Joint Models for NLP

Yue Zhang

Westlake Institute for Advanced Study

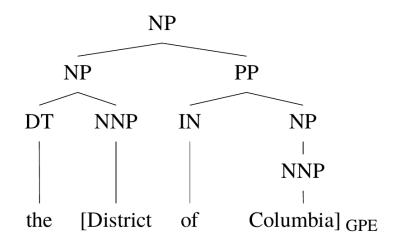
Outline

- Motivation
- Statistical Models
- Deep Learning Models

Outline

- Motivation
- Statistical Models
- Deep Learning Models

- Related tasks in NLP
 - Constituents and named entities



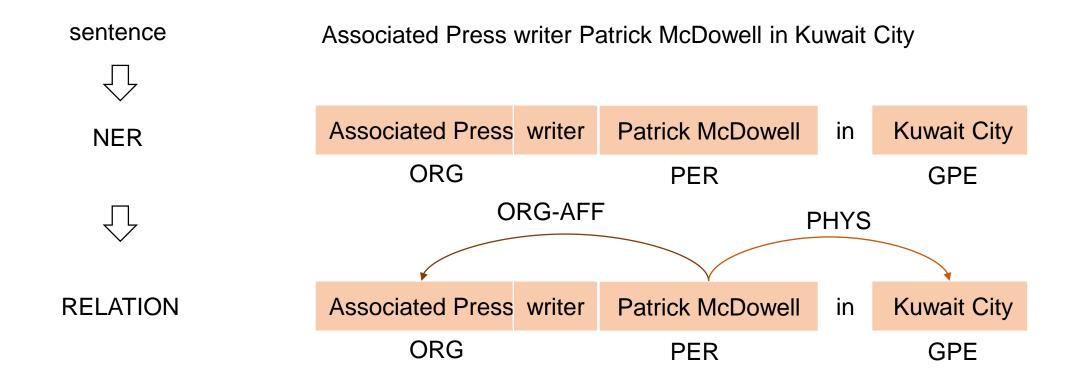
- Related tasks in NLP
 - NER, Chunking and POS Tagging

Sentence:	Joi	runs	the	MIT	Media	Lab	
POS Tagging:	NNP	VBZ	DT	NNP	NNP	NNP	•
NER:	PER	0	0	B-ORG	I-ORG	I-ORG	0
Chunking:	S	S	S	В	I	E	0

- Pipelines in NLP
 - Segmentation > POS tagging

布朗访问上海
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓<

- Pipelines in NLP
 - Entity and Relation



- Pipelines in NLP
 - Entity and Sentiment

sentence	So excited to meet my baby Farah !!!
$\overline{\Box}$	
NER	So excited to meet my [baby Farah] !!!
Ţ	PER
\checkmark	
Sentiment	So excited to meet my [baby Farah]+ !!!
	PER + POSITIVE

WIASH WIASH

- Joint model
 - Reduce error propagation
 - Allow information exchange between tasks
- Challenge
 - Joint learning
 - Search

Solutions

Learning

		Joint	Separate
Search	Joint	Statistical Neural	Statistical
	Separate	Neural	

Outline

- Motivation
- Statistical Models
- Deep Learning Models

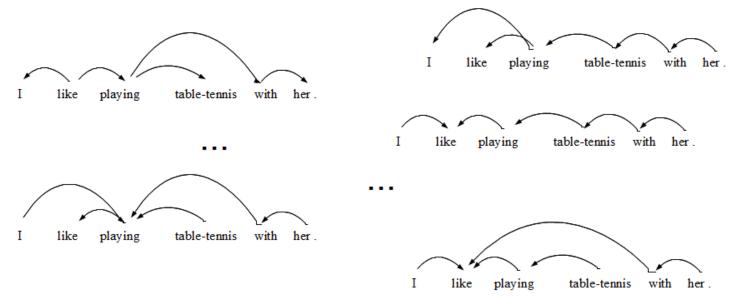
Statistical Models

- Graph-Based Methods
- Transition-Based Methods

Statistical Models

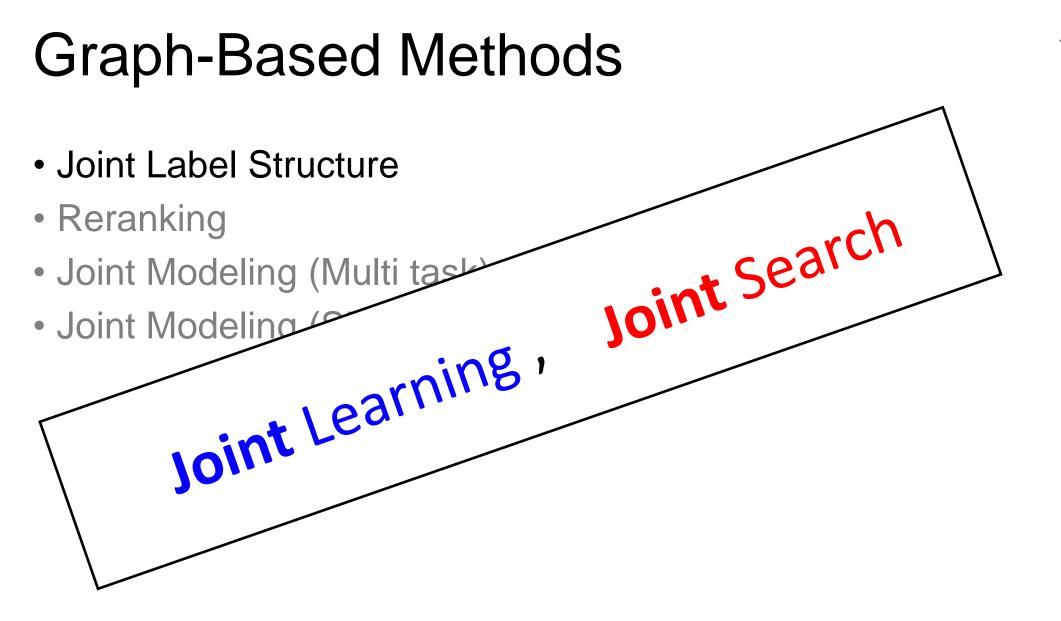
- Graph-Based Methods
- Transition-Based Methods

- Traditional solution
 - Score each candidate, select the highest-scored output
 - Search-space typically exponential

