm reaches a termination state.
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Similary, for the modifier-head pair, we have

c = tanh(W t[M ;H;R] + e
t)

where W t is a learned parameter matrix, et is a bias term, and
the others are the same with head-modifier pair.

To simplify the parameterization of our composition func-
tion, we combine the pairs one at a time, building up more
complicated structures in the order they are “reduced” in the
model. Figure 4 shows an example when updating the entity
“Los Angeles”, where the Live In relation is generated firstly.

4 Experiments
4.1 Experimental settings
Dateset To directly compare with Zheng et al. [2017], we use
the public dataset NYT2 as our main data set, which is pro-
duced by distant supervision [Ren et al., 2017]. The training
data set is obtained by means of distant supervision methods
without manually labeling and contains 353k triplets in to-
tal. While the test set is manually labeled and contains 3, 880
triplets. Besides, the size of relation set is 24.

Evaluation Metrics We adopt standard Precision (Prec), Re-
call (Rec) and F1 score to evaluate the model. The labels of
entity types are not considered when computing the final F1-
score [Ren et al., 2017; Zheng et al., 2017]. In other words, a
triplet is regarded as correct when its relation type and head
offsets of the two corresponding entities are both correct. We
follow Zheng et al. [2017], creating a validation set by ran-
domly sampling 10% data from test set and use the remaining
data as evaluation.

4.2 Hyperparameters and Training Details
Given a set of training data, the training goal is to maximize
the likelihood of each gold action given the current model
state. We update all model parameters by backpropagation
using stochastic gradient descent (SGD) with a learning rate
of 0.01 and gradient clipping at 5.0. We regularize our net-
work using dropout with rate 0.3 tuned using the develop-
ment set. Following Dyer et al. [2015], we use a variant of
the skip n-gram model, namely structured skip n-gram [Ling
et al., 2015], to create word embeddings. The AFP portion
of English Gigaword corpus (version 5) is used as the train-
ing corpus and the embedding dimension is 100. We have 2
hidden layers in our network and the dimensionality of the
hidden units is 100.

4.3 Experimental Results
Baselines We compare our method with several state-of-the-
art extraction methods, which can be divided into the fol-
lowing categories: the pipelined methods, the jointly extract-
ing methods, and the end-to-end methods. For the pipelined
methods, the NER results are obtained by Ren et al. [2017],
then several classical relation classification methods are ap-
plied to detect the relations. These methods include: (1) DS-
logistic [Mintz et al., 2009] is a distant supervised and feature

2The dataset can be downloaded at:
https://github.com/shanzhenren/CoType.

Method Prec. Rec. F1
FCM [Gormley et al., 2015] 55.3 15.4 24.0
DS+logistic [Mintz et al., 2009] 25.8 39.3 31.1
LINE [Tang et al., 2015] 33.5 32.9 33.2
MultiR [Hoffmann et al., 2011] 33.8 32.7 33.3
DS-Joint [Li and Ji, 2014] 57.4 25.6 35.4
CoType [Ren et al., 2017] 42.3 51.1 46.3
LSTM-LSTM-Bias 61.5 41.4 49.5
LSTM-LSTM-Bias* 60.8 41.3 49.1
Our Method 64.3 42.1 50.9

Table 4: Comparison with previous state-of-the-art methods on
NYT. The first part (from row 1 to row 3) is the pipelined meth-
ods, the second part (row 4 to 6) is the jointly extracting methods,
and the third part (row 7 to 9) is the end-to-end methods.

Method Prec. Rec. F1
ALL 64.3 42.1 50.9
-composition 62.3 41.2 49.6
-Bi-LSTM 62.3 40.5 49.1

Table 5: Ablation test on NYT.

based method, which combines the advantages of supervised
IE and unsupervised IE features; (2) LINE [Tang et al., 2015]
is a network embedding method, which is suitable for arbi-
trary types of information networks; (3) FCM [Gormley et

al., 2015] is a compositional model that combines lexicalized
linguistic context and word embeddings for relation extrac-
tion.

The joint methods are listed as follows: (4) DS-Joint [Li
and Ji, 2014] is a supervised method, which jointly extracts
entities and relations using structured perceptron on human-
annotated dataset; (5) MultiR [Hoffmann et al., 2011] is a
typical distant supervised method based on multi-instance
learning algorithms to combat the noisy training data; (6) Co-
Type [Ren et al., 2017] is a domain independent framework
by jointly embedding entity mentions, relation mentions, text
features and type labels into meaningful representations.

LSTM-LSTM-Bias [Zheng et al., 2017] is the baseline
end-to-end method in §2, LSTM-LSTM-Bias* is our imple-
mentation.
Results Table 4 shows the results. Our transition-based
method achieves significant improvements over all the base-
lines in F1 score. In particular, it achieves 4.6 point improve-
ment over the best jointly extracting method [Ren et al.,
2017], and 1.4 point improvement over the best end-to-end
sequence labeling method [Zheng et al., 2017], demonstrat-
ing the effectiveness of our model on modeling and predicting
entities and relations.

The joint methods by multi-task learning are better than
pipelined methods, and the end-to-end methods are better
than most of the joint methods. This result indicates the im-
portance of joint decoding, which has stronger power of ex-
ploiting the dependencies between entities and relations, and
also between relation labels in a sentence.

It is worth noting that the precision of our method is much
higher compared to all the other methods. We attribute the
success to the strong ability to model feature representations
of entities and relations, and also the joint decoding.
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Figure 1: The unfolded network structure for a sequence labeling model with an additional language
modeling objective, performing NER on the sentence ”Fischler proposes measures”. The input tokens
are shown at the bottom, the expected output labels are at the top. Arrows above variables indicate the
directionality of the component (forward or backward).

nonlinear layer. The resulting vector representa-
tion is combined with a regular word embedding
using a dynamic weighting mechanism that adap-
tively controls the balance between word-level and
character-level features. This framework allows
the model to learn character-based patterns and
handle previously unseen words, while still taking
full advantage of the word embeddings.

3 Language Modeling Objective

The sequence labeling model in Section 2 is only
optimised based on the correct labels. While each
token in the input does have a desired label, many
of these contribute very little to the training pro-
cess. For example, in the CoNLL 2003 NER
dataset (Tjong Kim Sang and De Meulder, 2003)
there are only 8 possible labels and 83% of the to-
kens have the label O, indicating that no named
entity is detected. This ratio is even higher for er-
ror detection, with 86% of all tokens containing
no errors in the FCE dataset (Yannakoudakis et al.,
2011). The sequence labeling models are able to
learn this bias in the label distribution without ob-
taining much additional information from the ma-
jority labels. Therefore, we propose a supplemen-
tary objective which would allow the models to
make full use of the training data.

In addition to learning to predict labels for each
word, we propose optimising specific sections of
the architecture as language models. The task of
predicting the next word will require the model
to learn more general patterns of semantic and
syntactic composition, which can then be reused
in order to predict individual labels more accu-
rately. This objective is also generalisable to any

sequence labeling task and dataset, as it requires
no additional annotated training data.

A straightforward modification of the sequence
labeling model would add a second parallel output
layer for each token, optimising it to predict the
next word. However, the model has access to the
full context on each side of the target token, and
predicting information that is already explicit in
the input would not incentivise the model to learn
about composition and semantics. Therefore, we
must design the loss objective so that only sec-
tions of the model that have not yet observed the
next word are optimised to perform the prediction.
We solve this by predicting the next word in the
sequence only based on the hidden representation�!
ht from the forward-moving LSTM. Similarly, the
previous word in the sequence is predicted based
on
 �
ht from the backward-moving LSTM. This ar-

chitecture avoids the problem of giving the correct
answer as an input to the language modeling com-
ponent, while the full framework is still optimised
to predict labels based on the whole sentence.

First, the hidden representations from forward-
and backward-LSTMs are mapped to a new space
using a non-linear layer:

�!mt = tanh(
�!
Wm
�!
ht) (8)

 �mt = tanh(
 �
Wm
 �
ht) (9)

where
�!
Wm and

 �
Wm are weight matrices. This

separate transformation learns to extract features
that are specific to language modeling, while the
LSTM is optimised for both objectives. We also
use the opportunity to map the representation to a
smaller size – since language modeling is not the
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CoNLL-00 CoNLL-03 CHEMDNER JNLPBA
DEV TEST DEV TEST DEV TEST DEV TEST

Baseline 92.92 92.67 90.85 85.63 83.63 84.51 77.13 72.79
+ dropout 93.40 93.15 91.14 86.00 84.78 85.67 77.61 73.16
+ LMcost 94.22 93.88 91.48 86.26 85.45 86.27 78.51 73.83

Table 2: Performance of alternative sequence labeling architectures on NER and chunking datasets,
measured using CoNLL standard entity-level F1 score.

error detection, which is likely due to the rela-
tively small amount of error examples available in
the dataset – it is better for the model to memo-
rise them without introducing additional noise in
the form of dropout. However, we did verify that
dropout indeed gives an improvement in combina-
tion with the novel language modeling objective.
Because the model is receiving additional infor-
mation at every token, dropout is no longer ob-
scuring the limited training data but instead helps
with generalisation.

The bottom row shows the performance of the
language modeling objective when added on top
of the baseline model, along with dropout on word
embeddings. This architecture outperforms the
baseline on all benchmarks, increasing both pre-
cision and recall, and giving a 3.9% absolute im-
provement on the FCE test set. These results also
improve over the previous best results by Rei and
Yannakoudakis (2016) and Rei et al. (2016), when
all systems are trained on the same FCE dataset.
While the added components also require more
computation time, the difference is not excessive
– one training batch over the FCE dataset was pro-
cessed in 112 seconds on the baseline system and
133 seconds using the language modeling objec-
tive.

Error detection is the task where introducing the
additional cost objective gave the largest improve-
ment in performance, for a few reasons:

1. This task has very sparse labels in the
datasets, with error tokens very infrequent
and far apart. Without the language modeling
objective, the network has very little use for
all the available words that contain no errors.

2. There are only two possible labels, correct
and incorrect, which likely makes it more dif-
ficult for the model to learn feature detec-
tors for many different error types. Language
modeling uses a much larger number of pos-

sible labels, giving a more varied training sig-
nal.

3. Finally, the task of error detection is directly
related to language modeling. By learning a
better model of the overall text in the training
corpus, the system can more easily detect any
irregularities.

We also analysed the performance of the differ-
ent architectures during training. Figure 2 shows
the F0.5 score on the development set for each
model after every epoch over the training data.
The baseline model peaks quickly, followed by a
gradual drop in performance, which is likely due
to overfitting on the available data. Dropout pro-
vides an effective regularisation method, slowing
down the initial performance but preventing the
model from overfitting. The added language mod-
eling objective provides a substantial improve-
ment – the system outperforms other configura-
tions already in the early stages of training and the
results are also sustained in the later epochs.

Figure 2: F0.5 score on the FCE development set
after each training epoch.

6 NER and Chunking

In the next experiments we evaluate the language
modeling objective on named entity recognition
and chunking. For general-domain NER, we use
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LAYERS DOMAINS
CHUNKS POS BROADCAST (6) BC-NEWS (8) MAGAZINES (1) WEBLOGS (6)

BI-LSTM
3 - 88.98 91.84 90.09 90.36
3 3 88.91 91.84 90.95 90.43
3 1 89.48 92.03 91.53 90.78

Table 1: Domain adaptation results for chunking across four domains (averages over micro-F1s for
individual files). The number in brackets is # files per domain in OntoNotes 4.0. We use the two first
files in each folder for POS supervision (for train+dev).

We do MTL training for either (POS+chunking)
or (POS+CCG), with POS being the lower-level
task. We experiment three architectures: single
task training for higher-level tasks (no POS layer),
MTL with both tasks feeding off of the outer layer,
and MTL where POS feeds off of the inner (1st)
layer and the higher-level task on the outer (3rd)
layer. OUr main results are below:

POS CHUNKS CCG

BI-LSTM
- 95.28 91.04
3 95.30 92.94
1 95.56 93.26

Our CHUNKS results are competitive with state-
of-the-art. Suzuki and Isozaki (2008), for ex-
ample, reported an F1-score of 95.15% on the
CHUNKS data. Our model also performs consid-
erably better than the MTL model in Collobert et
al. (2011) (94.10%). Note that our relative im-
provements are also bigger than those reported by
Collobert et al. (2011). Our CCG super tagging
results are also slighly better than a recently re-
ported result in Xu et al. (2015) (93.00%). Our
results are significantly better (p < 0.05) than our
baseline, and POS supervision at the lower layer is
consistently better than standard MTL.

Additional tasks? We also experimented with
NER (CoNLL 2003), super senses (SemCor), and
the Streusle Corpus of texts annotated with MWE
brackets and super sense tags. In none of these
cases, MTL led to improvements. This suggests
that MTL only works when tasks are sufficiently
similar, e.g., all of syntactic nature. Collobert et
al. (2011) also observed a drop in NER perfor-
mance and insignificant improvements for SRL.
We believe this is an important observation, since
previous work on deep MTL often suggests that
most tasks benefit from each other.

Domain adaptation We experiment with do-
main adaptation for syntactic chunking, based on
OntoNotes 4.0. We use WSJ newswire as our

source domain, and broadcast, broadcasted news,
magazines, and weblogs as target domains. We as-
sume main task (syntactic chunking) supervision
for the source domain, and lower-level POS su-
pervision for the target domains. The results in
Table 1 indicate that the method is effective for do-
main adaptation when we have POS supervision
for the target domain. We believe this result is
worth exploring further, as the scenario in which
we have target-domain training data for low-level
tasks such as POS tagging, but not for the task we
are interested in, is common. The method is ef-
fective only when the lower-level POS supervision

is applied at the lower layer, supporting the im-
portance of supervising different tasks at different
layers.

Rademacher complexity is the ability of mod-
els to fit random noise. We use the procedure in
Zhu et al. (2009) to measure Rademacher com-
plexity, i.e., computing the average fit to k random
relabelings of the training data. The subtask in our
set-up acts like a regularizer, increasing the induc-
tive bias of our model, preventing it from learning
random patterns in data. Rademacher complex-
ity measures the decrease in ability to learn such
patterns. We use the CHUNKS data in these exper-
iments. A model that does not fit to the random
data, will be right in 1/22 cases (with 22 labels).
We report the Rademacher complexities relative to
this.

LSTM(-3) LSTM(3-3) LSTM(1-3)

1.298 1.034 0.990

Our deep single task model increases perfor-
mance over this baseline by 30%. In contrast, we
see that when we predict both POS and the tar-
get task at the top layer, Rademacher complexity
is lower and close to a random baseline. Interest-
ingly, regularization seems to be even more effec-
tive, when the subtask is predicted from a lower
layer.

234



Joint Parsing and SRL

• Share only the embedding layer 

Peng Shi, Zhiyang Teng and Yue Zhang. Exploiting Mutual Benefits between Syntax and Semantic Roles using Neural Network. 
In Proceeddings of EMNLP 2016.

Input 

Parser SRL

Syntax Semantic Roles



Joint Parsing and SRL

• Results on CONLL

• Sharing more layers have mixed results

Peng Shi, Zhiyang Teng and Yue Zhang. Exploiting Mutual Benefits between Syntax and Semantic Roles using Neural Network. 
In Proceeddings of EMNLP 2016.
Peng Shi and Yue Zhang, Joint Bi-Affine Parsing and Semantic Role Labeling, IALP 2017, Best Paper

Model F1 UAS LAS
Bi-LSTM 72.71 - -
S-LSTM - 84.33 82.10
DEP!SRL(lab/lstm) 73.00/74.18 84.33 82.10
SRL!DEP 72.71 84.75 82.62
Joint 73.84 85.15 82.91

Table 2: Results. Bi-LSTM and S-LSTM are two baseline
models for SRL and parsing, respectively. DEP!SRL and
SRL!DEP are two pipeline models. ‘Joint’ denotes the pro-
posed model for joint parsing and semantic role labeling. lab

uses only the dependency label as features, while lstm applies
features extracted from dependency trees using tree LSTMs.

represents the use of dependency label embeddings
and tree LSTM hidden vectors for the additional
SRL features dept, respectively.

Comparison between Bi-LSTM and DEP!SRL
shows that slight improvement is brought by intro-
ducing dependency label features to the semantic
role labeler (72.71!73.00). By introducing full
tree information, the lstm integration leads to much
higher improvements (72.71!74.18). This demon-
strates that the LSTM SRL model of Zhou and Xu
(2015) can still benefit from parser outputs, despite
that it can learn syntactic information independently.

In the reverse direction, comparison between
S-LSTM and SRL!DEP shows improvement to
UAS/LAS by integrating semantic role features
(82.10!82.62). This demonstrates the usefulness
of semantic roles to parsing and is consistent with
observations on discrete models (Boxwell et al.,
2010). To our knowledge, we are the first to report
results using a SRL ! Parsing pipeline, which is
enabled by the neural SRL model.

Using shared embeddings, the joint model gives
improvements on both SRL and parsing. The most
salient difference between the joint model and the
two pipelines is the shared parameter space.

These results are consistent with the finds of Col-
lobert et al. (2011) who show that POS, chunking
and semantic role information can bring benefit to
each other in joint neural training. In contrast to their
results (SRL 74.15!74.29, POS 97.12!97.22,
CHUNK 93.37!93.75), we find that parsing and
SRL benefit relatively more from each other (SRL
72.72!73.84, DEP 84.33!85.15). This is intuitive
because parsing offers deeper syntactic information
compared to POS and shallow syntactic chunking.