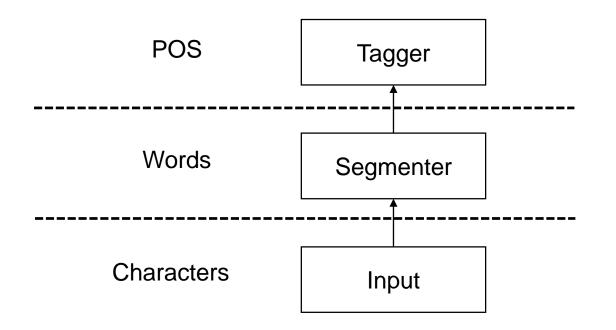


- Joint Label Structure
- Reranking
- Joint Modeling (Multi task)
- Joint Modeling (Single task)

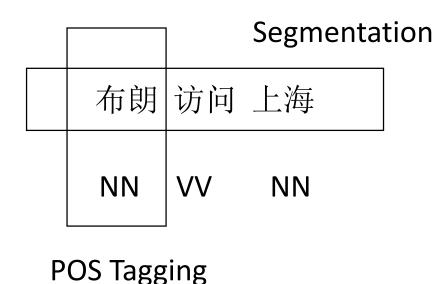
- Joint Label Structure
- Reranking
- Joint Modeling (Multi task)
- Joint Modeling (Single task)



Tasks



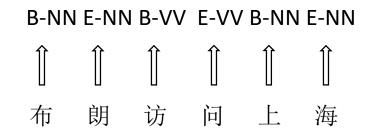
Task



Ng, Hwee Tou, and Jin Kiat Low. "Chinese part-of-speech tagging: One-at-a-time or all-at-once? word-based or character-based?." *EMNLP*. 2004.

Collapsing labels

BE	BE	BE
布朗	访问	上海
NN	VV	NN



Ng, Hwee Tou, and Jin Kiat Low. "Chinese part-of-speech tagging: One-at-a-time or all-at-once? word-based or character-based?." *EMNLP*. 2004.

- All-at-Once, Character-Based POS Tagger and Segmenter : Feature (a) C_n (n = -2, -1, 0, 1, 2)
 - (b) $C_n C_{n+1}$ (n = -2, -1, 0, 1)
 - (c) $C_{-1}C_{1}$
 - (d) $W_0 C_0$
 - (e) $Pu(C_0)$
 - (f) $T(C_{-2})T(C_{-1})T(C_0)T(C_1)T(C_2)$
 - (g) $B(C_{-IW_0}) POS(C_{-IW_0})$
 - (h) $B(C_{-2W_0})POS(C_{-2W_0})B(C_{-1W_0})POS(C_{-1W_0})$

Ng, Hwee Tou, and Jin Kiat Low. "Chinese part-of-speech tagging: One-at-a-time or all-at-once? word-based or character-based?." *EMNLP*. 2004.

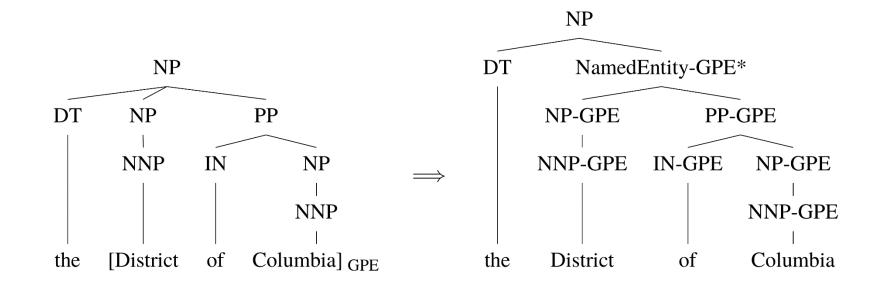
Results on CTB

Method	Word Seg	POS	Total
	F-measure	Accuracy	Testing
	(%)	(%)	Time
One-at-a-Time	95.1	84.1	1 min
Word-Based			20 secs
One-at-a-Time	95.1	91.7	1 min
Char-Based			50 secs
All-At-Once	95.2	91.9	20 mins
Char-Based			

Ng, Hwee Tou, and Jin Kiat Low. "Chinese part-of-speech tagging: One-at-a-time or all-at-once? word-based or character-based?." *EMNLP*. 2004.

Joint Parsing and NER

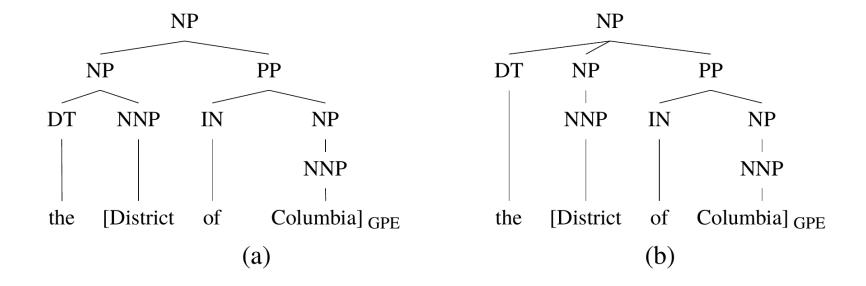
• A joint model of both parsing and named entity recognition.



Finkel, Jenny Rose, and Christopher D. Manning. "Joint parsing and named entity recognition." *Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics*. Association for Computational Linguistics, 2009.

Joint Parsing and NER

 A feature-based CRF-CFG parser operating over tree structures augmented with NER information.



Finkel, Jenny Rose, and Christopher D. Manning. "Joint parsing and named entity recognition." *Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics*. Association for Computational Linguistics, 2009.