4 Conclusion

We investigated the mutual benefits between depen-
dency syntax and semantic roles using two state-of-
the-art LSTM models, finding that both can be fur-
ther improved. In addition, simple multitask learn-
ing is also effective. These results demonstrate po-
tentials for deeper joint neural models between these
tasks.
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Hoover  Dam  played  a  major  role  in  preventing  Las  Vegas  from  drying  up

Performer Role PerformancePERFORMERS
_AND_ROLES

Protagonist ActionPreventing_
cause

THWARTING

Entity BECOMING_DRY

play.v prevent.v dry up.vmajor.a

Factor UndertakingIMPORT-
ANCE

Figure 1: A FrameNet sentence with color-coded frame annotations below. Target words and phrases
are highlighted in the sentence, and their lexical units are shown italicized below. Frames are shown in
colored blocks, and frame element segments are shown horizontally alongside the frame.

training objective of our syntax-free model into
a multitask setting where the second task is un-
labeled constituent identification (i.e., a separate
binary decision for each span). This task is trained
on the Penn Treebank, sharing the underlying
sentence representation with the frame-semantic
parser. This syntactic scaffold

2 task offers use-
ful guidance to the frame-semantic model, lead-
ing to performance on par with our models that
use syntactic features. This approach also achieves
state-of-the-art performance, despite not involving
a syntactic parser during training or testing.

To summarize, our contributions are:

a. the softmax-margin SegRNN, a recall-oriented
extension to segmental RNNs, for frame-
semantic argument identification without any
syntactic information (§3),

b. the addition of syntactic information to the
above, achieving state-of-the-art perfomance,
using:

i. a pipelined approach, incorporating fea-
tures from automatic dependency or phrase-
structure parsers (§4),

ii. a syntactic scaffolding approach, discard-
ing the need for a syntactic parser alto-
gether (§5).

Our open-source implementation is available
as open-SESAME (SEmi-markov Softmax-margin
ArguMEnt parser) at https://github.com/
Noahs-ARK/open-sesame/.

2 Frame-Semantic Parsing Task

The Berkeley FrameNet project (Baker et al.,
1998; Ruppenhofer et al., 2010) provides a lexicon

2We borrow the term scaffolding from developmental psy-
chology (Wood et al., 1976) to describe a support task during
learning that is eventually discarded.

of 1,020 semantic frames,3 a corpus of sentences
annotated with frames from that inventory, and a
corpus of annotated exemplar sentences (not used
in this work).

Each frame represents a kind of event, situation,
or relationship, and has a set of frame elements (se-
mantic roles) associated with it (Fillmore, 1976).
In a sentence, frames are evoked by targets, which
are words or phrases. The FrameNet lexicon main-
tains a list of lexical units for each frame, which
are lemma and part-of-speech pairs that can evoke
that frame. For example, in Figure 1, the tar-
get drying up has dry up.v as its lexical unit, as-
sociated with the frame BECOMING DRY. Our
main use of the FrameNet lexicon, following ear-
lier work, is as a mapping between frames and the
roles they might take.

Frame-semantic parsing is usually performed as
a pipeline of tasks: target identification (which
words or expressions evoke frames?), frame iden-
tification (which frame does each target evoke?),
and then argument identification (for each frame
f , and each of its possible roles in the FrameNet-
defined set Yf , which span of text provides the
argument?). Target identification conventionally
relies on heuristics, and frame identification is
usually treated as a classification problem (Das
et al., 2014). The focus of this paper is argument
identification, and we evaluate variations of our
approach on both gold-standard frame input and
on the output of state-of-the-art frame identifica-
tion (FitzGerald et al., 2015).

2.1 Formal Notation

A single input instance for argument identifica-
tion consists of: an n-word sentence wd =

3Release 1.5. Release 1.7 has 1,222 frame annotations;
see http://framenet.icsi.berkeley.edu.
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Figure 3: Development-set F1 with log-loss (no
cost) vs. recall-oriented cost.

full-text data occassionally contains multiple an-
notations for the same target. We use only the first
annotation for such examples, following FitzGer-
ald et al. (2015).

We use SyntaxNet (Andor et al., 2016) for
predicted part-of-speech tags and Universal de-
pendencies, from a released pretrained model.7

For phrase-structure parses, we use the RNNG
parser (Dyer et al., 2016), trained on WSJ §2-21.
We stochastically (with probability 0.1) replace
words that only appear once in the training data
with an UNK token to acquire estimates for out-of-
vocabulary words at test time.

For the syntactic scaffold, we used all 49,208
sentences from WSJ §00–24 of Penn Treebank.

6.2 Hyperparameters

We used single-layer LSTMs for sentence encod-
ing, spans, targets, dependency and nonterminal
paths, each with a hidden state of size 64. Pre-
trained GloVe (Pennington et al., 2014) vectors of
dimension 100 are used, trained on a corpus of 6
billion words; we do not update these during train-
ing. Learned embeddings of size 60, 4, 100, 64,
50, 8 and 16 are used for words, POS tags, frames,
lexical units, frame-elements, dependency labels
and nonterminals, respectively. For ADAM we set
the initial learning rate to 0.0005, the moving av-
erage parameter to 0.01, the moving average vari-
ance to 0.9999, and the ✏ parameter (to prevent nu-
merical instability) to 10�8; no learning rate decay
is used. To prevent “exploding” gradients, we clip
the 2-norm of the gradient (Graves, 2013) to 5 be-
fore each gradient update. These values were se-

7https://github.com/tensorflow/models/
tree/master/syntaxnet

lected based on intuition and prior work; a more
careful tuning of the above hyperparameters could
be expected to improve performance.

The remaining hyperparameters were chosen
based on their F1 performance on the held-
out development set. We selected the dropout
rate (Srivastava et al., 2014) of 0.05 from the set
{0.01, 0.05, 0.1}. We selected the recall-oriented
cost ↵ = 2 from the set {1, 2, 5, 10}. We se-
lected the scaffold weight � = 0.17 from the set
{0.17, 0.34, 0.89}.

Our experiments were run using the DyNet li-
brary (Neubig et al., 2017).8

6.3 Self-Ensembling

To compensate for the variance resulting from dif-
ferent initializations, we use a self-ensembling ap-
proach. We train five models, differing only in
their random initialization, and ensemble their lo-
cal scores at test time. Specifically, we calculate
the sum of the segment scores under each model
(�(s,x) in Eq. 7) to get the final ensembled seg-
ment score, which is then plugged into Eq. 13 to
decode.

6.4 Evaluation

All systems are evaluated for precision, recall, and
F1, micro-averaged across test examples, follow-
ing standard practice. We use the standard script
provided by SemEval 2007 (Baker et al., 2007),
with a single modification provided by Kshirsagar
et al. (2015) to optionally ignore the frame iden-
tification output. This allows us to evaluate for
argument identification in isolation, which is the
primary focus of this paper; for this setting we use
gold frames (without rewarding them in F1 evalu-
ation). We also evaluate with predicted frames to
illustrate our effect on end-to-end parsing perfor-
mance; for this, we use the same predicted frames
as FitzGerald et al. (2015), who retrained the
frame identification model from Hermann et al.
(2014) but with an updated dependency parser.

6.5 Baselines

SEMAFOR (Das et al., 2014) is a widely used sys-
tem that identifies frame-semantic arguments us-
ing a linear model with hand-engineered features
based on dependency parses. SEMAFOR also
prunes out argument spans using syntactic heuris-
tics and uses beam search, or optionally AD3, to

8https://github.com/clab/dynet
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Fig. 1: Our incrementally-decoded end-to-end relation extraction model, with bidirectional sequential
and bidirectional tree-structured LSTM-RNNs.

3 Model

We design our model with LSTM-RNNs that rep-
resent both word sequences and dependency tree
structures, and perform end-to-end extraction of
relations between entities on top of these RNNs.
Fig. 1 illustrates the overview of the model. The
model mainly consists of three representation lay-
ers: a word embeddings layer (embedding layer),
a word sequence based LSTM-RNN layer (se-
quence layer), and finally a dependency subtree
based LSTM-RNN layer (dependency layer). Dur-
ing decoding, we build greedy, left-to-right entity
detection on the sequence layer and realize rela-
tion classification on the dependency layers, where
each subtree based LSTM-RNN corresponds to
a relation candidate between two detected enti-
ties. After decoding the entire model structure, we
update the parameters simultaneously via back-
propagation through time (BPTT) (Werbos, 1990).
The dependency layers are stacked on the se-
quence layer, so the embedding and sequence lay-
ers are shared by both entity detection and rela-
tion classification, and the shared parameters are
affected by both entity and relation labels.

3.1 Embedding Layer

The embedding layer handles embedding repre-
sentations. nw, np, nd and ne-dimensional vectors
v(w), v(p), v(d) and v(e) are embedded to words,
part-of-speech (POS) tags, dependency types, and
entity labels, respectively.

3.2 Sequence Layer

The sequence layer represents words in a linear se-
quence using the representations from the embed-
ding layer. This layer represents sentential con-
text information and maintains entities, as shown
in bottom-left part of Fig. 1.

We represent the word sequence in a sentence
with bidirectional LSTM-RNNs (Graves et al.,
2013). The LSTM unit at t-th word consists of
a collection of nls-dimensional vectors: an input
gate it, a forget gate ft, an output gate ot, a mem-
ory cell ct, and a hidden state ht. The unit re-
ceives an n-dimensional input vector xt, the previ-
ous hidden state ht�1, and the memory cell ct�1,
and calculates the new vectors using the following
equations:

it = �
⇣
W (i)xt + U (i)ht�1 + b(i)

⌘
, (1)

ft = �
⇣
W (f)xt + U (f)ht�1 + b(f)

⌘
,

ot = �
⇣
W (o)xt + U (o)ht�1 + b(o)

⌘
,

ut = tanh
⇣
W (u)xt + U (u)ht�1 + b(u)

⌘
,

ct = it�ut + ft�ct�1,

ht = ot� tanh(ct),

where � denotes the logistic function, � denotes
element-wise multiplication, W and U are weight
matrices, and b are bias vectors. The LSTM unit
at t-th word receives the concatenation of word
and POS embeddings as its input vector: xt =h
v(w)
t ; v(p)t

i
. We also concatenate the hidden state

vectors of the two directions’ LSTM units corre-
sponding to each word (denoted as �!ht and  �ht) as
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FullTree (-SP), significantly hurts performance
(p<0.05). We then compare our tree-structured
LSTM-RNN (SPTree) with the Child-Sum tree-
structured LSTM-RNN on the shortest path of Tai
et al. (2015). Child-Sum performs worse than our
SPTree model, but not with as big of a decrease
as above. This may be because the difference in
the models appears only on nodes that have multi-
ple children and all the nodes except for the least
common node have one child.

We finally show results with two counterparts
of sequence-based LSTM-RNNs using the short-
est path (last two rows in Table 3). SPSeq is a bidi-
rectional LSTM-RNN on the shortest path. The
LSTM unit receives input from the sequence layer
concatenated with embeddings for the surround-
ing dependency types and directions. We concate-
nate the outputs of the two RNNs for the relation
candidate. SPXu is our adaptation of the shortest
path LSTM-RNN proposed by Xu et al. (2015b)
to match our sequence-layer based model.11 This
has two LSTM-RNNs for the left and right sub-
paths of the shortest path. We first calculate the
max pooling of the LSTM units for each of these
two RNNs, and then concatenate the outputs of the
pooling for the relation candidate. The compar-
ison with these sequence-based LSTM-RNNs in-
dicates that a tree-structured LSTM-RNN is com-
parable to sequence-based ones in representing
shortest paths.

Overall, the performance comparison of the
LSTM-RNN structures in Table 3 show that for
end-to-end relation extraction, selecting the ap-
propriate tree structure representation of the input
(i.e., the shortest path) is more important than the
choice of the LSTM-RNN structure on that input
(i.e., sequential versus tree-based).

4.4 Relation Classification Analysis Results

To thoroughly analyze the relation classification
part alone, e.g., comparing different LSTM struc-
tures, architecture components such as hidden lay-
ers and input information, and classification task
settings, we use the SemEval-2010 Task 8. This
dataset, often used to evaluate NN models for rela-
tion classification, annotates only relation-related
nominals (unlike ACE datasets), so we can focus
cleanly on the relation classification part.

11This is different from the original one in that we use the
sequence layer and we concatenate the embeddings for the in-
put, while the original one prepared individual LSTM-RNNs
for different inputs and concatenated their outputs.

Settings Macro-F1
No External Knowledge Resources

Our Model (SPTree) 0.844

dos Santos et al. (2015) 0.841
Xu et al. (2015a) 0.840

+WordNet
Our Model (SPTree + WordNet) 0.855
Xu et al. (2015a) 0.856

Xu et al. (2015b) 0.837

Table 4: Comparison with state-of-the-art models
on SemEval-2010 Task 8 test-set.

Settings Macro-F1
SPTree 0.851
SubTree 0.839
FullTree 0.829⇤
SubTree (-SP) 0.840
FullTree (-SP) 0.828⇤
Child-Sum 0.838
SPSeq 0.844
SPXu 0.847

Table 5: Comparison of LSTM-RNN structures on
SemEval-2010 Task 8 development set.

We first report official test set results in Ta-
ble 4. Our novel LSTM-RNN model is compara-
ble to both the state-of-the-art CNN-based models
on this task with or without external sources, i.e.,
WordNet, unlike the previous best LSTM-RNN
model (Xu et al., 2015b).12

Next, we compare different LSTM-RNN struc-
tures in Table 5. As for the three input de-
pendency structures (SPTree, SubTree, FullTree),
FullTree performs significantly worse than other
structures regardless of whether or not we dis-
tinguish the nodes in the shortest paths from the
other nodes, which hints that the information out-
side of the shortest path significantly hurts the per-
formance (p<0.05). We also compare our tree-
structured LSTM-RNN (SPTree) with sequence-
based LSTM-RNNs (SPSeq and SPXu) and tree-
structured LSTM-RNNs (Child-Sum). All these
LSTM-RNNs perform slightly worse than our SP-

12When incorporating WordNet information into our
model, we prepared embeddings for WordNet hypernyms ex-
tracted by SuperSenseTagger (Ciaramita and Altun, 2006)
and concatenated the embeddings to the input vector (the con-
catenation of word and POS embeddings) of the sequence
LSTM. We tuned the dimension of the WordNet embeddings
and set it to 15 using the development dataset.
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• Keystroke Logging

Figure 1: Keystroke logging. p are pauses between keystrokes.

To exploit the keystroke log information we model it as auxiliary task in a multi-task setup (cf. Sec-
tion 3). This setup has the advantage that the syntactic data and keystroke information can come from
distinct sources, thus we are not restricted to the requirement of jointly labeled data (a corpus with both
annotations). Our exploratory evaluation shows that little keystroke data suffices to improve a syntactic
chunker on out-of-domain data, and that keystrokes also aid CCG tagging.

Contributions We are the first to use keystroke logs as signal to improve NLP models. In particular,
the contributions of this paper are the following: i) we present a novel bi-LSTM model that exploits
keystroke logs as auxiliary task for syntactic sequence prediction tasks; ii) we show that our model
works well for two tasks, syntactic chunking and CCG supertagging, and iii) we make the code available
at: https://github.com/bplank/coling2016ks.

2 Keystroke dynamics

We see keystroke dynamics as providing a complementary view on the data beyond the linguistic signal,
which can be harvested easily and is particularly attractive to build robust models for out-of-domain
setups. Keystroke logging data can be seen as an instance of fortuitous data (Plank, 2016); it is side
benefit of behavior that we want to exploit here. However, keystroke log is raw data, thus first needs
to be refined before it can be used. Our idea is to treat the duration of pauses before words as a simple
sequence labeling problem.

We first describe the process of obtaining auto-labeled data from raw keystroke logs, and then provide
background and motivation for this choice. Section 3 then describes our model, i.e., by solving the
keystroke sequence labeling problem jointly with shallow syntactic parsing tasks (chunking and CCG
supertagging) we want to aid shallow parsing.

2.1 From keystroke logs to auxiliary labels

While keystroke dynamics considers a number of timing metrics, such as holding time and time press and
time release between every keystroke (p in Figure 1), in this study we are only concerned with the pause
preceding a word (i.e., the third p in Figure 1).1 We here use a simple tokenization scheme. Whitespace
delimits tokens, punctuation delimits sentence boundaries.

An example of pre-word pauses (in the remainder simply called pauses) calculated from our actual
keylog data is shown in Table 1. If we take an arbitrary threshold of 500ms, the chunks indicated by the
brackets are derived. This affirms that pre-word pauses carry constituency-like information.

However, typing behavior of users differs, as illustrated in Figure 2. Hence, rather than finding a
global metric we rely on per-user calculated aggregate statistics and discretize them to obtain auto-
derived labels, as explained next.

We calculate p, the pause duration before a token, and bin it into the following categories, using BIO
encoding, where median is the per-user median and mad the median absolute deviation. In this way,
we automatically gather labels from keystrokes representing pause durations.

In particular, we use the following discretization, i.e., a label for a token is calculated by:

1Figure inspired by the figure in (Goodkind and Rosenberg, 2015).

Token: [ Coefficient of determination ] [ is a ] [ measure used in ] [ statisitcal model ] [ analysis ]

Pause (ms): 0 96 496 30769 96 2144 96 80 2975 240 680

Table 1: Example keystroke log for user 33 (including typo). If we segment the data using an arbi-
trary 500ms pre-word pause the chunks indicated by the brackets are obtained. To normalize over id-
iosyncrasies of users we use per-user average statistics to obtain segments with auto-derived labels, see
Section 2.1.