Joint Parsing and NER

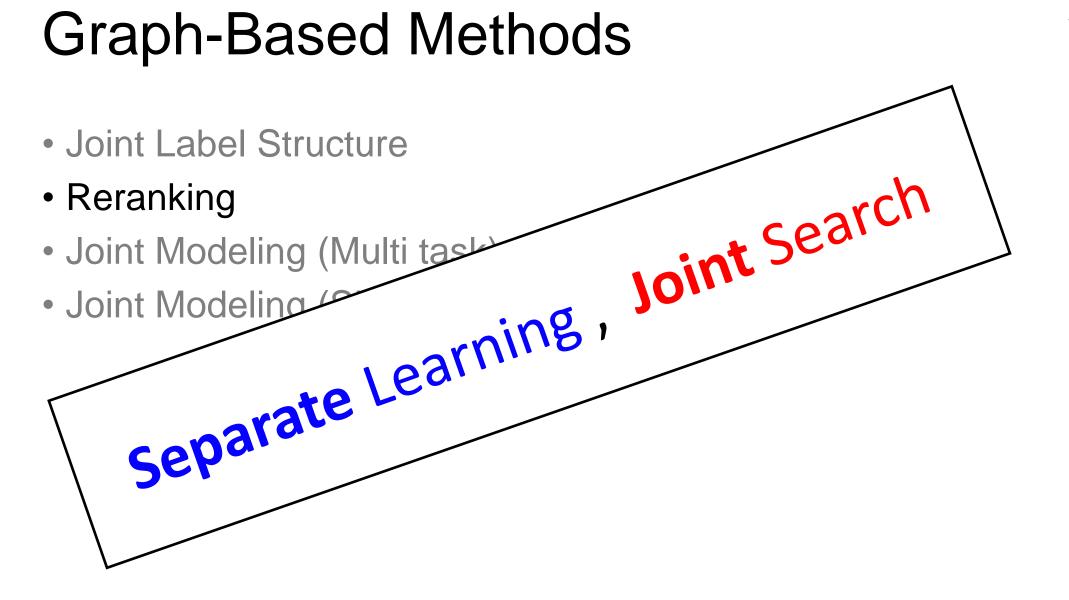
Results:

On OntoNotes

		Parse L	abeled Br	acketi				Training
		Precision	Recall	F				Time
ABC	Just Parse	70.18%	70.12%	70.1 5%		_		25m
	Just NER		_		76.84%	72.32%	74.51%	
	Joint Model	69.76%	70.23%	69.99%	77.70%	72.32%	74.91%	45m
CNN	Just Parse	76.92%	77.14%	77.03%		_		16.5h
	Just NER		_		75.56%	76.00%	75.78%	
	Joint Model	77.43%	77.99%	77.71%	78.73%	78.67%	78.70%	31.7h
MNB	Just Parse	63.97%	67.07%	65.49%		_		12m
	Just NER		_		72.30%	54.59%	62.21%	
	Joint Model	63.82\$	67.46%	65.59%	71.35%	62.24%	66.49%	19m
NBC	Just Parse	59.72%	63.67%	61.63%		_		10m
	Just NER		_		67.53%	60.65%	63.90%	
	Joint Model	60.69%	65.34%	62.93%	71.43%	64.81%	67.96%	17m
PRI	Just Parse	76.22%	76.49%	76.35%		_		2.4h
	Just NER		_		82.07%	84.86%	83.44%	
	Joint Model	76.88%	77.95%	77.41%	86.13%	86.56%	86.34%	4.2h
VOA	Just Parse	76.56%	75.74%	76.15%		_		2.3h
	Just NER		_		82.79%	75.96%	79.23%	
	Joint Model	77.58%	77.45%	77.51%	88.37%	87.98%	88.18%	4.4h

Finkel, Jenny Rose, and Christopher D. Manning. "Joint parsing and named entity recognition." *Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics*. Association for Computational Linguistics, 2009.

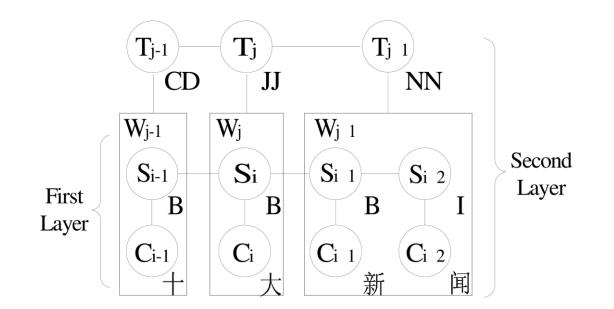
- Joint Label Structure
- Reranking
- Joint Modeling (Multi task)
- Joint Modeling (Single task)



- Two separate CRF taggers.
- Separately trained, reranking.
- Use tag sequence score to rank segmentation.

Shi, Yanxin, and Mengqiu Wang. "A Dual-layer CRFs Based Joint Decoding Method for Cascaded Segmentation and Labeling Tasks." *IJcAI*. 2007.

• Dual-layer CRFs



Shi, Yanxin, and Mengqiu Wang. "A Dual-layer CRFs Based Joint Decoding Method for Cascaded Segmentation and Labeling Tasks." *IJcAI*. 2007.

Results on Segmentation

	1	2	3	4	5	6
				96.7%		
Joint decoding	97.4%	97.3%	95.7%	96.9%	96.4%	93.4%
	7	8	9	10	aver	rage
Baseline Joint decoding				10 96.2 %	avei 95.8	U

		AS		СТВ			
	P	R	<i>F1</i>	P	R	<i>F1</i>	
Baseline	96.7%	96.8%	96.7%	88.5%	88.3%	88.4%	
Joint Decoding	96.9%	96.7%	96.8%	89.4%	88.7%	89.1%	
		PK			HK		
	Р	PK R	F1	Р	HK R	<i>F1</i>	
Baseline	I	R	<i>F1</i> 94.9%	Р 94.9%	HK <i>R</i> 95.5%	11	

	ASo	СТВо	НКо	РКо	S-Avg	O-Avg
S01		88.1%		95.3%	91.7%	92.2%
S02		91.2%			91.2%	89.1%
S03	87.2%	82.9%	88.6%	92.5%	87.8%	94.1%
S04				93.7%	93.7%	95.2%
S07				94.0%	94.0%	95.2%
S08			95.6%	93.8%	94.7%	95.2%
S10		90.1%		95.9%	93.0%	92.2%
S11	90.4%	88.4%	87.9%	88.6%	88.8%	94.1%
Peng et al. '04	95.7%	89.4%	94.6%	94.6%	93.6%	94.1 %
Our System	96.8%	89.1%	95.2%	95.2%		94.1%

Shi, Yanxin, and Mengqiu Wang. "A Dual-layer CRFs Based Joint Decoding Method for Cascaded Segmentation and Labeling Tasks." *IJcAI*. 2007.

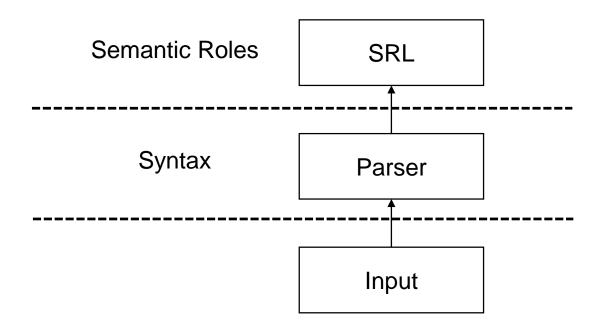
Results on POS Tagging

	1	2	3	4	5	6
				92.0%		
Joint Decoding	94.0%	93.9%	90.4%	92.2%	93.4%	87.5%
	7	8	9	10	aver	rage
Baseline Joint Decoding				10 92.0 %		U

Shi, Yanxin, and Mengqiu Wang. "A Dual-layer CRFs Based Joint Decoding Method for Cascaded Segmentation and Labeling Tasks." *IJcAI*. 2007.

Joint Parsing and SRL

Task



Sutton, Charles, and Andrew McCallum. "Joint parsing and semantic role labeling." *Proceedings of the Ninth Conference on Computational Natural Language Learning*. Association for Computational Linguistics, 2005.

Joint Parsing and SRL

 Rerank k-best parse trees from a probabilistic parser using an SRL system.

Sutton, Charles, and Andrew McCallum. "Joint parsing and semantic role labeling." *Proceedings of the Ninth Conference on Computational Natural Language Learning*. Association for Computational Linguistics, 2005.

Joint Parsing and SRL

Overall results

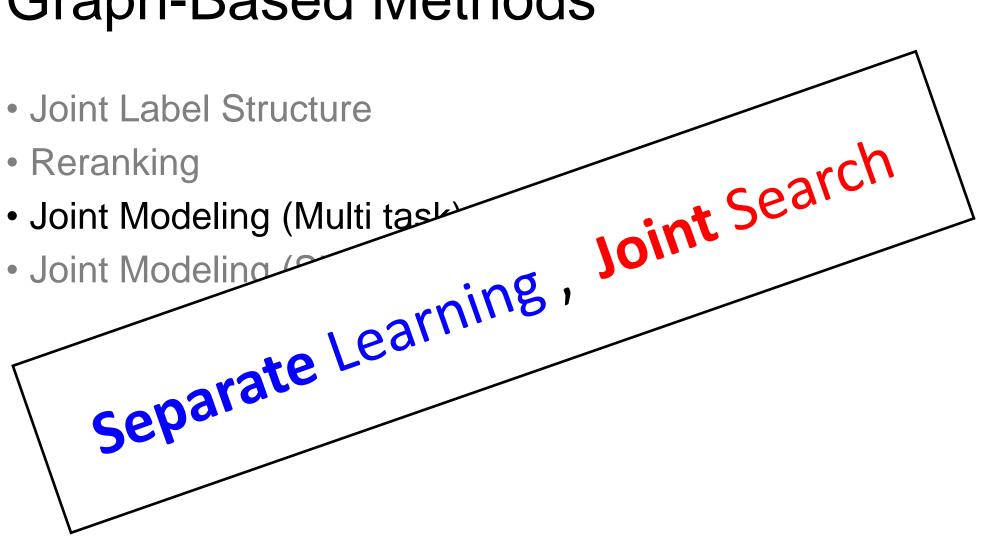
	Precision	Recall	$F_{\beta=1}$
Development	64.43%	63.11%	63.76
Test WSJ	68.57%	64.99%	66.73
Test Brown	62.91%	54.85%	58.60
Test WSJ+Brown	67.86%	63.63%	65.68

• Did not beat a pipeline baseline

Many subsequent CoNLL shared tasks show difficulties for this joint task

Sutton, Charles, and Andrew McCallum. "Joint parsing and semantic role labeling." *Proceedings of the Ninth Conference on Computational Natural Language Learning*. Association for Computational Linguistics, 2005.

- Joint Label Structure
- Reranking
- Joint Modeling (Multi task)
- Joint Modeling (Single task)



Joint Modeling

- Joint Search, separate training
- Search complex problem
 - ILP
 - BP
 - Dual Decomposition

Auli, Michael, and Adam Lopez. "A comparison of loopy belief propagation and dual decomposition for integrated CCG supertagging and parsing." *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1*. Association for Computational Linguistics, 2011.

• Task:

- Opinion linking relations
 - The numberic subscripts denote linking relations, one of IS-ABOUT OR IS-FROM
- Opinion entities:
 - Opinion expressions: O
 - Opinion targets: T
 - Opinion holders: H

jointly identifies opinionrelated entities, as well as opinion linking relations

 $[The workers]_{[H_{1,2}]} \underline{were \ irked}_{[O_1]} by [the government \ report]_{[T_1]} and \underline{were \ worried}_{[O_2]} as they went about their daily chores.$

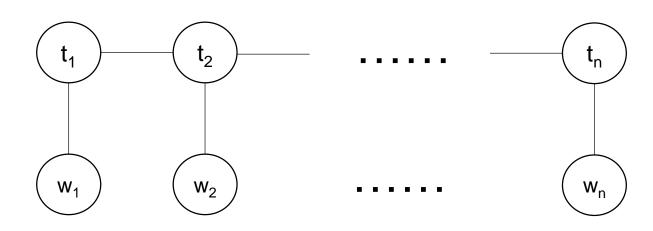
Yang, Bishan, and Claire Cardie. "Joint Inference for Fine-grained Opinion Extraction." ACL (1). 2013.

Model

- Formulate the task of opinion entity identification as a sequence labeling problem and employ conditional random fields (CRFs) to learn the probability of a sequence assignment y for a given sentence x;
- Treat the relation extraction problem as a combination of two binary classification problems and use L1-regularized logistic regression to train the classifiers;
- Optimize the joint objective function which is defined as a linear combination of the potentials from different predictors with a parameter λ to balance the contribution of these two components: opinion entity identification and opinion relation extraction.

Yang, Bishan, and Claire Cardie. "Joint Inference for Fine-grained Opinion Extraction." ACL (1). 2013.

• CRF



- D Opinion expression
- T Opinion target
- H Opinion Holder
- N Opinion None

Yang, Bishan, and Claire Cardie. "Joint Inference for Fine-grained Opinion Extraction." ACL (1). 2013.

- A classification model for opinion target relation
- A classification model for opinion holder relation
- Syntactic and semantic features are used

Yang, Bishan, and Claire Cardie. "Joint Inference for Fine-grained Opinion Extraction." ACL (1). 2013.