Figure 2: Distribution of pauses for two users (plotted in log space). Red solid line: per-user median
pause. Dotted line: arbitrary 500ms threshold. As can be seen from the plots, the users’ typing dynamics
differs.

label = <m if p < median;
<m+.5 if p < median+ 0.5 ⇤mad;
<m+1 if p < median+mad;
>m1 else;
O for punctuation symbols.

The label is further enriched with a prefix in BIO encoding style, motivated by the fact that we want
to model spans of information. Punctuation symbols are treated as O, because due to their location at
boundary positions the pause information varies highly. We leave treating punctuation separately as
future work. Klerke et al. (2016) use a related encoding scheme to discretize fixation durations obtained
from eye tracking data, however, in contrast to them we here use median-based measures which are
better suited for such highly skewed data (Leys et al., 2013). An actual example of automatically labeled
keystroke data is given in Table 2.

B-<m B-<m+1 B-<m I-<m B-<m+.5 I-<m+.5 B->m+1

the closer the number is to 1

Table 2: Example auto-derived keystroke annotation.

2.2 Background
The major scientific interest in keystroke dynamics is that it provides a non-intrusive method for studying
cognitive processes involved in writing. Keystroke logging has developed to a promising tool in writing
research (Sullivan et al., 2006; Nottbusch et al., 2007; Wengelin, 2006; Van Waes et al., 2009; Baaijen
et al., 2012), where time measurements—pauses, bursts and revisions (described below)—are studied as
traces of the recursive nature of the writing process.

In its raw form, keystroke logs contain information on which key was pressed for how long (key,
time press, time release). This data is then used to calculate between keystroke pause durations, such
as pre-word pauses. It has been shown that pauses reflect the planning of the unit of text itself (Baaijen
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iosyncrasies of users we use per-user average statistics to obtain segments with auto-derived labels, see
Section 2.1.
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the closer the number is to 1

Table 2: Example auto-derived keystroke annotation.

2.2 Background
The major scientific interest in keystroke dynamics is that it provides a non-intrusive method for studying
cognitive processes involved in writing. Keystroke logging has developed to a promising tool in writing
research (Sullivan et al., 2006; Nottbusch et al., 2007; Wengelin, 2006; Van Waes et al., 2009; Baaijen
et al., 2012), where time measurements—pauses, bursts and revisions (described below)—are studied as
traces of the recursive nature of the writing process.

In its raw form, keystroke logs contain information on which key was pressed for how long (key,
time press, time release). This data is then used to calculate between keystroke pause durations, such
as pre-word pauses. It has been shown that pauses reflect the planning of the unit of text itself (Baaijen

Aggregate statistics
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• Model

Figure 5: Hierarchical Bi-LSTM with 3 stacked layers using word ~w and characters ~c embeddings.

Figure 3; plots for the other participants looks similar). Even if we break the data down by POS and
calculate per-POS wise correlations we found no relation between pause duration and word length.3

Hence we do not normalize word pause durations. In addition, Figure 4 plots pauses for various part-of-
speech, showing that function POS (determiner, particles) are preceded by shorter pauses than content
POS (we obtain similar plots for other participants).

Second, keystroke logs are presumably idiosyncratic, can we still use it? In fact, user keystroke bio-
metrics are successfully used for author stylometry and verification in computer security research (Stew-
art et al., 2011; Monaco et al., 2013; Locklear et al., 2014). However, also eye tracking data like scan-
paths (the resulting series of fixations and saccades in eye tracking) are known to be idiosyncratic (Kanan
et al., 2015). Nevertheless it has been shown that gaze patterns help to inform NLP (Barrett and Søgaard,
2015; Klerke et al., 2016). We believe this is also the case for biometric keystroke logging data.

3 Tagging with bi-LSTMs

We draw on the recent success of bi-directional recurrent neural network (bi-RNNs) (Graves and Schmid-
huber, 2005), in particular Long Short-Term Memory (LSTM) models (Hochreiter and Schmidhuber,
1997). They read the input sequences twice, in both directions. Bi-LSTM have recently successfully
been used for a variety of tasks (Collobert et al., 2011; Ling et al., 2015; Wang et al., 2015; Huang et al.,
2015; Dyer et al., 2015; Ballesteros et al., 2015; Kiperwasser and Goldberg, 2016; Liu et al., 2015). For
further details, see Goldberg (2015) and Cho (2015).

3.1 Bidirectional Long-Short Term Memory Models

Our model is a a hierarchical bi-LSTM as illustrated in Figure 5. It takes as input word embeddings
~w concatenated with character embeddings obtained from the last two states (forward, backward) of
running a lower-level bi-LSTM on the characters. Adding character representations as additional infor-
mation has been shown to be effective for a number of tasks, including parsing and tagging (Ballesteros
et al., 2015; Gillick et al., 2015; Plank et al., 2016).

In more detail, our model is a context bi-LSTM taking as input word embeddings ~w. Character embed-
dings~c are incorporated via a hierarchical bi-LSTM using a sequence bi-LSTM at the lower level (Balles-
teros et al., 2015; Plank et al., 2016). The character representation is concatenated with the (learned)
word embeddings ~w to form the input to the context bi-LSTM at the upper layers.

For the hidden layers, we use stacked LSTMs with h=3 layers. The 3-layer bi-LSTM and lower-level
character bi-LSTM represents the shared structure between tasks. From the topmost (h=3) layer labels
for the different tasks (e.g., chunking, pauses) are predicted using a softmax. In Figure 5, the main

3POS annotations were obtained by looking up the possible tag of a token in English wiktionary (Li et al., 2012).
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• Results

Chunking F1 CCG tagging Accuracy

Our model 93.21 Our model 92.41
Suzuki and Isozaki (2008) 93.88 Xu et al. (2015) 93.00

Table 4: Baseline model, comparison to existing systems

POS embeddings. Our baseline CCG supertagging model achieves 92.41, compared to the more complex
model by Xu et al. (2015) achieving an accuracy of 93.00. Very recently even higher accuracies were
reported, e.g. (Vaswani et al., 2016), however, in this exploratory paper we are interested in examining
whether we find signal in keystroke data, and are not interested in beating the latest state-of-the-art.

FOSTER.DEV FOSTER.TEST RITTER CCG

Baseline 73.93 73.61 66.65 92.41
+PAUSE 74.63† 74.32† 66.91† 92.62†

p-values <0.01 <0.01 <0.01 <0.048

Table 5: Chunking results (F1, +Pause is average over 38 participants) and CCG accuracy (using all
pause data at once). Results marked with † are significantly better than the corresponding baseline using
a randomization test with i = 1000 iterations; p-values provided in row below.

Keystroke pauses The aim of our experiments is to gauge whether through joint learning of shallow
syntax and pause duration the system learns to generalize over the pause information and thus aids the
syntactic signal.

The results in Table 5 support our hypothesis that keystroke dynamics contains useful information
for chunking. We here report the average over models trained on a per-user basis, i.e., 38 participants.
The results show that overall F1 chunking score improves over all datasets. For instance on the Ritter
data, for 25/38 participants using their keystroke information as auxiliary task helps to improve overall
chunking performance. However, if we combine all data and train a single model, performance degrades
on chunking. We attribute this effect to the fact that the chunking data is relatively small, and higher
amounts of keystroke data show signs of overfitting. In fact, similar effects have been shown in a multi-
task machine translation and parsing setup (Luong et al., 2016), where mixing coefficients were used to
downplay the importance of the auxiliary parsing data that otherwise swamped the main task data. We
leave examining task-specific weights for the loss for future work.

In contrast in CCG tagging, where we have more training data, we see a positive effect of using
keystroke data when training a model that uses all keystroke data at once (concatenation of all keystroke
data from all users), see last column in Table 5. Note that all results in Table 5 are significant.

FOSTER.DEV FOSTER.TEST RITTER

Baseline NP 72.18 71.41 61.76
VP 70.25 73.44 75.13
PP 93.25 91.85 89.05

+PAUSE NP 73.99 72.77 62.60
VP 69.88 74.93 75.05
PP 93.24 90.82 88.87

Table 6: Chunking results per label.

task (chunking or CCG tagging) is represented by the solid arrow, the auxiliary task (keystroke logs) is
indicated by the dashed arrow.

During training, we randomly sample a task and instance, and backpropagate the loss of the current
instance through the shared deep network. In this way, we learn a joint model from distinct sources. Note
that we also experimented with predicting the pause durations at lower levels (h=1), motivated by having
lower-level tasks at lower layers in the network (Søgaard and Goldberg, 2016), however, we found the
setup with both tasks at the outer layer more robust. Predicting all tasks at the outermost layer is the most
commonly used form of multi-task learning in neural networks (Caruana, 1998; Collobert et al., 2011).

4 Experiments

We implement our model in CNN/pycnn.4 For all experiments, we use the same hyperparameters, set
on a held-out portion of the CoNLL 2000 data, i.e., SGD with cross-entropy loss, no mini-batches, 30
epochs, default learning rate (0.1), 64 dimensions for word embeddings, 100 for character embeddings,
random initialization for all embeddings, 100 hidden states, h = 3 stacked layers, Gaussian noise with
�=0.2. As training is stochastic, we use a fixed seed throughout (chosen and fixed upfront). No further
unlabeled data is considered.

Datasets An overview of the syntactic datasets considered in this paper is given in Table 3. For chunk-
ing, we use the original CoNLL data (Tjong Kim Sang and Buchholz, 2000) from WSJ (WSJ sections
15-18 as training data and section 20 as test data, containing 8936 and 2012 sentences, respectively).5

For testing we take out-of-domain data whenever available, to test the adaptability of the method to noisy
out-of-domain data. For chunking we use Twitter data from Ritter (2011) (all, 2364 tweets) and Foster
et al. (2011) (250 sentences), converted to chunks (Plank et al., 2014).

The CCG supertagging data also comes from WSJ (39604 training and 2407 test sentences). We
unfortunately do not have access to out-of-domain test data, hence use the CCG tagging test set.

sentences TRAIN DEV TEST

CONLL 2000 8936 – 2012
FOSTER – 269 250
RITTER – – 2364

CCG 39604 1913 2407

Table 3: Statistics on the data sets

The keystroke logging data stems from students taking an actual test on spreadsheet modeling in a
university course (Stewart et al., 2011; Monaco et al., 2013). The advantage of this dataset is that it
contains free-text input.6 We used data from 38 users,7 which produced on average 250 sentences. The
data totals to 7699 sentences.

To evaluate our models we use standard evaluation measures computed with conlleval.pl with
default parameters, i.e., we report F1 on chunks and accuracy on CCG tags. Statistical significance
is computed using the approximate randomization test (Noreen, 1989) using i = 1000 iterations and
p-values are reported (Søgaard et al., 2014).

4.1 Results
Baseline model Both or baseline models are comparable to prior work, while being simpler. The
results are summarized in Table 4. Our chunking baseline achieves an F1 of 93.21 on CoNLL, compared
to the F1 of 93.88 of Suzuki and Isozaki (2008), who use a CRF and gold POS tags. We do not use any
POS information. A similar bi-LSTM achieves 93.64 (Huang et al., 2015), however, additionally uses

4
https://github.com/clab/cnn

5
http://www.cnts.ua.ac.be/conll2000/chunking/

6In contrast to http://www.casmacat.eu/ data that logs revisions from MT post-editing.
7Disregarding users due to issues with logging (Stewart et al., 2011).

Chunking and CCG data
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• Many tasks
Task # Doc # Labels

Constituent 322 1955
Nuclearity 322 284
Relation 322 1159
Dependency 322 708
Fine grained 322 2,700
Aspect 208 4
Factuality 208 7
Modality 208 10
Polarity 208 3
Tense 208 7
Coreference 2,361 4
PDTB 2,065 35
Speech 446 2

Table 1: Number of documents (# Doc)
and labels (# Labels) per task (training
data). The main task corresponds to the
first line (Constituent).

Speech

RST DT dep

RST DT

I-Turn B-TurnB-Turn

-2 NN-SameUnit-1 NN-ListRoot

( NN-TextualOrg ( NN-SameUnit ( NN-List NN-List) NS-( Elaboration

...

...

...

... WnW2W1... WnW2W1Words ... WnW2W1

Document

Figure 4: Multi-task learning, hierarchical bi-LSTM net-
work architecture (with 2 layers).

In regular bi-directional recurrent neural networks (bi-RNNs), sequences are read in both regular and
reversed order, enabling conditioning predictions on both left and right context. Below, in the forward
pass, we run the input data through an embedding layer and compute the predictions of the forward and
backward states, which are connected in one or more feed-forward layers, from which we compute the
softmax predictions for the sequence based on a linear transformation. We then calculate the objective
function derivative for the sequence using cross-entropy (logistic loss) and use backpropagation to calcu-
late gradients and update the weights accordingly. LSTMs (Hochreiter and Schmidhuber, 1997) replace
the cells of RNNs with LSTM cells, in which multiplicative gate units learn to open and close access to
the error signal.

The overall architecture is shown in Figure 4: each input sequence in the document (i.e. a discourse
unit, a speaking turn, a sentence, depending on the task) goes through the hierarchical bi-LSTM that
outputs a sequence of labels for the entire document. In particular, an input sequence is represented as
a sequence of word embeddings. This sequence goes first through the bi-directional LSTM at the lower
level, and the final states (forward, backward) of the bi-LSTMs is taken as input representation for the
document-level bi-LSTM at the upper level, which consists of two stacked layers.

For multi-task learning, each task is associated with a specific output layer, whereas the inner layers –
the stacked LSTMs – are shared across the tasks. At training time, we randomly sample data points from
target or auxiliary tasks and do forward predictions. In the backward pass, we modify the weights of the
shared layers and the task-specific outer layer. Except for the outer layer, the target task model is thus
regularized by the induction of auxiliary models.

Bi-LSTMs have already been used for syntactic chunking (Huang et al., 2015) and semantic role
labeling (Zhou and Xu, 2015), as well as other tasks. Our model differs from most of these models in
being a hierarchical model, composing word embeddings into sentence embeddings that are the inputs of
a bigger bi-LSTM model. This means our model can also be initialized by pre-trained word embeddings.
We implemented our recurrent network in CNN/pycnn,7 fixing the random seed. We use standard SGD
for learning our model parameters.

5 Experiments

Data The RST-DT contains 385 Wall Street Journal articles from the Penn Treebank (Marcus et al.,
1993), with 347 documents for training and 38 for testing in the split used in previous studies. We

7https://github.com/yoavg/cnn/

1908

Main task

Other views

Other tasks



RST Discourse Parser

Braud, Chloé, Barbara Plank, and Anders Søgaard. "Multi-view and multi-task training of RST discourse 
parsers." Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical 
Papers. 2016.

• Results on RST Discourse Treebank
System RSTFin Fact Speech Asp RSTDep Nuc+lab Mod Pol PDTB Coref Ten Span Nuclearity Relation

Prior work

DPLP concat - - - - - - - - - - - 82.08 71.13 61.63
DPLP general - - - - - - - - - - - 81.60 70.95 61.75

Our work

Hier-LSTM - - - - - - - - - - - 81.39 64.54 49.15

MTL-Hier-LSTM - - - - - - - - - - 82.88 67.46 53.25
MTL-Hier-LSTM - - - - - - - - - - 83.40 67.16 52.10
MTL-Hier-LSTM - - - - - - - - - - 83.26 67.51 51.75
MTL-Hier-LSTM - - - - - - - - - - 83.69 66.25 51.25
MTL-Hier-LSTM - - - - - - - - - - 81.25 65.34 51.24
MTL-Hier-LSTM - - - - - - - - - - 82.09 65.68 51.12
MTL-Hier-LSTM - - - - - - - - - - 81.66 65.31 50.58
MTL-Hier-LSTM - - - - - - - - - - 82.01 65.29 50.11
MTL-Hier-LSTM - - - - - - - - - - 81.61 63.10 48.89
MTL-Hier-LSTM - - - - - - - - - - 80.26 63.35 47.70
MTL-Hier-LSTM - - - - - - - - - - 81.33 62.34 47.57

Best combination - - - - - - - 83.62 69.77 55.11

Human annotation - - - - - - - - - - - 88.70 77.72 65.75

Table 2: Parsing results of different models on the RST-DT test data. Prior work results are reprinted
(DPLP) (Ji and Eisenstein, 2014b). The auxiliary tasks are: RST-DT sequences from trees but keeping
only the relations (Lab) or the nuclearity information (Nuc), RST-DT dependency parsing (RSTDep),
sequence labels from Factbank using modality information (Mod), and inter-sentential relation from the
PDTB (PDTB).

of speech and the structures involved share some similarities with the rhetorical units and structures.
Moreover, factuality (Fact), aspect (Asp), modality (Mod) and polarity (Pol) information prove to be
useful for discourse parsing. On the other hand, the tasks derived from tense (Ten) and coreference
(Coref) annotations do not lead to improvements. These information, crucial for the task, would probably
benefit from a finer grained encoding at the sentence level. The task derived from the PDTB, taken alone,
lowers slightly the results.

Finally, we experiment with task combinations. Our best system only uses the views based on nucle-
arity and label (Nuc+lab), the encoding of the tree as dependency (RSTDep), the modality information
(Mod) and the task derived from the PDTB data. This combination leads to substantial improvements,
with 83.62% in unlabelled F1 (Span), 69.77% in labelled F1 considering nuclearity (Nuclearity), and
55.11% in labelled F1 considering relations (Relation). This closes 60,7% of the gap to human perfor-
mance on unlabelled discourse parsing. It is slightly better than state-of-the-art in discourse parsing for
Span. Feng and Hirst (2014) proposed a system with better scores for these metrics, but the comparison
to their system is not entirely fair, since they add common-sense constraints that are not clearly explained
and post-editing. Besides, there is no single approach that does best for all metrics.

Our results indicate that our architecture learns useful representations capturing some of the syntactic
and contextual information needed for the task.