• Joint scoring function by linear interpolation

$$Score = \lambda \cdot Score_{(entity)} + (1 - \lambda) \cdot Score_{(relation)}$$

Yang, Bishan, and Claire Cardie. "Joint Inference for Fine-grained Opinion Extraction." ACL (1). 2013.

• ILP for search

- Constraint 1: Uniqueness
- Constraint 2: Non-overlapping
- Constraint 3: Consistency between the opinion-arg and opinion-implicitarg classifiers
- Constraint 4: Consistency between opinion-arg classifier and opinion entity extractor
- Constraint 5: Consistency between the opinion-implicit-arg classifier and opinion entity extractor

Results on MPQA

	Opinion Expression			O	pinion Ta	arget	Opinion Holder			
Method	Р	R	F1	P	R	F1	Р	R	F1	
CRF	82.21	66.15	73.31	73.22	48.58	58.41	72.32	49.09	58.48	
CRF+Adj	82.21	66.15	73.31	80.87	42.31	55.56	75.24	48.48	58.97	
CRF+Syn	82.21	66.15	73.31	81.87	30.36	44.29	78.97	40.20	53.28	
CRF+RE	83.02	48.99	61.62	85.07	22.01	34.97	78.13	40.40	53.26	
Joint-Model	71.16	77.85	74.35*	75.18	57.12	64.92 **	67.01	66.46	66.73 **	
CRF	66.60	52.57	58.76	44.44	29.60	35.54	65.18	44.24	52.71	
CRF+Adj	66.60	52.57	58.76	49.10	25.81	33.83	68.03	43.84	53.32	
CRF+Syn	66.60	52.57	58.76	50.26	18.41	26.94	74.60	37.98	50.33	
CRF+RE	69.27	40.09	50.79	60.45	15.37	24.51	75	38.79	51.13	
Joint-Model	57.39	62.40	59.79 *	49.15	38.33	43.07**	62.73	62.22	62.47**	

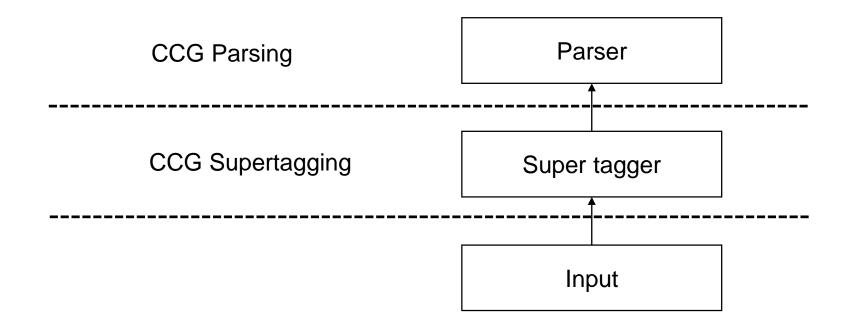
Yang, Bishan, and Claire Cardie. "Joint Inference for Fine-grained Opinion Extraction." ACL (1). 2013.

Results on MPQA

		IS-ABOU	JT	IS-FROM			
Method	Р	R	F1	Р	R	F1	
CRF+Adj	73.65	37.34	49.55	70.22	41.58	52.23	
CRF+Syn	76.21	28.28	41.25	77.48	36.63	49.74	
CRF+RE	78.26	20.33	32.28	74.81	37.55	50.00	
CRF+Adj-merged-10-best	25.05	61.18	35.55	30.28	62.82	40.87	
CRF+Syn-merged-10-best	41.60	45.66	43.53	48.08	54.03	50.88	
CRF+RE-merged-10-best	51.60	33.09	40.32	47.73	54.40	50.84	
Joint-Model	64.38	51.20	57.04 **	64.97	58.61	61.63**	

Yang, Bishan, and Claire Cardie. "Joint Inference for Fine-grained Opinion Extraction." ACL (1). 2013.

Tasks



 CCG parsing (for English, Chinese and other languages) is to find the syntactic structures of written text based on combinatory categorial grammars.

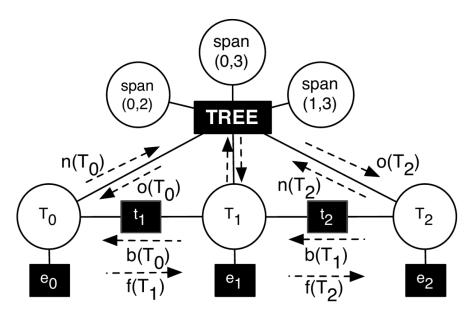
Marcel	proved	completeness								
NP	(S\ NP)/NP	NP								
	S\ NP									
	S									
Supper tagging and parsing										

Auli, Michael, and Adam Lopez. "A comparison of loopy belief propagation and dual decomposition for integrated CCG supertagging and parsing." *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1.* Association for Computational Linguistics, 2011.

CCG traditionally done by supertagging -> parsing

Auli, Michael, and Adam Lopez. "A comparison of loopy belief propagation and dual decomposition for integrated CCG supertagging and parsing." *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1*. Association for Computational Linguistics, 2011.

- Loopy belief propagation
- Factor graph for the combined parsing and supertagging model



Auli, Michael, and Adam Lopez. "A comparison of loopy belief propagation and dual decomposition for integrated CCG supertagging and parsing." *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1.* Association for Computational Linguistics, 2011.

 Dual decomposition: Lagrangian method for constraint optimization

 $\underset{y \in Y, z \in Z}{\arg \max} f(y) + g(z)$

such that y(i,t) = z(i,t) for all $(i,t) \in I$

$$L(u) = \max_{y \in Y} (f(y) - \sum_{i,t} u(i,t)y(i,t)) + \max_{z \in Z} (f(z) + \sum_{i,t} u(i,t)z(i,t))$$

Auli, Michael, and Adam Lopez. "A comparison of loopy belief propagation and dual decomposition for integrated CCG supertagging and parsing." *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1.* Association for Computational Linguistics, 2011.