7 Related work

Some of the first text-level discourse parsers were based on hand-crafted rules and heuristics, making
mainly use of the connectives as indication of the relations and using constraints to build the entire RST
trees (Marcu, 2000a; Le Thanh et al., 2004).

More recent works proposed learning based approaches inspired by syntactic parsing. Hernault et al.
(2010) (HILDA) proposed a greedy approach with SVM classifiers performing attachment and relation
classification at each step of the tree building. Joty et al. (2012) (TSP) built a two-stage parsing system,
training separate sequential models (CRF) for the intra and the inter-sentential levels. These models
jointly learn the relation and the structure, and a CKY-like algorithm is used to find the optimal tree.
Feng and Hirst (2014) noticed the inefficiency of TSP and proposed a greedy approach inspired by
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Abstract

Open domain targeted sentiment is the
joint information extraction task that finds
target mentions together with the senti-
ment towards each mention from a text
corpus. The task is typically modeled as a
sequence labeling problem, and solved us-
ing state-of-the-art labelers such as CRF.
We empirically study the effect of word
embeddings and automatic feature combi-
nations on the task by extending a CRF
baseline using neural networks, which
have demonstrated large potentials for
sentiment analysis. Results show that the
neural model can give better results by
significantly increasing the recall. In ad-
dition, we propose a novel integration of
neural and discrete features, which com-
bines their relative advantages, leading to
significantly higher results compared to
both baselines.

1 Introduction

Targeted sentiment analysis has drawn growing re-
search interests over the past few years. Compared
with traditional sentiment analysis tasks, which
extract the overall sentiment of a document, a sen-
tence or a tweet, targeted sentiment analysis ex-
tracts the sentiment over given targeted entities
from a text, and therefore is practically more infor-
mative. An example is shown in Figure 1. There
are at least two practical scenarios:

(1) Certain entities of concern are specified, and
the requirement is to extract the sentiment to-
wards their mentions in a text. For exam-
ple, one can be interested in the sentiment
towards Google Inc., Microsoft and Face-
book in financial news texts, or the sentiment
towards Manchester United, Liverpool and
Chelsea in tweets.

So excited to meet my [baby Farah]+ !!!
[Baseball Warehouse]+ : easy to under-
stand information.
The [#Afghan #Parlaiment Speaker]�
should Resign .
Saw [Erykah Badu]� last night , vile
venue unfortunately .
[AW service]0 will be back at work .

Figure 1: Targeted sentiment analysis.

(2) No specified target is given, and the require-
ment is to find sentiments towards entities in
the open domain. For example, one might be
interested extracting the mentions to all per-
sons and organizations, together with the sen-
timents towards each mention, from a news
archive or a collection of novels.

There are two sub tasks in targeted sentiment
analysis, namely entity recognition and sentiment
classification for each entity mention which ap-
ply to both scenarios above. In scenario (1), en-
tity recognition is relatively trivial, and can typ-
ically be achieved by pattern matching. Partly
due to this reason, most previous work has ad-
dressed targeted sentiment analysis as a pure clas-
sification task, assuming that target mentions have
been given (Jiang et al., 2011; Chen et al., 2012;
Dong et al., 2014; Vo and Zhang, 2015). For
scenario (2), a named entity recognition (NER)
system can be used to extract targets, before the
same targeted sentiment classification algorithms
are applied. There has also been work that con-
centrates on extracting opinion targets (Jin et al.,
2009; Jakob and Gurevych, 2010). In both cases,
the data in Figure 1 can be used for training senti-
ment classifiers.

Mitchell et al. (2013) took a different ap-
proach, extracting named entities and their senti-
ment classes jointly. They model the joint task
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• Not all tasks are mutually beneficial !
CCG Tagging

Chunking 
Sentence Compression

Semantic frames
POS tagging

Hyperlink Prediction
Keyphrase Detection

MWE Detection
Super-sense Tagging

Figure 1: Relative gains and losses (in percent)
over main task micro-averaged F1 when incor-
porating auxiliary tasks (columns) compared to
single-task models for the main tasks (rows).

the induced meta-learning for analyzing what such
characteristics are predictive of gains.

Specifically, for each task considered, we ex-
tract a number of dataset-inherent features (see Ta-
ble 2) as well as features that we derive from the
learning curve of the respective single-task model.
For the curve gradients, we compute the gradients
of the loss curve at 10, 20, 30, 50 and 70 percent
of the 25,000 batches. For the fitted log-curve pa-
rameters, we fit a logarithmic function to the loss
curve values, where the function is of the form:
L(i) = a · ln(c ·i+d)+b. We include the fitted pa-
rameters a and c as features that describe the steep-
ness of the learning curve. In total, both the main
and the auxiliary task are described by 14 features.
Since we also compute the main/auxiliary ratios
of these values, each of our 90 data points is de-
scribed by 42 features that we normalize to the
[0, 1] interval. We binarize the results presented
in Figure 1 and use logistic regression to predict
benefits or detriments of MTL setups based on the
features computed above.1

4.1 Results

The mean performance of 100 runs of randomized
five-fold cross-validation of our logistic regression

1An experiment in which we tried to predict the magni-
tude of the losses and gains with linear regression yielded
inconclusive results.

Acc. F1 (gain)
Majority baseline 0.555 0.615
All features 0.749 0.669
Best, data features only 0.665 0.542
Best combination 0.785 0.713

Table 3: Mean performance across 100 runs of 5-
fold CV logistic regression.

model for different feature combinations is listed
in Table 3. The first observation is that there is a
strong signal in our meta-learning features. In al-
most four in five cases, we can predict the outcome
of the MTL experiment from the data and the sin-
gle task experiments, which gives validity to our
feature analysis. We also see that the features de-
rived from the single task inductions are the most
important. In fact, using only data-inherent fea-
tures, the F1 score of the positive class is worse
than the majority baseline.

4.2 Analysis

Table 4 lists the coefficients for all 42 features. We
find that features describing the learning curves
for the main and auxiliary tasks are the best pre-
dictors of MTL gains. The ratios of the learning
curve features seem less predictive, and the gra-
dients around 20-30% seem most important, af-
ter the area where the curve typically flattens a bit
(around 10%). Interestingly, however, these gradi-
ents correlate in opposite ways for the main and
auxiliary tasks. The pattern is that if the main
tasks have flattening learning curves (small neg-
ative gradients) in the 20-30% percentile, but the
auxiliary task curves are still relatively steep, MTL
is more likely to work. In other words, multi-task
gains are more likely for target tasks that quickly
plateau with non-plateauing auxiliary tasks. We
speculate the reason for this is that multi-task
learning can help target tasks that get stuck early in
local minima, especially if the auxiliary task does
not always get stuck fast.

Other features that are predictive include the
number of labels in the main task, as well as
the label entropy of the auxiliary task. The
latter supports the hypothesis put forward by
Martı́nez Alonso and Plank (2017) (see Related
work). Note, however, that this may be a side
effect of tasks with more uniform label distribu-
tions being easier to learn. The out-of-vocabulary
rate for the target task also was predictive, which
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• Results Models P R F
Baseline 95.3 95.5 95.4

Punc. pretrain 96.0 95.6 95.8
Auto-seg pretrain 95.8 95.6 95.7
Multitask pretrain 96.4 96.0 96.2

Sun and Xu (2011) baseline 95.2 94.9 95.1
Sun and Xu (2011) multi-source semi 95.9 95.6 95.7

Zhang et al. (2016b) neural 95.3 94.7 95.0
Zhang et al. (2016b)* hybrid 96.1 95.8 96.0
Chen et al. (2015a) window 95.7 95.8 95.8

Chen et al. (2015b) char LSTM 96.2 95.8 96.0
Zhang et al. (2014) POS and syntax – – 95.7
Wang et al. (2011) statistical semi 95.8 95.8 95.8
Zhang and Clark (2011) statistical 95.5 94.8 95.1

Table 7: Main results on CTB6.

ual discrete features into their word-based neural
model. We achieve the best reported F-score on
this dataset. To our knowledge, this is the first time
a pure neural network model outperforms all ex-
isting methods on this dataset, allowing the use of
external data 7. We also evaluate our model pre-
trained only on punctuation and auto-segmented
data, which do not include additional manual la-
bels. The results on CTB test data show the accu-
racy of 95.8% and 95.7%, respectivley, which are
comparable with those statistical semi-supervised
methods (Sun and Xu, 2011; Wang et al., 2011).
They are also among the top performance meth-
ods in Table 7. Compared with discrete semi-
supervised methods (Sun and Xu, 2011; Wang
et al., 2011), our semi-supervised model is free
from hand-crafted features.

In addition to CTB6, which has been the most
commonly adopted by recent segmentation re-
search, we additionally evaluate our results on the
SIGHAN 2005 bakeoff and Weibo datasets, to ex-
amine cross domain robustness. Different state-
of-the-art methods for which results are recorded
on these datasets are listed in Table 8. Most neu-
ral models reported results only on the PKU 8 and
MSR datasets of the bakeoff test sets, which are in
simplified Chinese. The AS and CityU corpora are
in traditional Chinese, sourced from Taiwan and

7 We did not investigate the use of lexicons (Chen et al.,
2015a,b) in our research, since lexicons might cover different
OOV in the training and test data, and hence directly affecting
the accuracies, which makes it relatively difficult to compare
different methods fairly unless a single lexicon is used for all
methods, as observed by Cai and Zhao (2016).

8We notice that both PKU dataset and our heterogenous
data are based on the news of People’s Daily. While the het-
erogenous data only collect news from Febuary 1998 to June
1998, it does not contain the sentences in the dev and test
datasets of PKU.

F1 measure PKU MSR AS CityU Weibo
Multitask pretrain 96.3 97.5 95.7 96.9 95.5

Cai and Zhao (2016) 95.5 96.5 – – –
Zhang et al. (2016b) 95.1 97.0 – – –
Zhang et al. (2016b)* 95.7 97.7 – – –

Pei et al. (2014) 95.2 97.2 – – –
Sun et al. (2012) 95.4 97.4 – – –

Zhang and Clark (2007) 94.5 97.2 94.6 95.1 –
Zhang et al. (2006) 95.1 97.1 95.1 95.1 –
Sun et al. (2009) 95.2 97.3 – 94.6 –

Sun (2010) 95.2 96.9 95.2 95.6 –
Wang et al. (2014) 95.3 97.4 95.4 94.7 –
Xia et al. (2016) – – – – 95.4

Table 8: Main results on other test datasets.

Hong Kong corpora, respectively. We map them
into simplified Chinese before segmentation. The
Weibo corpus is in a yet different genre, being so-
cial media text. Xia et al. (2016) achieved the best
results on this dataset by using a statistical model
with features learned using external lexicons, the
CTB7 corpus and the People Daily corpus. Simi-
lar to Table 7, our method gives the best accuracies
on all corpora except for MSR, where it underper-
forms the hybrid model of Zhang et al. (2016b) by
0.2%. To our knowledge, we are the first to re-
port results for a neural segmentor on more than 3
datasets, with competitive results consistently. It
verifies that knowledge learned from a certain set
of resources can be used to enhance cross-domain
robustness in training a neural segmentor for dif-
ferent datasets, which is of practical importance.

6 Conclusion

We investigated rich external resources for en-
hancing neural word segmentation, by building a
globally optimised beam-search model that lever-
ages both character and word contexts. Taking
each type of external resource as an auxiliary clas-
sification task, we use neural multi-task learning
to pre-train a set of shared parameters for character
contexts. Results show that rich pretraining leads
to 15.4% relative error reduction, and our model
gives results highly competitive to the best sys-
tems on six different benchmarks.
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• Results
Models P R F
Baseline 95.3 95.5 95.4

Punc. pretrain 96.0 95.6 95.8
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Multitask pretrain 96.4 96.0 96.2

Sun and Xu (2011) baseline 95.2 94.9 95.1
Sun and Xu (2011) multi-source semi 95.9 95.6 95.7

Zhang et al. (2016b) neural 95.3 94.7 95.0
Zhang et al. (2016b)* hybrid 96.1 95.8 96.0
Chen et al. (2015a) window 95.7 95.8 95.8

Chen et al. (2015b) char LSTM 96.2 95.8 96.0
Zhang et al. (2014) POS and syntax – – 95.7
Wang et al. (2011) statistical semi 95.8 95.8 95.8
Zhang and Clark (2011) statistical 95.5 94.8 95.1

Table 7: Main results on CTB6.
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of-the-art methods for which results are recorded
on these datasets are listed in Table 8. Most neu-
ral models reported results only on the PKU 8 and
MSR datasets of the bakeoff test sets, which are in
simplified Chinese. The AS and CityU corpora are
in traditional Chinese, sourced from Taiwan and
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results on this dataset by using a statistical model
with features learned using external lexicons, the
CTB7 corpus and the People Daily corpus. Simi-
lar to Table 7, our method gives the best accuracies
on all corpora except for MSR, where it underper-
forms the hybrid model of Zhang et al. (2016b) by
0.2%. To our knowledge, we are the first to re-
port results for a neural segmentor on more than 3
datasets, with competitive results consistently. It
verifies that knowledge learned from a certain set
of resources can be used to enhance cross-domain
robustness in training a neural segmentor for dif-
ferent datasets, which is of practical importance.

6 Conclusion

We investigated rich external resources for en-
hancing neural word segmentation, by building a
globally optimised beam-search model that lever-
ages both character and word contexts. Taking
each type of external resource as an auxiliary clas-
sification task, we use neural multi-task learning
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• Results on WMT
BLEU

System ensemble? newstest2014 newstest2015
Phrase Based MT (Williams et al., 2016) - 21.9 23.7
Supervised NMT (Jean et al., 2015) single - 22.4
Edit Distance Transducer NMT (Stahlberg et al., 2016) single 21.7 24.1
Edit Distance Transducer NMT (Stahlberg et al., 2016) ensemble 8 22.9 25.7
Backtranslation (Sennrich et al., 2015a) single 22.7 25.7
Backtranslation (Sennrich et al., 2015a) ensemble 4 23.8 26.5
Backtranslation (Sennrich et al., 2015a) ensemble 12 24.7 27.6
No pretraining single 21.3 24.3
Pretrained seq2seq single 24.0 27.0
Pretrained seq2seq ensemble 5 24.7 28.1

Table 1: English!German performance on WMT test sets. Our pretrained model outperforms all other
models. Note that the model without pretraining uses the LM objective.

Figure 3: English!German ablation study measuring the difference in validation BLEU between various
ablations and the full model. More negative is worse. The full model uses LMs trained with monolingual
data to initialize the encoder and decoder, plus the language modeling objective.

structed with the 5 best performing models on the
validation set, which are trained with different hy-
perparameters.

Results: Table 1 shows the results of our
method in comparison with other baselines. Our
method achieves a new state-of-the-art for sin-
gle model performance on both newstest2014
and newstest2015, significantly outperforming the
competitive semi-supervised backtranslation tech-
nique (Sennrich et al., 2015a). Equally impressive
is the fact that our best single model outperforms
the previous state of the art ensemble of 4 models.
Our ensemble of 5 models matches or exceeds the

previous best ensemble of 12 models.

Ablation study: In order to better understand
the effects of pretraining, we conducted an abla-
tion study by modifying the pretraining scheme.
We were primarily interested in varying the pre-
training scheme and the monolingual language
modeling objectives because these two techniques
produce the largest gains in the model. Figure
3 shows the drop in validation BLEU of various
ablations compared with the full model. The full
model uses LMs trained with monolingual data to
initialize the encoder and decoder, in addition to
the language modeling objective. In the follow-
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• Embeddings from Language Models (ELMo)

ELMo:Embeddings from 
Language Models

• 様々なエンドモデルに適用できる汎用的な意味表現を獲得
→biLMと重み付けした複数中間層を結合することで実現
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• Results

TASK PREVIOUS SOTA
OUR

BASELINE

ELMO +

BASELINE

INCREASE

(ABSOLUTE/

RELATIVE)

SQuAD Liu et al. (2017) 84.4 81.1 85.8 4.7 / 24.9%
SNLI Chen et al. (2017) 88.6 88.0 88.7 ± 0.17 0.7 / 5.8%
SRL He et al. (2017) 81.7 81.4 84.6 3.2 / 17.2%
Coref Lee et al. (2017) 67.2 67.2 70.4 3.2 / 9.8%
NER Peters et al. (2017) 91.93 ± 0.19 90.15 92.22 ± 0.10 2.06 / 21%
SST-5 McCann et al. (2017) 53.7 51.4 54.7 ± 0.5 3.3 / 6.8%

Table 1: Test set comparison of ELMo enhanced neural models with state-of-the-art single model baselines across
six benchmark NLP tasks. The performance metric varies across tasks – accuracy for SNLI and SST-5; F1 for
SQuAD, SRL and NER; average F1 for Coref. Due to the small test sizes for NER and SST-5, we report the mean
and standard deviation across five runs with different random seeds. The “increase” column lists both the absolute
and relative improvements over our baseline.

Textual entailment Textual entailment is the
task of determining whether a “hypothesis” is
true, given a “premise”. The Stanford Natu-
ral Language Inference (SNLI) corpus (Bowman
et al., 2015) provides approximately 550K hypoth-
esis/premise pairs. Our baseline, the ESIM se-
quence model from Chen et al. (2017), uses a biL-
STM to encode the premise and hypothesis, fol-
lowed by a matrix attention layer, a local infer-
ence layer, another biLSTM inference composi-
tion layer, and finally a pooling operation before
the output layer. Overall, adding ELMo to the
ESIM model improves accuracy by an average of
0.7% across five random seeds. A five member
ensemble pushes the overall accuracy to 89.3%,
exceeding the previous ensemble best of 88.9%
(Gong et al., 2018).