Results

	section 00 (dev)							section 23 (test)					
	AST			Reverse			AST			Reverse			
	LF	UF	ST	LF	UF	ST	LF	UF	ST	LF	UF	ST	
Baseline	87.38	93.08	94.21	87.36	93.13	93.99	87.73	93.09	94.33	87.65	93.06	94.01	
C&C '07	87.24	93.00	94.16	-	-	-	87.64	93.00	94.32	-	-	-	
$BP_{k=1}$	87.70	93.28	94.44	88.35	93.69	94.73	88.20	93.28	94.60	88.78	93.66	94.81	
$BP_{k=25}$	87.70	93.31	94.44	88.33	93.72	94.71	88.19	93.27	94.59	88.80	93.68	94.81	
$DD_{k=1}$	87.40	93.09	94.23	87.38	93.15	94.03	87.74	93.10	94.33	87.67	93.07	94.02	
$DD_{k=25}$	87.71	93.32	94.44	88.29	93.71	94.67	88.14	93.24	94.59	88.80	93.68	94.82	

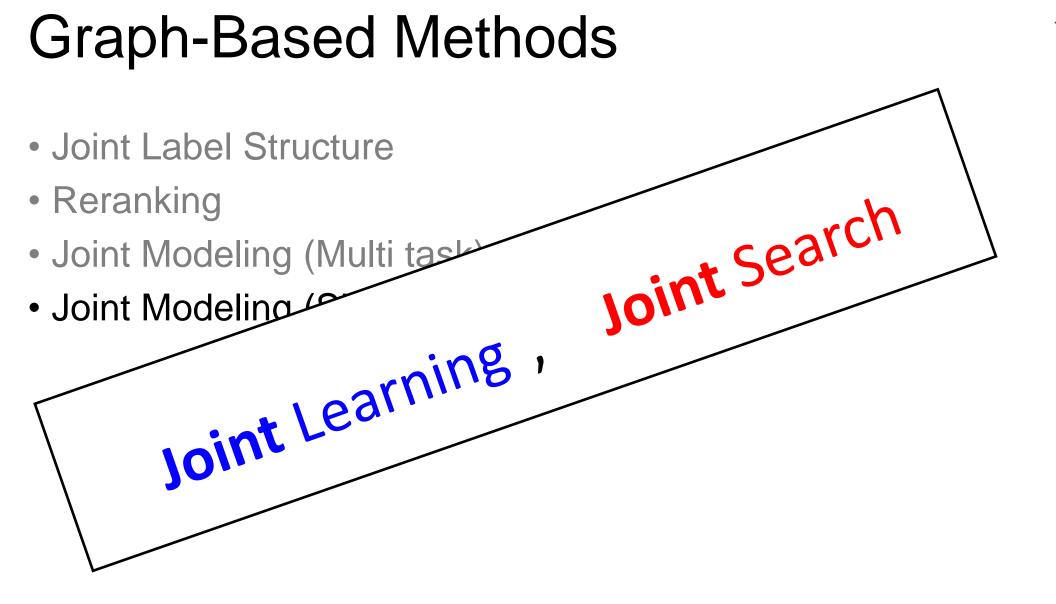
BP: Belief Propagation

DD: Dual Decomposition

Auli, Michael, and Adam Lopez. "A comparison of loopy belief propagation and dual decomposition for integrated CCG supertagging and parsing." *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1.* Association for Computational Linguistics, 2011.

Graph-Based Methods

- Joint Label Structure
- Reranking
- Joint Modeling (Multi task)
- Joint Modeling (Single task)



Joint Modeling (Single task)

A Single Model

Score = $\Phi(\mathbf{y}) \cdot \vec{\omega}$ where \mathbf{y} is the model features

Task

 Input
 我喜欢读书
 Ilikereadingbooks

Output 我/PN 喜欢/V 读/V 书/N I/PN like/V reading/V books/N

Zhang, Yue, and Stephen Clark. "Joint Word Segmentation and POS Tagging Using a Single Perceptron." *ACL*. 2008.

• Feature templates for the baseline segmentor

1	word w	9	word w immediately before character c
2	word bigram w_1w_2	10	character c immediately before word w
3	single-character word w	11	the starting characters c_1 and c_2 of two con-
4	a word of length l with starting character c		secutive words
5	a word of length l with ending character c	12	the ending characters c_1 and c_2 of two con-
6	space-separated characters c_1 and c_2		secutive words
7	character bigram c_1c_2 in any word	13	a word of length l with previous word w
8	the first / last characters c_1 / c_2 of any word	14	a word of length l with next word w

Zhang, Yue, and Stephen Clark. "Joint Word Segmentation and POS Tagging Using a Single Perceptron." *ACL*. 2008.

• Feature templates for the baseline POS tagger

1	tag t with word w	11	tag t on a word containing char c (not the
2	tag bigram $t_1 t_2$		starting or ending character)
3	tag trigram $t_1 t_2 t_3$	12	tag t on a word starting with char c_0 and
4	tag t followed by we		containing char c
5	word w followed by	13	tag t on a word ending with char c_0 and
6	word w with tag t ar		containing char c
7	word w with tag t ar	14	tag t on a word containing repeated char cc
8	tag t on single-chara	15	tag t on a word starting with character cat-
	ter trigram c_1wc_2		egory g
9	tag t on a word starting with char c	16	tag t on a word ending with character cate-
10	tag t on a word ending with char c		gory g

Zhang, Yue, and Stephen Clark. "Joint Word Segmentation and POS Tagging Using a Single Perceptron." *ACL*. 2008.

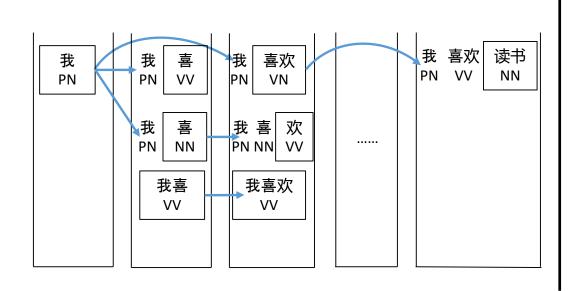
Perceptron with both segmentation and POS features

Inputs: training examples (x_i, y_i) Initialization: set $\vec{w} = 0$ Algorithm: for t = 1..T, i = 1..Ncalculate $z_i = \arg \max_{y \in \text{GEN}(x_i)} \Phi(y) \cdot \vec{w}$ if $z_i \neq y_i$ $\vec{w} = \vec{w} + \Phi(y_i) - \Phi(z_i)$ Outputs: \vec{w}

The perceptron learning algorithm

Zhang, Yue, and Stephen Clark. "Joint Word Segmentation and POS Tagging Using a Single Perceptron." *ACL*. 2008.