Semantic role labeling A semantic role label-
ing (SRL) system models the predicate-argument
structure of a sentence, and is often described as
answering “Who did what to whom”. He et al.
(2017) modeled SRL as a BIO tagging problem
and used an 8-layer deep biLSTM with forward
and backward directions interleaved, following
Zhou and Xu (2015). As shown in Table 1, when
adding ELMo to a re-implementation of He et al.
(2017) the single model test set F1 jumped 3.2%
from 81.4% to 84.6% – a new state-of-the-art on
the OntoNotes benchmark (Pradhan et al., 2013),
even improving over the previous best ensemble
result by 1.2%.

Coreference resolution Coreference resolution
is the task of clustering mentions in text that re-
fer to the same underlying real world entities. Our
baseline model is the end-to-end span-based neu-
ral model of Lee et al. (2017). It uses a biLSTM

and attention mechanism to first compute span
representations and then applies a softmax men-
tion ranking model to find coreference chains. In
our experiments with the OntoNotes coreference
annotations from the CoNLL 2012 shared task
(Pradhan et al., 2012), adding ELMo improved the
average F1 by 3.2% from 67.2 to 70.4, establish-
ing a new state of the art, again improving over the
previous best ensemble result by 1.6% F1.

Named entity extraction The CoNLL 2003
NER task (Sang and Meulder, 2003) consists of
newswire from the Reuters RCV1 corpus tagged
with four different entity types (PER, LOC, ORG,
MISC). Following recent state-of-the-art systems
(Lample et al., 2016; Peters et al., 2017), the base-
line model uses pre-trained word embeddings, a
character-based CNN representation, two biLSTM
layers and a conditional random field (CRF) loss
(Lafferty et al., 2001), similar to Collobert et al.
(2011). As shown in Table 1, our ELMo enhanced
biLSTM-CRF achieves 92.22% F1 averaged over
five runs. The key difference between our system
and the previous state of the art from Peters et al.
(2017) is that we allowed the task model to learn a
weighted average of all biLM layers, whereas Pe-
ters et al. (2017) only use the top biLM layer. As
shown in Sec. 5.1, using all layers instead of just
the last layer improves performance across multi-
ple tasks.

Sentiment analysis The fine-grained sentiment
classification task in the Stanford Sentiment Tree-
bank (SST-5; Socher et al., 2013) involves select-
ing one of five labels (from very negative to very
positive) to describe a sentence from a movie re-
view. The sentences contain diverse linguistic
phenomena such as idioms and complex syntac-
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• Orthographically similar languages
• (i) highly overlapping phoneme sets.
• (ii) mutually compatible orthographic systems.
• (iii) similar grapheme to phoneme mappings. 
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Figure 1: Multilingual Neural Transliteration Architecture

3.1 Task Definition
The multilingual transliteration task involves learn-
ing transliteration models for l language pairs
(si, ti) � L (i = 1 to l), where L � S �T , and S, T
are sets of source and target languages respectively.
The languages in each set are orthographically simi-
lar. S and T need not be mutually exclusive.
We are provided with parallel transliteration cor-

pora for these l language pairs (Di, �i = 1 to l).
The goal is to learn a joint transliteration model for
all language pairs which minimizes an appropriate
loss function over all the transliteration corpora.

M� = argmin
M

L(M, D) (1)

where M is the candidate joint transliteration model
and D=(D1, D2, ..., Dl) is training data for all lan-
guage pairs, L is the training loss function given the
model and the training data.
We focus on 3 practical training scenarios:

Similar source languages: We havemultiple ortho-
graphically similar source languages and a single tar-
get language which is not similar to the source lan-
guages. This is an instance of many-to-one learning,
e.g., Indic languages to English.
Similar target languages: We have multiple or-
thographically similar target languages and a single
source languagewhich is not similar to the target lan-
guages. This is an instance of one-to-many learning,
e.g., English to Indic languages.

All similar languages: We have multiple source
languages as well as target languages, which are
all orthographically similar. This is an instance of
many-to-many learning, e.g., Indic-Indic languages.

3.2 Proposed Solution

We propose a neural encoder-decoder model for
multilingual transliteration. For each source-target
language pair (s, t), the network models Ps,t =
p(yt

j |yt
j�1...y

t
1, xs), where xs is the input character

sequence and yt
j is jth element of the output charac-

ter sequence yt. Note that we design a single network
to represent all the Ps,t distributions corresponding
to the set of language pairs L. Our network is an
adaptation of the standard encoder-decoder model
with attention (Bahdanau et al., 2015). We describe
only the salient aspects of our network and refer
the reader to Bahdanau et al. (2015) for the basic
encoder-decoder architecture. Figure 1a shows the
network architecture of our multilingual translitera-
tion system.

Encoder & Decoder: We used a CNN encoder
to encode the character sequence. It consists of
a single convolutional layer (stride size = 1 and
SAME padding), followed by ReLU units and max
pooling. We use filters of different sizes and con-
catenate their output to produce the encoder out-
put. Figure 1b shows a schematic of the encoder.
We chose CNN over the conventional bidirectional
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• Results on NEWS 2015
en-Indic Indic-en Indic-Indic ar-Slavic
en-hi 12K hi-en 18K bn kn ta ar-cs 15K
en-bn 13K bn-en 12K hi 3620 5085 5290 ar-pl 15K
en-kn 10K kn-en 15K bn 2720 2901 ar-sl 10K
en-ta 10K ta-en 15K kn 4216 ar-sk 10K

Table 1: Training set statistics for different datasets (number
of word pairs). Validation set: 1K (en�Indic & ar�Slavic),
500 (Indic�en, Indic-Indic). Test set: 1K (all pairs).

Pair Src Tgt

en-hi KANAKLATA कनकलता (kanakalatA)
en-kn LEHMANN ıಹಮȑ (l.ehaman)

(a) English-Indic
Pair Src Tgt

pl-ar DUMITRESCU دومیترسكو (dwmytrskw)
cs-ar MAURICE موریس (mwrys)

(b) Slavic-Arabic

Table 2: Examples of transliteration pairs from our
datasets

which exhibit orthographic similarity: Indic, Ro-
mance, Germanic, Slavic, etc. These languages are
spoken by around 2 billion people. So our approach
addresses a major chunk of the world’s people.

Datasets: (See Table 1 for statistics of datasets).
We used the official NEWS 2015 shared task

dataset (Banchs et al., 2015) for English to Indic
transliteration. This dataset has been used for many
editions of the NEWS shared tasks. We split the
NEWS 2015 training dataset as the train and valida-
tion data for Indic-English transliteration. For test-
ing, we used the NEWS 2015 dev-test set. We cre-
ated the Indian-Indian parallel transliteration corpora
from the English to Indian language training corpora
of the NEWS 2015 dataset by mining name pairs
which have English names in common.
We mined the Arabic-Slavic dataset from Wiki-

data (Vrandečić and Krötzsch, 2014), a structured
knowledge base containing items (roughly entities of
interest). Each item has a label (title of item page)
which is available in multiple languages. We ex-
tracted labels from selected items referring to named
entities (persons, organizations and locations) to en-
sure that we extract parallel transliterations (as op-
posed to translations).

Pair P B M Pair P B M

Similar Source and Target Languages
Indic-Indic (45.5%)
bn-hi 29.74 19.08 27.69 kn-bn 28.59 24.04 37.47
bn-kn 17.62 18.14 27.74 kn-ta 34.89 30.85 38.30
hi-bn 29.92 25.46 39.15 ta-hi 29.07 19.24 28.97
hi-ta 25.15 28.62 38.70 ta-kn 26.99 19.86 29.06

Similar Source Languages
Slavic-Arabic (55.8%) Indic-English (24.2%)
cs-ar 38.91 37.10 59.17 bn-en 55.23 48.93 54.01
pl-ar 34.70 34.80 44.83 hi-en 49.19 38.26 51.11
sk-ar 43.26 37.49 62.21 kn-en 42.79 33.77 47.70
sl-ar 41.90 36.74 62.04 ta-en 33.93 23.22 25.93

Similar Target Languages
Arabic-Slavic (176.8%) English-Indic (1.1%)
ar-cs 15.41 12.08 36.76 en-bn 42.90 41.70 46.10
ar-pl 13.68 12.26 24.21 en-hi 60.50 64.10 60.70
ar-sk 15.24 13.82 38.72 en-kn 48.70 52.00 53.90
ar-sl 18.31 13.63 44.35 en-ta 52.90 57.80 55.30

Table 3: Comparison of bilingual (B) and multilin-
gual (M) neural models as well as bilingual PBSMT
(P) models (top-1 accuracy %). Figure in brackets
for each dataset shows average increase in translit-
eration accuracy for multilingual neural model over
bilingual neural model. Best accuracies for each lan-
guage pair in bold.

Evaluation: We use top-1 exact match accuracy as
the evaluation metric (Banchs et al., 2015). This
is one of the metrics in the NEWS shared tasks on
transliteration.

5 Results and Discussion

We discuss and analyze the results of our experi-
ments.

5.1 Quantitative Observations

Table 3 compares results of bilingual (B) and mul-
tilingual (M) neural models as well as a bilingual
transliteration system (P) based on phrase-based sta-
tistical machine transliteration (PBSMT). The PB-
SMT system was trained usingMoses (Koehn et al.,
2007) with no lexicalized reordering and uses mono-
tonic decoding. We used a 5-gram character lan-
guage model trained with Witten-Bell smoothing.
We observe that multilingual training substan-

tially improves the accuracy over bilingual training
in all datasets (an average increase of 58.2% over all
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Comparison of bilingual (B) and
multilingual (M) neural models as
well as bilingual PBSMT (P)
models (top-1 accuracy %). Figure
in brackets for each dataset shows
average increase in transliteration
accuracy for multilingual neural
model over bilingual neural model.
Best accuracies for each language
pair in bold.
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Figure 1: Neural Network Parser Architecture from Chen and Manning (2014) (left). Our model (left
and right) with soft parameter sharing between the source and target language shown with dashed lines.

2 Supervised Neural Network Parser

In this section we review the parsing model which
we use for both the source language and target lan-
guage parsers. It is based on the work of Chen
and Manning (2014). This parser can take advan-
tage of target language monolingual data through
word embeddings, data which is usually available
for resource-poor languages. Chen and Manning’s
parser also achieved state-of-the-art monolingual
parsing performance. They built a transition-based
dependency parser (Nivre, 2006) using a neural-
network. The neural network classifier decides
which transition is applied for each configuration.

The architecture of the parser is illustrated in
Figure 1 (left), where each layer is fully connected
to the layer above. For each configuration, the se-
lected list of words, POS tags and labels from the
Stack, Queue and Arcs are extracted. Each word,
POS or label is mapped to a low-dimension vec-
tor representation (embedding) through the Map-
ping Layer. This layer simply concatenates the
embeddings which are then fed into a two-layer
neural network classifier to predict the next pars-
ing action. The set of parameters for the model
is Eword, Epos, Elabels for the mapping layer, W1

for the cubic hidden layer and W2 for the softmax
output layer.

3 Cross-lingual parser

Our model takes advantage of underlying structure
shared between languages. Given the source lan-
guage parsing structure as in Figure 1 (left), the
set of parameters Eword will be different for the
target language parser shown in Figure 1 (right)
but we hypothesize that Epos, Earc, W1 and W2

can be shared as indicated with dashed lines. In
particular we expect this to be the case when lan-
guages use the same POS tagset and arc label sets,

as we presume herein. This assumption is moti-
vated by the development of unified annotation for
many languages (Nivre et al., 2015; Petrov et al.,
2012; McDonald et al., 2013).

To allow parameter sharing between languages
we could jointly train the parser on the source
and target language simultaneously. However,
we leave this for future work. Here we take an
alternative approach, namely regularization in a
similar vein to Duong et al. (2014). First we
train a lexicalized neural network parser on the
source resource-rich language (English), as de-
scribed in Section 2. The learned parameters are
Een

word, E
en
pos, E

en
arc, W

en
1 , W en

2 . Second, we incor-
porate English parameters as a prior for the tar-
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Figure 1: Neural Network Parser Architecture from Chen and Manning (2014) (left). Our model (left
and right) with soft parameter sharing between the source and target language shown with dashed lines.

2 Supervised Neural Network Parser

In this section we review the parsing model which
we use for both the source language and target lan-
guage parsers. It is based on the work of Chen
and Manning (2014). This parser can take advan-
tage of target language monolingual data through
word embeddings, data which is usually available
for resource-poor languages. Chen and Manning’s
parser also achieved state-of-the-art monolingual
parsing performance. They built a transition-based
dependency parser (Nivre, 2006) using a neural-
network. The neural network classifier decides
which transition is applied for each configuration.

The architecture of the parser is illustrated in
Figure 1 (left), where each layer is fully connected
to the layer above. For each configuration, the se-
lected list of words, POS tags and labels from the
Stack, Queue and Arcs are extracted. Each word,
POS or label is mapped to a low-dimension vec-
tor representation (embedding) through the Map-
ping Layer. This layer simply concatenates the
embeddings which are then fed into a two-layer
neural network classifier to predict the next pars-
ing action. The set of parameters for the model
is Eword, Epos, Elabels for the mapping layer, W1

for the cubic hidden layer and W2 for the softmax
output layer.

3 Cross-lingual parser

Our model takes advantage of underlying structure
shared between languages. Given the source lan-
guage parsing structure as in Figure 1 (left), the
set of parameters Eword will be different for the
target language parser shown in Figure 1 (right)
but we hypothesize that Epos, Earc, W1 and W2

can be shared as indicated with dashed lines. In
particular we expect this to be the case when lan-
guages use the same POS tagset and arc label sets,

as we presume herein. This assumption is moti-
vated by the development of unified annotation for
many languages (Nivre et al., 2015; Petrov et al.,
2012; McDonald et al., 2013).

To allow parameter sharing between languages
we could jointly train the parser on the source
and target language simultaneously. However,
we leave this for future work. Here we take an
alternative approach, namely regularization in a
similar vein to Duong et al. (2014). First we
train a lexicalized neural network parser on the
source resource-rich language (English), as de-
scribed in Section 2. The learned parameters are
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porate English parameters as a prior for the tar-
get language training. This is straightforward
when we use the same architecture, such as a
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tive function so that it includes the regularization
part. However, we don’t want to regularize the
part related to Een
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This is applicable where we use the same POS
2All other parameters, i.e. W word

1 and Eword, are regu-
larized using a zero-mean Gaussian regularization term, with
weight � = 10�8, as was done in the original paper.
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In this section we review the parsing model which
we use for both the source language and target lan-
guage parsers. It is based on the work of Chen
and Manning (2014). This parser can take advan-
tage of target language monolingual data through
word embeddings, data which is usually available
for resource-poor languages. Chen and Manning’s
parser also achieved state-of-the-art monolingual
parsing performance. They built a transition-based
dependency parser (Nivre, 2006) using a neural-
network. The neural network classifier decides
which transition is applied for each configuration.

The architecture of the parser is illustrated in
Figure 1 (left), where each layer is fully connected
to the layer above. For each configuration, the se-
lected list of words, POS tags and labels from the
Stack, Queue and Arcs are extracted. Each word,
POS or label is mapped to a low-dimension vec-
tor representation (embedding) through the Map-
ping Layer. This layer simply concatenates the
embeddings which are then fed into a two-layer
neural network classifier to predict the next pars-
ing action. The set of parameters for the model
is Eword, Epos, Elabels for the mapping layer, W1

for the cubic hidden layer and W2 for the softmax
output layer.

3 Cross-lingual parser

Our model takes advantage of underlying structure
shared between languages. Given the source lan-
guage parsing structure as in Figure 1 (left), the
set of parameters Eword will be different for the
target language parser shown in Figure 1 (right)
but we hypothesize that Epos, Earc, W1 and W2

can be shared as indicated with dashed lines. In
particular we expect this to be the case when lan-
guages use the same POS tagset and arc label sets,

as we presume herein. This assumption is moti-
vated by the development of unified annotation for
many languages (Nivre et al., 2015; Petrov et al.,
2012; McDonald et al., 2013).

To allow parameter sharing between languages
we could jointly train the parser on the source
and target language simultaneously. However,
we leave this for future work. Here we take an
alternative approach, namely regularization in a
similar vein to Duong et al. (2014). First we
train a lexicalized neural network parser on the
source resource-rich language (English), as de-
scribed in Section 2. The learned parameters are
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porate English parameters as a prior for the tar-
get language training. This is straightforward
when we use the same architecture, such as a
neural network parser, for the target language.
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tive function so that it includes the regularization
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part related to Een
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Figure 3: Learning curve for cross-lingual model
and supervised model with respect to the baseline
delexicalized parser from McDonald et al. (2011):
the x-axis is the size of data (number of tokens);
the y-axis is the average LAS measured on 9 lan-
guages (except English).

the same accuracy compared with the supervised
model. For example, we only need 1k tokens
in order to surpass the supervised model perfor-
mance on 3k tokens, and we only need 5k tokens
to match the supervised model trained on 10k to-
kens. The error rate reduction is from 15.8% down
to 6.5% for training data sizes from 1k to 15k to-
kens. However, when we use all the training data,
the supervised model is slightly better.

5 Conclusions

Thanks to the availability of the Universal Depen-
dency Treebank, creating a treebank for a target
resource-poor language has becoming easier. This
fact motivates the work reported here, where we
assume that only a tiny treebank is available in the
target language. We tried to make the most out
of the target language treebank by incorporating
a source-language parser as a prior in learning a
neural network parser. Our results show that we
can achieve a more accurate parser using the same
training data. In future work, we would like to
investigate joint training on the source and target
languages.
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• Results on UD Treebank

LAS target language average
de en es fr it pt sv

monolingual 79.3 85.9 83.7 81.7 88.7 85.7 83.5 84.0
MALOPA 70.4 69.3 72.4 71.1 78.0 74.1 65.4 71.5
+lexical 76.7 82.0 82.7 81.2 87.6 82.1 81.2 81.9

+language ID 78.6 84.2 83.4 82.4 89.1 84.2 82.6 83.5
+fine-grained POS 78.9 85.4 84.3 82.4 89.0 86.2 84.5 84.3

Table 3: Dependency parsing: labeled attachment scores (LAS) for monolingually-trained parsers and
MALOPA in the fully supervised scenario where Lt = Ls. Note that we use the universal dependencies
verson 1.2 which only includes annotations for ⇠13,000 English sentences, which explains the relatively
low scores in English. When we instead use the universal dependency treebanks version 2.0 which includes
annotations for ⇠40,000 English sentences (originally from the English Penn Treebank), we achieve UAS
score 93.0 and LAS score 91.5.

in MALOPA, instead of updating the parameters
with the gradient of individual sentences, we use
mini-batch updates which include one sentence sam-
pled uniformly (without replacement) from each
language’s treebank, until all sentences in the small-
est treebank are used (which concludes an epoch).
We repeat the same process in following epochs.
We found this to help prevent one source language
with a larger treebank (e.g., German) from dominat-
ing parameter updates at the expense of other source
languages with a smaller treebank (e.g., Swedish).

4.1 Target Languages with a Treebank

(Lt = Ls
)

Here, we evaluate our MALOPA parser when the
target language has a treebank.

Baseline. For each target language, the strong
baseline we use is a monolingually-trained S-LSTM
parser with a token representation which concate-
nates: pretrained word embeddings (50 dimen-
sions),18 learned word embeddings (50 dimensions),
coarse (universal) POS tag embeddings (12 dimen-
sions), fine-grained (language-specific, when avail-
able) POS tag embeddings (12 dimensions), and em-
beddings of Brown clusters (12 dimensions), and
uses a two-layer S-LSTM for each of the stack, the
buffer and the list of actions. We independently train
one baseline parser for each target language, and
share no model parameters. This baseline, denoted

18These embeddings are treated as fixed inputs to the parser,
and are not optimized towards the parsing objective. We use the
same embeddings used in Guo et al. (2016).

‘monolingual’ in Tables 3 and 7, achieves UAS score
93.0 and LAS score 91.5 when trained on the En-
glish Penn Treebank, which is comparable to Dyer
et al. (2015).

MALOPA. We train MALOPA on the concante-
nation of training sections of all seven languages. To
balance the development set, we only concatenate
the first 300 sentences of each language’s develop-
ment section.

Token representations. The first MAL-
OPA parser we evaluate uses only coarse POS
embeddings to construct the token representation.19

As shown in Table 3, this parser consistently
underperforms the monolingual baselines, with a
gap of 12.5 LAS points on average.

Augmenting the token representation with lexical
embeddings to the token representation (both mul-
tilingual word clusters and pretrained multilingual
word embeddings, as described in §3.3) substan-
tially improves the performance of MALOPA, re-
covering 83% of the gap in average performance.

We experimented with three ways to include
language information in the token representation,
namely: ‘language ID’, ‘word order’ and ‘full ty-
pology’ (see §3.4 for details), and found all three
to improve the performance of MALOPA giving
LAS scores 83.5, 83.2 and 82.5, respectively. It is
noteworthy that the model benefits more from lan-

19We use the same number of dimensions for the coarse POS
embeddings as in the monolingual baselines. The same applies
to all other types of embeddings used in MALOPA.
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• Results

Sentences Words Vocabulary
GloVe6B N.A. 6000m 400,000
Giga100M 57,000 1.26m 54,554
ICE-SIN 87,084 1.26m 40,532

Table 3: Comparison of the scale of sources for
training word embeddings

Trained on System UAS LAS
English ENG-on-SIN 75.89 65.62

Baseline 75.98 66.55
Singlish Base-Giga100M 77.67 67.23

Base-GloVe6B 78.18 68.51
Base-ICE-SIN 79.29 69.27

Both ENG-plus-SIN 82.43 75.64
Stack-ICE-SIN 84.47 77.76

Table 4: Dependency parser performances

It achieves an UAS of 88.83% and a LAS of
85.20%, which are close to the state-of-the-art
85.90% LAS on UD-Eng reported by Ammar et al.
(2016), and the main difference is caused by us not
using fine-grained POS tags. We apply the same
settings for a baseline Singlish parser. We attempt
to choose a better configuration of the number of
bi-LSTM layers and the hidden dimension based
on the development set performance, but the de-
fault settings turn out to perform the best. Thus we
stick to all default hyper-parameters in Dozat and
Manning (2017) for training the Singlish parsers.

We experimented with different word embed-
dings, as with the raw text sources summarized in
Table 3 and further described in section 6.2. When
using the neural stacking model, we fix the model
configuration for the base English parser model
and choose the size of the hidden vector and the
number of bi-LSTM layers stacked on top based
on the performance on the development set. It
turns out that a 1-layer bi-LSTM with 900 hid-
den dimension performs the best, where the big-
ger hidden layer accommodates the elongated in-
put vector to the stacked bi-LSTM and the fewer
number of recurrent layers avoids over-fitting on
the small Singlish dependency treebank, given the
deep bi-LSTM English parser network at the bot-
tom. The evaluation of the neural stacking model
is further described in section 6.3.

System UAS LAS
Base-ICE-SIN 77.00 66.69
Stack-ICE-SIN 82.43 73.96

Table 5: Dependency parser performances by the
5-cross-fold validation

6.2 Investigating Distributed Lexical
Characteristics

In order to learn characteristics of distributed
lexical semantics for Singlish, we compare per-
formances of the Singlish dependency parser
using several sets of pre-trained word embed-
dings: GloVe6B, large-scale English word em-
beddings18; ICE-SIN, Singlish word embeddings
trained using GloVe (Pennington et al., 2014)
on the ICE-SIN (Nihilani, 1992; Ooi, 1997) cor-
pus; Giga100M, a small-scale English word em-
beddings trained using GloVe (Pennington et al.,
2014) with the same settings on a comparable size
of English data randomly selected from the En-
glish Gigaword Fifth Edition for a fair comparison
with ICE-SIN embeddings.

First, the English Giga100M embeddings
marginally improve the Singlish parser from the
baseline without pre-trained embeddings and also
using the UD-Eng parser directly on Singlish, rep-
resented as “ENG-on-SIN” in Table 4. With much
more English lexical semantics being fed to the
Singlish parser using the English GloVe6B em-
beddings, further enhancement is achieved. Nev-
ertheless, the Singlish ICE-SIN embeddings lead
to even more improvement, with 13.78% rela-
tive error reduction, compared with 7.04% us-
ing the English Giga100M embeddings and 9.16%
using the English GloVe6B embeddings, despite
the huge difference in sizes in the latter case.
This demonstrates the distributional differences
between Singlish and English tokens, even though
they share a large vocabulary. More detailed com-
parison is described in section 6.4.

6.3 Knowledge Transfer Using Neural
Stacking

We train a parser with neural stacking and Singlish
ICE-SIN embeddings, which achieves the best
performance among all the models, with a UAS
of 84.47%, represented as “Stack-ICE-SIN” in Ta-
ble 4, which corresponds to 25.01% relative error
reduction compared to the baseline. This demon-
strates that knowledge from English can be suc-
cessfully incorporated to boost the Singlish parser.
To further evaluate the effectiveness of the neural
stacking model, we also trained a base model with
the combination of UD-Eng and the Singlish tree-

18Trained with Wikipedia 2014 the Gigaword. Down-
loadable from http://nlp.stanford.edu/data/

glove.6B.zip

Figure 3: Base POS tagger

Based on this English POS tagging model, we
train a POS tagger for Singlish using the feature-
level neural stacking model of Chen et al. (2016).
Both the English and Singlish models consist of
an input layer, a feature layer, and an output layer.

4.1 Base Bi-LSTM-CRF POS Tagger

Input Layer: Each token is represented as a vec-
tor by concatenating a word embedding from a
lookup table with a weighted average of its char-
acter embeddings given by the attention model of
Bahdanau et al. (2014). Following Chen et al.
(2016), the input layer produces a dense represen-
tation for the current input token by concatenating
its word vector and the ones for its surrounding
context tokens in a window of finite size.

Feature Layer: This layer employs a bi-LSTM
network to encode the input into a sequence of hid-
den vectors that embody global contextual infor-
mation. Following Chen et al. (2016), we adopt
bi-LSTM with peephole connections (Graves and
Schmidhuber, 2005).

Output layer: This is a CRF layer to predict
the POS tags for the input words by maximizing
the conditional probability of the sequence of tags
given input sentence.

4.2 POS Tagger with Neural Stacking

We adopt the deep integration neural stacking
structure presented in Chen et al. (2016). As
shown in Figure 4, the distributed vector represen-
tation for the target word at the input layer of the
Singlish Tagger is augmented by concatenating the
emission vector produced by the English Tagger
with the original word and character-based embed-
dings, before applying the concatenation within a
context window in section 4.1. During training,
loss is back-propagated to all trainable parameters

Figure 4: POS tagger with neural stacking

System Accuracy
ENG-on-SIN 81.39%
Base-ICE-SIN 78.35%
Stack-ICE-SIN 89.50%

Table 2: POS tagging accuracies

in both the Singlish Tagger and the pre-trained fea-
ture layer of the base English Tagger. At test time,
the input sentence is fed to the integrated tagger
model as a whole for inference.

4.3 Results

We use the publicly available source code15

by Chen et al. (2016) to train a 1-layer bi-
LSTM-CRF based POS tagger on UD-Eng, using
50-dimension pre-trained SENNA word embed-
dings (Collobert et al., 2011). We set the hidden
layer size to 300, the initial learning rate for Ada-
grad (Duchi et al., 2011) to 0.01, the regularization
parameter � to 10�6, and the dropout rate to 15%.
The tagger gives 94.84% accuracy on the UD-Eng
test set after 24 epochs, chosen according to de-
velopment tests, which is comparable to the state-
of-the-art accuracy of 95.17% reported by Plank
et al. (2016). We use these settings to perform 10-
fold jackknifing of POS tagging on the UD-Eng
training set, with an average accuracy of 95.60%.

Similarly, we trained a POS tagger using the
Singlish dependency treebank alone with pre-
trained word embeddings on The Singapore Com-
ponent of the International Corpus of English
(ICE-SIN) (Nihilani, 1992; Ooi, 1997), which
consists of both spoken and written texts. How-
ever, due to limited amount of training data, the

15
https://github.com/chenhongshen/

NNHetSeq

POS tagging

Dependency Parsing
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• Variation on model structure: Rich Resource(ENà FR) pretraining,
low resource (ENà UZ) fine-tuning

approaches strong SBMT baselines in all four lan-
guage pairs, and exceeds SBMT performance in one
of them. Furthermore, we show that NMT is an ex-
ceptional re-scorer of ‘traditional’ MT output; even
NMT that on its own is worse than SBMT is con-
sistently able to improve upon SBMT system output
when incorporated as a re-scoring model.

We provide a brief description of our NMT model
in Section 2. Section 3 gives some background on
transfer learning and explains how we use it to im-
prove machine translation performance. Our main
experiments translating Hausa, Turkish, Uzbek, and
Urdu into English with the help of a French–English
parent model are presented in Section 4. Section 5
explores alternatives to our model to enhance under-
standing. We find that the choice of parent language
pair affects performance, and provide an empirical
upper bound on transfer performance using an arti-
ficial language. We experiment with English-only
language models, copy models, and word-sorting
models to show that what we transfer goes beyond
monolingual information and that using a transla-
tion model trained on bilingual corpora as a parent
is essential. We show the effects of freezing, fine-
tuning, and smarter initialization of different com-
ponents of the attention-based NMT system during
transfer. We compare the learning curves of transfer
and no-transfer models, showing that transfer solves
an overfitting problem, not a search problem. We
summarize our contributions in Section 6.

2 NMT Background

In the neural encoder-decoder framework for MT
(Neco and Forcada, 1997; Castaño and Casacu-
berta, 1997; Sutskever et al., 2014; Bahdanau et
al., 2014; Luong et al., 2015a), we use a recurrent
neural network (encoder) to convert a source sen-
tence into a dense, fixed-length vector. We then use
another recurrent network (decoder) to convert that
vector to a target sentence. In this paper, we use
a two-layer encoder-decoder system (Figure 1) with
long short-term memory (LSTM) units (Hochreiter
and Schmidhuber, 1997). The models were trained
to optimize maximum likelihood (via a softmax
layer) with back-propagation through time (Werbos,
1990). Additionally, we use an attention mecha-
nism that allows the target decoder to look back at

Figure 1: The encoder-decoder framework for neural machine
translation (NMT) (Sutskever et al., 2014). Here, a source sen-
tence C B A (presented in reverse order as A B C) is trans-
lated into a target sentence W X Y Z. At each step, an evolving
real-valued vector summarizes the state of the encoder (blue,
checkerboard) and decoder (red, lattice). Not shown here are
the attention connections present in our model used by the de-
coder to access encoder states.

the source encoder, specifically the local attention
model from Luong et al. (2015a). In our model we
also use the feed-input input connection from Luong
et al. (2015a) where at each timestep on the decoder
we feed in the top layer’s hidden state into the lowest
layer of the next timestep.

3 Transfer Learning

Transfer learning uses knowledge from a learned
task to improve the performance on a related task,
typically reducing the amount of required training
data (Torrey and Shavlik, 2009; Pan and Yang,
2010). In natural language processing, transfer
learning methods have been successfully applied to
speech recognition, document classification and sen-
timent analysis (Wang and Zheng, 2015). Deep
learning models discover multiple levels of repre-
sentation, some of which may be useful across tasks,
which makes them particularly suited to transfer
learning (Bengio, 2012). For example, Cireşan et
al. (2012) use a convolutional neural network to rec-
ognize handwritten characters and show positive ef-
fects of transfer between models for Latin and Chi-
nese characters. Ours is the first study to apply trans-
fer learning to neural machine translation.

There has also been work on using data from
multiple language pairs in NMT to improve perfor-
mance. Recently, Dong et al. (2015) showed that
sharing a source encoder for one language helps
performance when using different target decoders
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• ResultsFigure 2: Our NMT model architecture, showing six blocks of parameters, in addition to source/target words and predictions.
During transfer learning, we expect the source-language related blocks to change more than the target-language related blocks.

Language Pair Parent Train Size BLEU " PPL #

Uzbek–English None 1.8m 10.7 22.4
French–English 1.8m 15.0 (+4.3) 13.9

French0–English None 1.8m 13.3 28.2
French–English 1.8m 20.0 (+6.7) 10.9

Table 6: A better match between parent and child languages should improve transfer results. We devised a child language called
French0, identical to French except for word spellings. We observe that French transfer learning helps French0 (13.3!20.0) more
than it helps Uzbek (10.7!15.0).

4.2 Re-scoring Results

We also use the NMT model with transfer learn-
ing as a feature when re-scoring output n-best lists
(n = 1000) from the SBMT system. Table 3 shows
the results of re-scoring. We compare re-scoring
with transfer NMT to re-scoring with baseline (i.e.
non-transfer) NMT and to re-scoring with a neural
language model. The neural language model is an
LSTM RNN with 2 layers and 1000 hidden states. It
has a target vocabulary of 100K and is trained using
noise-contrastive estimation (Mnih and Teh, 2012;
Vaswani et al., 2013; Baltescu and Blunsom, 2015;
Williams et al., 2015). Additionally, it is trained us-
ing dropout with a dropout probability of 0.2 as sug-
gested by Zaremba et al. (2014). Re-scoring with the
transfer NMT model yields an improvement of 1.1–
1.6 BLEU points above the strong SBMT system; we
find that transfer NMT is a better re-scoring feature
than baseline NMT or neural language models.

In the next section, we describe a number of ad-
ditional experiments designed to help us understand
the contribution of the various components of our
transfer model.

5 Analysis

We analyze the effects of using different parent mod-
els, regularizing different parts of the child model,
and trying different regularization techniques.

5.1 Different Parent Languages
In the above experiments we use French–English as
the parent language pair. Here, we experiment with
different parent languages. In this set of experiments
we use Spanish–English as the child language pair.
A description of the data used in this section is pre-
sented in Table 4.