• The decoding algorithm for the joint word segmentor and POS tagger, agendas[i] stores the best sequences that end at i



Algorithm: for $end_index = 1$ to sent.length: for each tag:

for each tag: for $start_index =$ $max(1, end_index - maxlen[tag] + 1)$ to end_index : $word = sent[start_index..end_i$ if (word, tag) consistent with tag for $item \in agendas[start_ind$ $item_1 = item$ $item_1.append((word, tag))$ $agendas[end_index].insert(item_1)$ Outputs: $agendas[sent.length].best_item$

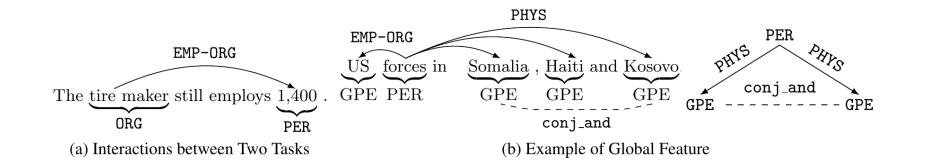
Zhang, Yue, and Stephen Clark. "Joint Word Segmentation and POS Tagging Using a Single Perceptron." *ACL*. 2008.

Results by 10-fold cross validation using CTB

Model	SF	TF	TA
Baseline+ (Ng)	95.1	_	91.7
Joint+ (Ng)	95.2	_	91.9
Baseline+* (Shi)	95.85	91.67	_
Joint+* (Shi)	96.05	91.86	_
Baseline (ours)	95.20	90.33	92.17
Joint (ours)	95.90	91.34	93.02

Zhang, Yue, and Stephen Clark. "Joint Word Segmentation and POS Tagging Using a Single Perceptron." *ACL*. 2008.

Task



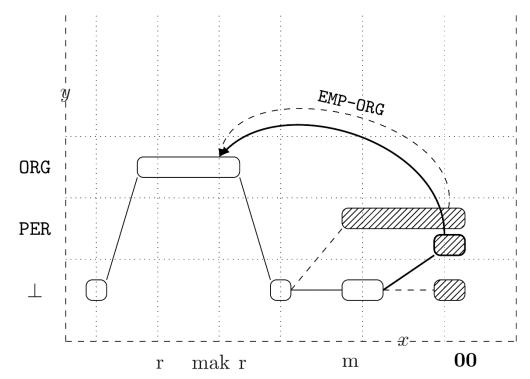
Li, Qi, and Heng Ji. "Incremental Joint Extraction of Entity Mentions and Relations." ACL (1). 2014.

A Single Model

$$\hat{y} = \operatorname*{argmax}_{y' \in \mathcal{Y}(x)} \mathbf{f}(x, y') \cdot \mathbf{w}$$

Li, Qi, and Heng Ji. "Incremental Joint Extraction of Entity Mentions and Relations." ACL (1). 2014.

• Beam Search



Li, Qi, and Heng Ji. "Incremental Joint Extraction of Entity Mentions and Relations." ACL (1). 2014.

- Feature
 - Local features
 - Gazetteer features
 - Case features
 - Contextual features
 - Parsing-based features
 - Global entity mention features
 - Coreference consistency
 - Neighbor coherence
 - Part-of-whole consistency
 - Global relation features
 - Role coherence
 - Triangle constraint
 - Inter-dependent compatibility
 - Neighbor coherence

- Experiments
 - Data:
 - Training data: ACE'05
 - Validation data: ACE'04

Results on ACE

Model	Entity Mention (%)			Relation (%)			Entity Mention + Relation (%)		
Score	Р	R	F_1	Р	R	F_1	Р	R	F_1
Pipeline	83.2	73.6	78.1	67.5	39.4	49.8	65.1	38.1	48.0
Joint w/ Local	84.5	76.0	80.0	68.4	40.1	50.6	65.3	38.3	48.3
Joint w/ Global	85.2	76.9	80.8	68.9	41.9	52.1	65.4	39.8	49.5
Annotator 1	91.8	89.9	90.9	71.9	69.0	70.4	69.5	66.7	68.1
Annotator 2	88.7	88.3	88.5	65.2	63.6	64.4	61.8	60.2	61.0
Inter-Agreement	85.8	87.3	86.5	55.4	54.7	55.0	52.3	51.6	51.9

Li, Qi, and Heng Ji. "Incremental Joint Extraction of Entity Mentions and Relations." ACL (1). 2014.

Statistical Models

- Graph-Based Methods
- Transition-Based Methods

Automata

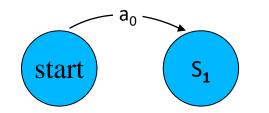
- State
 - Start state an empty structure
 - End state —— the output structure
 - Intermediate states —— partially constructed structures
- Actions
 - · Change one state to another

Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

Automata

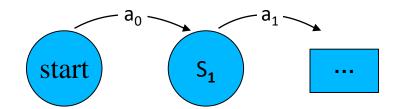
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

• Automata



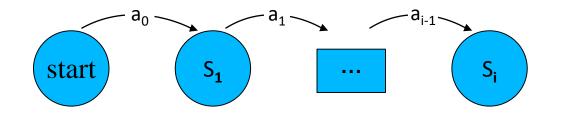
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

• Automata



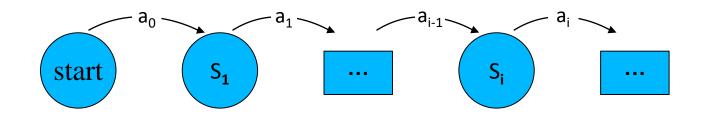
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

• Automata



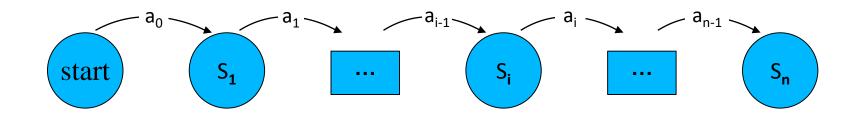
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

• Automata



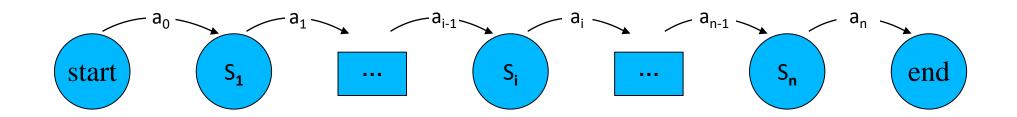
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