Our experimental results are shown in Table 5,
where we use French and German as parent lan-
guages. If we just train a model with no transfer on
a small Spanish–English training set we get a BLEU
score of 16.4. When using our transfer method we
get Spanish–English BLEU scores of 31.0 and 29.8
via French and German parent languages, respec-
tively. As expected, French is a better parent than
German for Spanish, which could be the result of
the parent language being more similar to the child
language. We suspect using closely-related parent
language pairs would improve overall quality.
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Target only Source (English)! Target

Language Family Language p p,l p,l c,l p,c,l c,l+a p,c,l+a

Germanic

Swedish 87.43 90.49 91.02 90.45 90.48 90.72 90.70
Danish 86.42 90.00 90.74 90.69 90.02 90.16 90.79

Dutch 76.76 82.24 82.61 82.46 82.10 82.58 82.15
German 86.25 88.95 89.10 88.69 88.93 88.08 89.68

Avg 84.22 87.92 88.37 88.07 87.88 87.88 88.33

Slavic

Slovenian 87.02 89.97 90.29 90.00 90.32 89.58 90.59

Polish 82.10 84.13 85.21 85.41 85.30 85.46 85.50

Slovak 76.22 81.03 82.95 83.40 82.68 82.70 83.17
Bulgarian 87.32 92.81 92.68 92.07 92.30 92.20 92.39
Avg 83.16 86.98 87.78 87.72 87.65 87.48 87.91

Romance

Romanian 88.67 91.44 91.44 90.87 91.22 90.85 91.37
Portuguese 90.66 93.73 93.55 93.90 93.81 93.58 94.20

Italian 89.78 93.99 93.82 93.27 93.46 93.51 94.00

Spanish 85.91 91.07 90.59 90.59 91.07 90.17 90.88
Avg 88.76 92.56 92.35 92.16 92.39 92.03 92.61

Indo-Iranian Persian 90.64 92.40 91.98 91.97 92.12 92.18 91.83
Uralic Hungarian 89.14 90.65 91.45 91.48 90.91 91.52 90.72

Total Avg 86.02 89.49 89.82 89.66 89.62 89.52 89.86

Table 2: POS tagging accuracies (%) with 320 tag-labeled training examples for each target language. All the training
examples are still used for the other objectives.

formance than the results of using English as a
single source language. Considering that utiliz-
ing 1,280*3=3,840, 320*3=960, or 32*3=96 tag
labels from three other languages showed better
results than using 12,543 English tag labels as
the source, we can see that the knowledge trans-
fer from multiple languages can be more help-
ful than that from single resource-rich source lan-
guage. We also tried to use Wasserstein distance
(Arjovsky et al., 2017) for the adversarial training
in the multi-source settings, but there were no sig-
nificant differences on average.4

Implementation Details All the models were
optimized using ADAM (Kingma and Ba, 2015)5

with minibatch size 32 for total 100 epochs and
we picked the parameters showing the best accu-
racy on the development set to report the score on
the test set. The dimensionalites of all the BLSTM
related layers follow Plank et al. (2016)’s model.
Each word vector is 128 dimensional and each
character vector is 100 dimensional. They are ran-
domly initialized with Xavier initialization (Glorot
and Bengio, 2010). For stable training, we use gra-
dient clipping, where the threshold is set to 5. The
dimensionality of each hidden output of LSTMs
is 100, and the hidden outputs of both forward
LSTM and backward LSTM are concatenated,
thereby the output of each BLSTM for each time
step is 200. Therefore, the input to the common
BLSTM and the private BLSTM is 128+200=328

4The extended work in detail are shown in Kim (2017).
5learning rate=0.001, �1 = 0.9, �2 = 0.999, ✏ = 1e� 8.

dimensional. The inputs and the outputs of the
BLSTMs are regularized with dropout rate 0.5
(Pham et al., 2014). For the consistent dropout
usages, we let the dropout masks to be identical
for all the time steps of each sentence (Gal and
Ghahramani, 2016). For all the BLSTMs, for-
get biases are initialized with 1 (Jozefowicz et al.,
2015) and the other biases are initialized with 0.
Each convolution filter output for the sentence en-
coding is 64 dimensional, and the three filter out-
puts are concatenated to represent each sentence
with a 192 dimensional vector.

4 Conclusion

We introduced a cross-lingual transfer learn-
ing model for POS tagging which uses sepa-
rate BLSTMs for language-general and language-
specific representations. Evaluating on 14 differ-
ent languages, including the source language im-
proved tagging accuracies in almost all the cases.
Specifically, our model showed noticeably better
performance when the source language and the
target languages belong to the same language fam-
ily, and competitively performed with the highest
average accuracies for target languages in differ-
ent families.
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Table 1: Dataset statistics.

Benchmark Task Language # Training Tokens # Dev Tokens # Test Tokens

PTB 2003 POS Tagging English 912,344 131,768 129,654
CoNLL 2000 Chunking English 211,727 - 47,377
CoNLL 2003 NER English 204,567 51,578 46,666
CoNLL 2002 NER Dutch 202,931 37,761 68,994
CoNLL 2002 NER Spanish 207,484 51,645 52,098
Genia POS Tagging English 400,658 50,525 49,761
Twitter POS Tagging English 12,196 1,362 1,627
Twitter NER English 36,936 4,612 4,921

Table 2: Improvements with transfer learning under multiple low-resource settings (%). “Dom”, “app”, and
“ling” denote cross-domain, cross-application, and cross-lingual transfer settings respectively. The numbers
following the slashes are labeling rates (chosen such that the number of labeled examples are of the same
scale).

Source Target Model Setting Transfer No Transfer Delta

PTB Twitter/0.1 T-A dom 83.65 74.80 8.85
CoNLL03 Twitter/0.1 T-A dom 43.24 34.65 8.59
PTB CoNLL03/0.01 T-B app 74.92 68.64 6.28
PTB CoNLL00/0.01 T-B app 86.73 83.49 3.24
CoNLL03 PTB/0.001 T-B app 87.47 84.16 3.31
Spanish CoNLL03/0.01 T-C ling 72.61 68.64 3.97
CoNLL03 Spanish/0.01 T-C ling 60.43 59.84 0.59

PTB Genia/0.001 T-A dom 92.62 83.26 9.36
CoNLL03 Genia/0.001 T-B dom&app 87.47 83.26 4.21
Spanish Genia/0.001 T-C dom&app&ling 84.39 83.26 1.13
PTB Genia/0.001 T-B dom 89.77 83.26 6.51
PTB Genia/0.001 T-C dom 84.65 83.26 1.39

4.2 TRANSFER LEARNING PERFORMANCE

We evaluate our transfer learning approach on the above datasets. We fix the hyperparameters for
all the results reported in this section: we set the character embedding dimension at 25, the word
embedding dimension at 50 for English and 64 for Spanish, the dimension of hidden states of the
character-level GRUs at 80, the dimension of hidden states of the word-level GRUs at 300, and
the initial learning rate at 0.01. Except for the Twitter datasets, these datasets are fairly large. To
simulate a low-resource setting, we also use random subsets of the data. We vary the labeling rate
of the target task at 0.001, 0.01, 0.1 and 1.0. Given a labeling rate r, we randomly sample a ratio r
of the sentences from the training set and discard the rest of the training data—e.g., a labeling rate
of 0.001 results in around 900 training tokens on PTB POS tagging (Cf. Table 1).

The results on transfer learning are plotted in Figure 2, where we compare the results with and
without transfer learning under various labeling rates. The numbers in the y-axes are accuracies for
POS tagging, and chunk-level F1 scores for chunking and NER. The numbers are shown in Table 2.
We can see that our transfer learning approach consistently improved over the non-transfer results.
We also observe that the improvement by transfer learning is more substantial when the labeling
rate is lower. For cross-domain transfer, we obtained substantial improvement on the Genia and
Twitter corpora by transferring the knowledge from PTB POS tagging and CoNLL 2003 NER. For
example, as shown in Figure 2(a), we can obtain an tagging accuracy of 83%+ with zero labels
and 92% with only 0.001 labels when transferring from PTB to Genia. As shown in Figures 2(d)
and 2(e), our transfer learning approach can improve the performance on Twitter POS tagging and
NER for all labeling rates, and the improvements with 0.1 labels are more than 8% for both datasets.
Cross-application transfer also leads to substantial improvement under low-resource conditions. For
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Figure 2: Three shared-private models for multi-criteria learning. The yellow blocks are the shared Bi-
LSTM layer, while the gray block are the private Bi-LSTM layer. The yellow circles denote the shared
embedding layer. The red information flow indicates the difference between three models.

3.3 Model-III: Skip-Layer Shared-Private
Model

In the feature layer of Model-III, the shared layer
and private layer are in stacked manner as Model-
II. Additionally, we send the outputs of shared
layer to CRF layer directly.
The Model III can be regarded as a combination

ofModel-I andModel-II. For corpusm, the hidden
states of shared layer and private layer are the same
with Eq (15) and (16), and the score function in
CRF layer is computed as the same as Eq (14).

3.4 Objective function

The parameters of the network are trained to max-
imize the log conditional likelihood of true labels
on all the corpora. The objective functionJseg can
be computed as:

Jseg(⇥
m,⇥s) =

MX

m=1

NmX

i=1

log p(Y (m)
i |X(m)

i ;⇥m,⇥s),

(18)
where⇥m and⇥s denote all the parameters in pri-
vate and shared layers respectively.

4 Incorporating Adversarial Training for
Shared Layer

Although the shared-private model separates the
feature space into shared and private spaces, there
is no guarantee that sharable features do not ex-
ist in private feature space, or vice versa. Inspired
by the work on domain adaptation (Ajakan et al.,
2014; Ganin et al., 2016; Bousmalis et al., 2016),
we hope that the features extracted by shared layer
is invariant across the heterogonous segmentation
criteria. Therefore, we jointly optimize the shared

CRF

CRF

Task A

Task B

AVG

Discriminator Shared-private Model

X(A)

X(B)

Y(B)

Y(A)A/B

Softmax

Linear

Figure 3: Architecture of Model-III with adversa-
rial training strategy for shared layer. The discri-
minator firstly averages the hidden states of shared
layer, then derives probability over all possible cri-
teria by applying softmax operation after a linear
transformation.

layer via adversarial training (Goodfellow et al.,
2014).
Therefore, besides the task loss for CWS, we ad-

ditionally introduce an adversarial loss to prevent
criterion-specific feature from creeping into shared
space as shown in Figure 3. We use a criterion dis-
criminator which aims to recognizewhich criterion
the sentence is annotated by using the shared fea-
tures.
Specifically, given a sentence X with length n,

we refer to h(s)X as shared features for X in one
of the sharing models. Here, we compute h(s)X by
simply averaging the hidden states of shared layer
h(s)X = 1

n

Pn
i h

(s)
xi . The criterion discriminator

computes the probability p(·|X) over all criteria
as:

p(·|X;⇥d,⇥s) = softmax(W>
d h

(s)
X + bd), (19)
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Models MSRA AS PKU CTB CKIP CITYU NCC SXU Avg.

LSTM

P 95.13 93.66 93.96 95.36 91.85 94.01 91.45 95.02 93.81
R 95.55 94.71 92.65 85.52 93.34 94.00 92.22 95.05 92.88
F 95.34 94.18 93.30 95.44 92.59 94.00 91.83 95.04 93.97

OOV 63.60 69.83 66.34 76.34 68.67 65.48 56.28 69.46 67.00

Bi-LSTM

P 95.70 93.64 93.67 95.19 92.44 94.00 91.86 95.11 93.95
R 95.99 94.77 92.93 95.42 93.69 94.15 92.47 95.23 94.33
F 95.84 94.20 93.30 95.30 93.06 94.07 92.17 95.17 94.14

OOV 66.28 70.07 66.09 76.47 72.12 65.79 59.11 71.27 68.40

Stacked Bi-LSTM

P 95.69 93.89 94.10 95.20 92.40 94.13 91.81 94.99 94.03
R 95.81 94.54 92.66 95.40 93.39 93.99 92.62 95.37 94.22
F 95.75 94.22 93.37 95.30 92.89 94.06 92.21 95.18 94.12

OOV 65.55 71.50 67.92 75.44 70.50 66.35 57.39 69.69 68.04
Multi-Criteria Learning

Model-I

P 95.67 94.44 94.93 95.95 93.99 95.10 92.54 96.07 94.84
R 95.82 95.09 93.73 96.00 94.52 95.60 92.69 96.08 94.94
F 95.74 94.76 94.33 95.97 94.26 95.35 92.61 96.07 94.89

OOV 69.89 74.13 72.96 81.12 77.58 80.00 64.14 77.05 74.61

Model-II

P 95.74 94.60 94.82 95.90 93.51 95.30 92.26 96.17 94.79
R 95.74 95.20 93.76 95.94 94.56 95.50 92.84 95.95 94.94
F 95.74 94.90 94.28 95.92 94.03 95.40 92.55 96.06 94.86

OOV 69.67 74.87 72.28 79.94 76.67 81.05 61.51 77.96 74.24

Model-III

P 95.76 93.99 94.95 95.85 93.50 95.56 92.17 96.10 94.74
R 95.89 95.07 93.48 96.11 94.58 95.62 92.96 96.13 94.98
F 95.82 94.53 94.21 95.98 94.04 95.59 92.57 96.12 94.86

OOV 70.72 72.59 73.12 81.21 76.56 82.14 60.83 77.56 74.34
Adversarial Multi-Criteria Learning

Model-I+ADV

P 95.95 94.17 94.86 96.02 93.82 95.39 92.46 96.07 94.84
R 96.14 95.11 93.78 96.33 94.70 95.70 93.19 96.01 95.12
F 96.04 94.64 94.32 96.18 94.26 95.55 92.83 96.04 94.98

OOV 71.60 73.50 72.67 82.48 77.59 81.40 63.31 77.10 74.96

Model-II+ADV

P 96.02 94.52 94.65 96.09 93.80 95.37 92.42 95.85 94.84
R 95.86 94.98 93.61 95.90 94.69 95.63 93.20 96.07 94.99
F 95.94 94.75 94.13 96.00 94.24 95.50 92.81 95.96 94.92

OOV 72.76 75.37 73.13 82.19 77.71 81.05 62.16 76.88 75.16

Model-III+ADV

P 95.92 94.25 94.68 95.86 93.67 95.24 92.47 96.24 94.79
R 95.83 95.11 93.82 96.10 94.48 95.60 92.73 96.04 94.96
F 95.87 94.68 94.25 95.98 94.07 95.42 92.60 96.14 94.88

OOV 70.86 72.89 72.20 81.65 76.13 80.71 63.22 77.88 74.44

Table 3: Results of proposed models on test sets of eight CWS datasets. There are three blocks. The first
block consists of two baseline models: Bi-LSTM and stacked Bi-LSTM. The second block consists of
our proposed three models without adversarial training. The third block consists of our proposed three
models with adversarial training. Here, P, R, F, OOV indicate the precision, recall, F value and OOV
recall rate respectively. The maximum F values in each block are highlighted for each dataset.

6.5 Error Analysis

We further investigate the benefits of the propo-
sed models by comparing the error distributions
between the single-criterion learning (baselinemo-
del Bi-LSTM) andmulti-criteria learning (Model-I
and Model-I with adversarial training) as shown in
Figure 5. According to the results, we could ob-
serve that a large proportion of points lie above
diagonal lines in Figure 5a and Figure 5b, which
implies that performance benefit from integrating
knowledge and complementary information from
other corpora. As shown in Table 3, on the test
set of CITYU, the performance of Model-I and
its adversarial version (Model-I+ADV) boost from

92.17% to 95.59% and 95.42% respectively.

In addition, we observe that adversarial strategy
is effective to prevent criterion specific features
from creeping into shared space. For instance, the
segmentation granularity of personal name is often
different according to heterogenous criteria. With
the help of adversarial strategy, our models could
correct a large proportion of mistakes on personal
name. Table 4 lists the examples from 2333-th and
89-th sentences in test sets of PKU and MSRA da-
tasets respectively.
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Figure 1: Models.

edge refers to example training data in a specific
domain, which can offer useful background con-
text. For example, given a sentence ‘Keep cool
if you think it’s a wonderful life will be a heart-
warming tale about life like finding nemo’, algo-
rithms can mistakenly classify it as positive based
on ‘wonderful’ and ‘heartwarming’, ignoring the
fact that ‘it’s a wonderful life’ is a movie. In
this case, necessary domain knowledge revealed in
other sentences, such as ‘The last few minutes of
the movie: it’s a wonderful life don’t cancel out all
the misery the movie contained’ is helpful. Given
a domain-specific input representation, we make
attention over the domain knowledge memory net-
work to obtain a background context vector, which
is used in conjunction with the input representa-

tion for sentiment classification.
Results on two real-world datasets show that our

model outperforms the aforementioned multi-task
learning methods for domain-aware training, and
also generalizes to unseen domains. Our code is
released1.

2 Problem Definition

Formally, we assume the existence of m sentiment
datasets {Di}mi=1, each being drawn from a do-
main i. Di contains |Di| data points (sij , di, y

i
j),

where sij is a sequence of words w1, w2...w|sij |
,

each being drawn from a vocabulary V , yij in-
dicates the sentiment label (e.g. yij 2 {�1,+1}
for binary sentiment classification) and di is a do-
main indicator (since we use 1 to m to number
each domain, di = i). The task is to learn a func-
tion f which maps each input (sij , di) to its cor-
responding sentiment label yij . The challenge of
the task lies in how to improve the generaliza-
tion performance of mapping function f both in-
domain and cross-domain by exploring the corre-
lations between different domains.

3 Baselines

3.1 Domain-Agnostic Model
One naive baseline solution ignores the domain
characteristics when learning f . It simply com-
bines the datasets {Di}mi=1 into one and learns a
single mapping function f . We refer to this base-
line as Mix, which is depicted in Figure 1 (a).

Given an input sij , its word sequence
w1, w2...w|sij |

is fed into a word embedding
layer to obtain embedding vectors x1, x2...x|sij |.
The word embedding layer is parameterized by an
embedding matrix Ew 2 RK⇥|V |, where K is the
embedding dimension.

Bidirectional LSTM: To acquire a seman-
tic representation of input sij , a bidirectional
extension (Graves and Schmidhuber, 2005) of
Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) is applied to capture
sentence-level semantics both left-to-right and
right-to-left. As a result, two sequences of hid-
den states are obtained, denoted as

�
h1,

�
h2...

�
h|sij |

and
�
h1,

�
h2...

�
h|sij |, respectively. We concatenate

�
ht

1https://github.com/leuchine/
multi-domain-sentiment



Multi-domain Sentiment Classification

Qi Liu, Yue Zhang, Jiangming Liu, 2018. Learning Domain Representation for Multi-domain Sentiment 
Classification. In Proceedings of 16th Annual Conference of the North American Chapter of the Association for 
Computational Linguistics (NAACL), New Orleans, Louisiana, June.

• Results

In domain Cross domain
Dataset MTRL Mix Multi DSR DSR-sa DSR-ctx DSR-at MTRL Mix MDA Multi FEMA NDA DSR DSR-sa DSR-ctx DSR-at

LT 0.813 0.831 0.900 0.897 0.902 0.898 0.915* 0.763 0.792 0.801 0.808 0.811 0.816 0.822 0.823 0.854 0.878*
RT 0.776 0.801 0.825 0.841 0.845 0.855 0.870* 0.772 0.786 0.789 0.779 0.774 0.776 0.78 0.784 0.814 0.847*
M 0.800 0.803 0.783 0.807 0.812 0.820 0.828* 0.616 0.636 0.642 0.668 0.679 0.684 0.692 0.695 0.725 0.729
CR 0.775 0.786 0.819 0.825 0.828 0.836 0.854* 0.714 0.721 0.736 0.735 0.741 0.745 0.751 0.753 0.789 0.809*

Average 0.791 0.805 0.832 0.843 0.847 0.852 0.867* 0.716 0.734 0.742 0.748 0.751 0.755 0.761 0.764 0.796 0.815*

Table 3: In-domain learning and cross-domain results on dataset 1. * denotes p < 0.01 VS. the second best.

In domain Cross domain
Dataset MTRL Mix Multi DSR DSR-sa DSR-ctx DSR-at MTRL Mix MDA Multi FEMA NDA DSR DSR-sa DSR-ctx DSR-at
Apparel 0.883 0.912 0.921 0.927 0.928 0.92 0.938* 0.828 0.843 0.863 0.854 0.865 0.873 0.882 0.899 0.896 0.909*

Electronics 0.853 0.881 0.899 0.884 0.879 0.883 0.891 0.804 0.826 0.836 0.849 0.845 0.834 0.857 0.859 0.861 0.875*
Office 0.863 0.88 0.89 0.903 0.914 0.925 0.933* 0.824 0.825 0.818 0.824 0.843 0.839 0.854 0.876 0.883 0.894*

Automotive 0.842 0.864 0.873 0.886 0.891 0.902 0.917* 0.791 0.786 0.791 0.797 0.816 0.826 0.835 0.847 0.857 0.867*
Gourmet 0.814 0.838 0.84 0.852 0.856 0.858 0.863* 0.777 0.775 0.764 0.784 0.796 0.803 0.814 0.826 0.832 0.828
Outdoor 0.853 0.889 0.899 0.903 0.907 0.915 0.927* 0.785 0.796 0.805 0.815 0.836 0.829 0.856 0.861 0.867 0.887*

Baby 0.816 0.853 0.86 0.875 0.877 0.892 0.91* 0.803 0.816 0.814 0.821 0.834 0.84 0.845 0.878 0.873 0.895*
Grocery 0.862 0.886 0.898 0.907 0.911 0.917 0.933* 0.806 0.817 0.826 0.846 0.846 0.862 0.88 0.873 0.865 0.886*
Software 0.851 0.876 0.88 0.893 0.898 0.904 0.92* 0.795 0.811 0.816 0.836 0.845 0.836 0.85 0.862 0.884 0.897*
Beauty 0.816 0.843 0.8567 0.862 0.867 0.864 0.889* 0.756 0.768 0.775 0.785 0.795 0.804 0.812 0.812 0.838 0.851*
Health 0.871 0.901 0.904 0.896 0.897 0.896 0.907 0.785 0.807 0.819 0.832 0.845 0.848 0.843 0.834 0.857 0.871*
Sports 0.851 0.883 0.899 0.889 0.882 0.895 0.9 0.759 0.768 0.775 0.784 0.816 0.819 0.821 0.836 0.848 0.864*
Book 0.743 0.803 0.79 0.804 0.809 0.815 0.822* 0.694 0.705 0.716 0.723 0.745 0.743 0.751 0.758 0.779 0.798*

Jewelry 0.816 0.891 0.881 0.893 0.891 0.894 0.909* 0.762 0.769 0.774 0.785 0.795 0.808 0.815 0.835 0.857 0.874*
Camera 0.912 0.937 0.968 0.966 0.959 0.968 0.989* 0.869 0.878 0.886 0.896 0.894 0.908 0.917 0.925 0.942 0.963*
Kitchen 0.815 0.858 0.863 0.875 0.887 0.894 0.913* 0.759 0.768 0.775 0.776 0.794 0.818 0.826 0.856 0.865 0.884 *

Toy 0.823 0.863 0.875 0.881 0.884 0.88 0.892* 0.814 0.824 0.815 0.803 0.813 0.832 0.826 0.843 0.845 0.857*
Phone 0.879 0.936 0.94 0.943 0.949* 0.941 0.933 0.805 0.813 0.808 0.818 0.821 0.833 0.836 0.856 0.874 0.894*

Magazine 0.835 0.874 0.872 0.883 0.895 0.917 0.937* 0.805 0.819 0.817 0.816 0.83 0.841 0.845 0.857 0.871 0.896*
Video 0.851 0.873 0.882 0.891 0.896 0.912 0.925* 0.754 0.774 0.794 0.795 0.815 0.822 0.834 0.845 0.855 0.875*

Games 0.867 0.886 0.89 0.883 0.886 0.887 0.9* 0.681 0.684 0.708 0.718 0.723 0.734 0.746 0.765 0.781 0.778
Music 0.752 0.782 0.8 0.798 0.8 0.798 0.81* 0.775 0.769 0.779 0.784 0.795 0.824 0.815 0.823 0.842 0.858*
Dvd 0.795 0.826 0.834 0.847 0.854 0.867 0.889* 0.801 0.794 0.804 0.794 0.814 0.827 0.835 0.845 0.851 0.875*

Instrument 0.873 0.943 0.957* 0.896 0.906 0.898 0.9 0.814 0.805 0.813 0.815 0.825 0.836 0.833 0.835 0.845 0.865*
Tools 0.887 0.915 0.931 0.928 0.93 0.932 0.94* 0.805 0.814 0.828 0.835 0.846 0.857 0.864 0.866 0.873 0.897*

Average 0.841 0.875 0.884 0.887 0.89 0.895 0.907* 0.786 0.794 0.801 0.807 0.82 0.827 0.835 0.847 0.858 0.873*

Table 4: In-domain learning and cross-domain results on dataset 2. * denotes p < 0.01 VS. the second best.

NDA also considered domain-specific representa-
tions. On the other hand, it duplicates the full set of
model parameters for each domain, yet underper-
forms DSR and DSR-sa, which records only one
domain descriptor vector for each domain. The
contrast shows the advantages of learning domain
descriptors explicitly in terms of both efficiency
and accuracy.

Similar to the known domain results, DST-
sa and DSR-ctx further improve upon DSR
and DSR-sa, showing the effectiveness of do-
main memory and adversarial learning. On both
datasets, DSR-at achieves significantly the best
performances, which shows the advantages of
domain-invariant representations for unknown-
domain testing.

5.5 Case Study

5.5.1 Input Attention

To obtain a better understanding of input attention
with domain descriptors, we examine the attention
weights of inputs and three examples are displayed
in Figure 2, where the x axis denotes the four do-
mains from the first dataset and the y axis shows
the words.

In Figure 2 (a), the domain-specific word ‘ease’
is only selected for the domains LT and CR, while
the domain-independent word ‘great’ is salient in
all domains. Similarly, in Figure 2 (b), ‘meaty’ and
‘engaging’ are only salient in RT and M, respec-
tively. In Figure 2 (c), the domain-specific word
‘beast’ is chosen in LT and CR.

These confirm the effectiveness of input at-
tention and DSR-ctx has the capability to pick
out sentiment lexicons in conformity with domain
characteristics.

5.5.2 Domain Descriptors
With the self-attention layer, one interesting ques-
tion is whether learned domain descriptors can re-
flect domain similarities/dissimilarities.

We take out the twenty-five domain descriptors
for Blitzer’s dataset and calculate the cosine sim-
ilarities between each pair. Also, we calculate the
cosine similarities of twenty-five domains based
on unigram and bigram representations for ground
truth. Pearson correlation coefficient is used to
measure the correlations between two sets of co-
sine values. The final score is 0.796, which shows
that domain descriptor similarities can serve as in-
dicators for domain similarities.
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• Results
System Accuracy
CRF Baseline (Li et al., 2015) 94.10
CRF Stacking (Li et al., 2015) 94.81
CRF Multi-view (Li et al., 2015) 95.00
NN Baseline 94.24
NN Stacking 94.74
NN Feature Stacking 95.01
NN Feature Stacking & Fine-tuning 95.32
NN Multi-view 95.40
Integrated NN Multi-view & Stacking 95.53

Table 2: Accuracies on CTB-test.

fitting and underfitting.
Figure 5 also shows that the batch size has a rela-

tive small influence on the accuracies, which varies
according to the dropout rate. We simply choose a
batch size of 1 for the remaining experiments ac-
cording to the performance at the dropout rate 20%.

Effect of corpus weights ratio. Figure 6 shows
the effects of different corpus weights ratios. In par-
ticular, a corpus weights ratio of 1:0.2 yields relative
low accuracies. This is likely because it makes use
of the least amount of PD data. The ratios of 1:1
and 1:4 give comparable performances. We choose
the former for our final tests because it is a much
faster choice.

6.3 Final Results
Table 2 shows the final results on the CTB test data.
We lists the results of stacking method of Jiang et
al. (2009) re-implemented by Li et al. (2015), and
CRF multi-view method reported by Li et al. (2015).
We adopt pair-wise significance test (Collins et al.,
2005) when comparing the results between two dif-
ferent models.

Stacking. For baseline tagging using only CTB,
NN model achieves a result of 94.24, slightly higher
than CRF baseline (94.10). NN stacking model in-
tegrating PD data achieves comparable performance
(94.74) compared with CRF stacking model (94.81).
Compared with NN baseline, NN stacking model
boosts the performance from 94.24 to 94.74, which
is significant at the confidence level p < 10�5. This
demonstrates that neural network model can utilize
one-best prediction of the PD model for the CTB
task as effectively as the discrete stacking method
of Jiang et al. (2009).

One advantage of NN stacking as compared with
discrete stacking method is that it can directly lever-

age features of PD model for CTB tagging. Com-
parison between feature-level stacking and one-best-
output level stacking of the NN stacking model
shows that the former gives significantly higher re-
sults, namely 95.01 vs 94.74 at the confidence level
p < 10�3.

One further advantage of NN stacking is that it
allows the PD model to be fine-tuned as an integral
sub-model during CTB training. This is not possible
for the discrete stacking model, because the output
of the PD model are used as atomic feature in the
stacking CTB model rather than a gradient admis-
sive neural layer. By fine-tuning the PD sub-model,
the performance is further improved from 95.01 to
95.32 at the confidence level p < 10�3. The final
NN stacking model improves over the NN baseline
model from 94.24 to 95.32. The improvement is sig-
nificantly higher compared to that by using discrete
stacking which improves over the discrete baseline
from 94.01 to 94.74. The final accuracy of the NN
stacking model is higher than that of the CRF stack-
ing model, namely 94.81 vs 95.32 at the confidence
level p < 10�3. This shows that neural stacking is a
preferred choice for stacking.

Multi-view training. With respect of the multi-
view training method, the NN model improves over
the NN baseline from 94.24 to 95.40, by a margin
of +1.16, which is higher than that of 0.90 brought
by discrete method of Li et al. (2015) over its base-
line, from 94.10 to 95.00. NN multi-view training
method gives relatively higher improvements com-
pared with NN stacking method. This is consis-
tent with the observation of Li et al. (2015), who
showed that discrete label coupling training gives
slightly better improvement compared with discrete
stacking. The final accuracies of NN multi-view
training is also higher than that of its CRF counter-
part, namely 95.00 vs 95.40 at the confidence level
p < 10�3. The difference between the final NN
multi-view training result of 95.40 and the final NN
stacking results is not significant.3

Integration. The flexibility of the NN models
further allows both stacking (on the input) and multi-
viewing (on the output) to be integrated. When

3Note, however, NN stacking method with one-best PD out-
put gives significantly lower accuracies (94.74). It is the fine-
tuning strategy that allows stacking to give comparable results
compared to multi-view training for the NN models.
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• Results

4

Same treebank test set PUD test set
Language Treebank Size SINGLE CONCAT C+FT TB-EMB SINGLE CONCAT C+FT TB-EMB

Czech

PDT 68495 86.7 87.5+
88.3

⇤ 87.2+
81.7

81.7

81.6 81.2
CAC 23478 86.0 87.8+ 88.1+

88.5
+ 75.0 81.3 81.1

FicTree 10160 84.3 89.3+
89.5

+ 89.2+ 66.1 79.8 80.3
CLTT 860 72.5 86.2+

86.9
+ 86.0+ 42.1 80.8 80.9

English
EWT 12543 82.2 82.1 82.5 83.0 80.7

80.0
81.7⇤

81.9
⇤

LinES 2738 72.1 76.7+
77.3

+
77.3

+ 62.6 75.9 74.5
ParTUT 1781 80.5 83.5+ 85.4+

85.7
+ 68.0 78.1 76.9

Finnish FTB 14981 76.4⇥ 74.4 80.1⇤
80.6

⇤ 46.7 73.0 54.6 53.1
TDT 12217 78.1⇥ 70.6 80.6

⇤ 80.3⇤ 78.6⇥
81.3

⇤ 80.9⇤

French

FTB 14759 83.2 83.2 83.9⇤
84.1

⇤ 72.0

79.4

76.7 74.1
GSD 14554 84.5 84.1 85.3 85.6

⇥ 79.1 80.2⇤
80.3

⇤

Sequoia 2231 84.0 86.0+
89.8

⇤ 89.1⇤ 69.5 78.1 77.6
ParTUT 803 79.8 80.5 89.1⇤

90.3
⇤ 63.4 78.8 77.5

Italian
ISDT 12838 87.7 87.9 87.7 87.6 85.4

86.0
85.7 86.0

PoSTWITA 2808 71.4 76.7+ 76.8+
77.0

+ 68.5 85.7 85.3
ParTUT 1781 83.4 89.2+

89.3
+ 88.8+ 77.4 85.8+

86.1
+

Portuguese GSD 9664 88.3 87.3 89.0⇤
89.1

⇤ 74.0 76.8+ 75.2 74.9
Bosque 8331 84.7 84.2 86.2⇥

86.3
⇤ 75.2 77.5+

77.6
+

Russian SynTagRus 48814 90.2⇥ 89.4 90.4
⇥

90.4
⇥ 66.0 68.7 66.3 66.4

GSD 3850 74.7⇥ 73.4 79.8⇤
80.8

⇤ 70.1⇥ 77.6⇤
78.0

⇤

Spanish AnCora 14305 87.2⇥ 86.2 87.5⇥
87.6

⇥ 75.2 79.9 77.7 76.4
GSD 14187 84.7 83.0 85.8⇥

86.2
⇤ 79.8 80.8+

80.9
⇤

Swedish Talbanken 4303 79.6 79.1 80.2 80.6
⇥ 70.3 72.0+ 73.2⇤

73.6
⇤

LinES 2738 74.3 76.8 77.3
+ 77.1+ 64.0 70.0 69.0

Average 81.4 82.7+
84.9

⇤
84.9

⇤ 77.9 77.5 80.0⇤
80.1

⇤

Table 1: LAS scores when testing on the training treebank and on the PUD test set with training treebank
as proxy. For each test set, the best result is marked with bold. Treebank size is given as number of
sentences in the training data. Statistically significant differences, at the 0.05-level, from SINGLE are
marked with +, from CONCAT with ⇥ and from both these systems with *. For clarity, significance for
PUD is only shown for the proxy treebank with the highest score.

provements are, unsurprisingly, largest for smaller
treebanks, we do also see some improvements for
large treebanks, in contrast to Sato et al. (2017).

Some variation can be observed between lan-
guages. In two cases, Italian ISDT and Czech
PUD, CONCAT performs marginally better than
the more advanced methods, but these differences
are not statistically significant. In several cases,
especially for small treebanks, CONCAT helps no-
ticeably over SINGLE, whereas it actually hurts for
Finnish and Russian. It is, however, nearly always
better to combine treebanks in some way than to
use only a single treebank. The differences be-
tween the two best methods, C+FT and TB-EMB
are typically small and not statistically significant,
with the exception of Czech PDT, and for some of
the small proxy treebanks for PUD.

The PUD test set can be seen as an example
of applying the proposed models to unseen data,
without matching training data. For all languages,
except Czech, the results for C+FT and TB-EMB
with the best proxy treebank are significantly bet-
ter than the equivalent result for SINGLE, and for

six of the nine languages, TB-EMB performs sig-
nificantly better than CONCAT. It is clear that
some treebanks are bad fits to PUD, most notably
Finnish FTB and Russian SynTagRus. However,
even when a treebank is a bad fit, TB-EMB and
C+FT can still improve substantially over using
only the single model for the treebank with the
best fit, as for Russian where there is a gain of
nearly 8 LAS points for TB-EMB over SINGLE,
when using GSD as a proxy. For some languages,
however, most notably Italian, the choice of proxy
treebank makes little difference for TB-EMB and
C+FT. It is also interesting to see that in many
cases it is not the largest treebank that is the best
proxy for PUD. The large difference in results for
PUD, depending on which treebank was used as
proxy, also seems to point at potential inconsisten-
cies in the UD annotation for several languages.

5 Error Analysis

To complement the LAS scores, we performed a
small manual error analysis for Swedish, looking
at the results for the PUD data, when translated
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