• Automata



Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

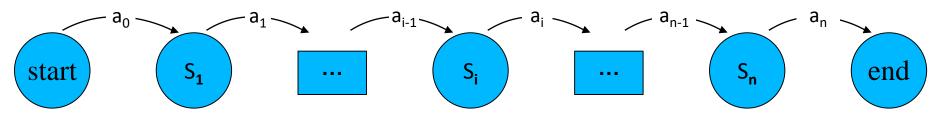
• Automata



Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

• State

- · Corresponds to partial results during decoding
 - start state, end state, S_i



- Actions
 - The operations that can be applied for state transition
 - Construct output incrementally
 - a_i

Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

- An Example
 - S-SHIFT
 - R-REDUCE
 - AL-ARC-LEFT
 - AR-ARC-RIGHT

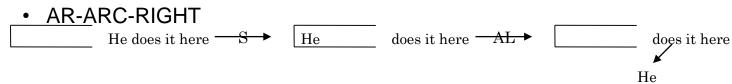
He does it here

Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

- An Example
 - S-SHIFT
 - R-REDUCE
 - AL-ARC-LEFT
 - AR-ARC-RIGHT He does it here → He does it here

Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

- An Example
 - S-SHIFT
 - R-REDUCE
 - AL-ARC-LEFT



Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

it here

Transition-based Dependency Parsing

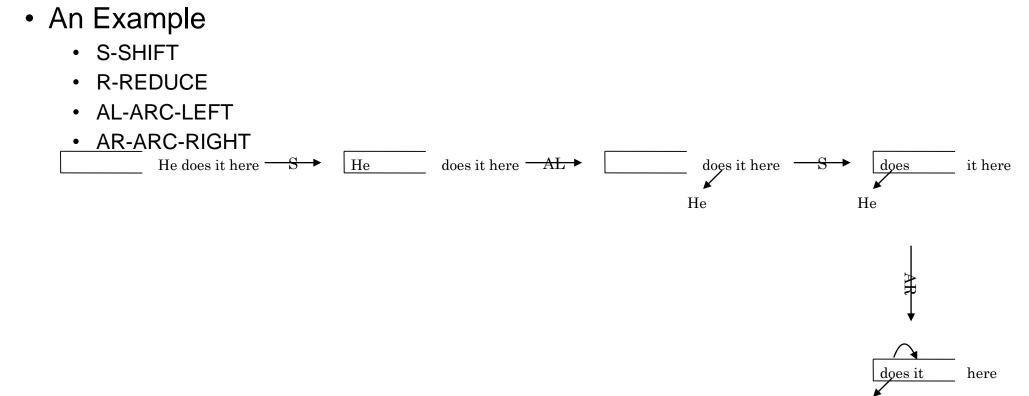
An Example

S-SHIFT
R-REDUCE
AL-ARC-LEFT
AR-ARC-RIGHT
He does it here S He does it here AL He does it here He

Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

He

Transition-based Dependency Parsing



Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

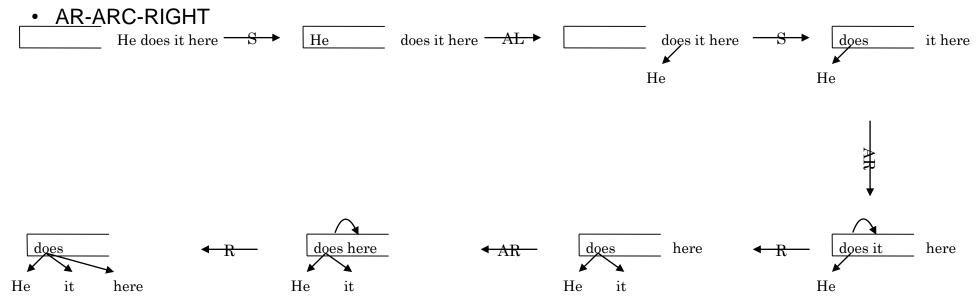
 An Example • S-SHIFT **R-REDUCE** • AL-ARC-LEFT AR-ARC-RIGHT does it here $-AL \rightarrow$ does it here He does it here -SHe does it here He He here dges does it here He He it

Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

 An Example • S-SHIFT **R-REDUCE** • AL-ARC-LEFT AR-ARC-RIGHT He does it here -SHe does it here \rightarrow AL \rightarrow does it here does it here He He dges here does it does here here <-R-He He He it it

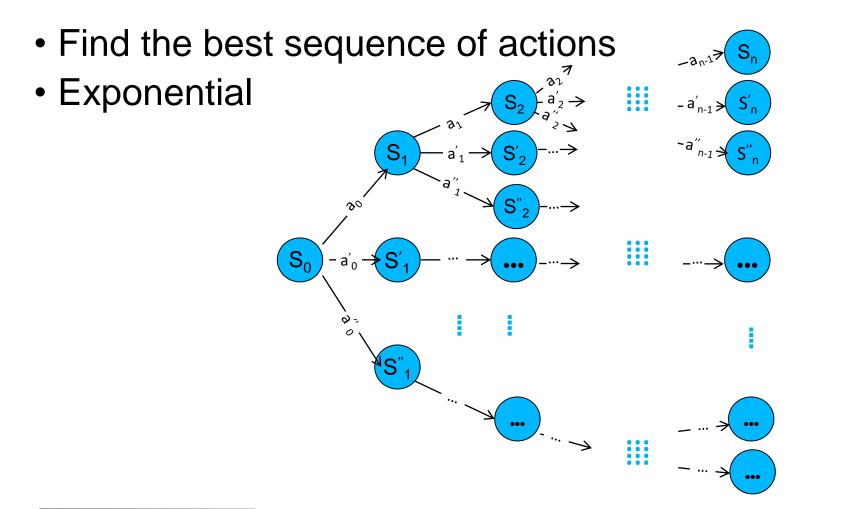
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

- An Example
 - S-SHIFT
 - R-REDUCE
 - AL-ARC-LEFT



Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

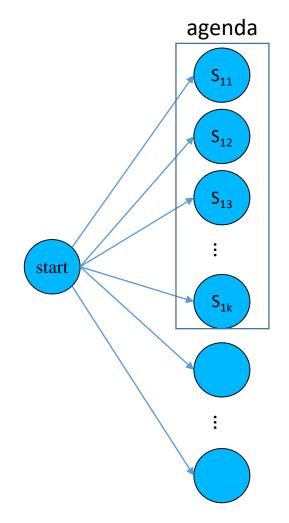
Search Space

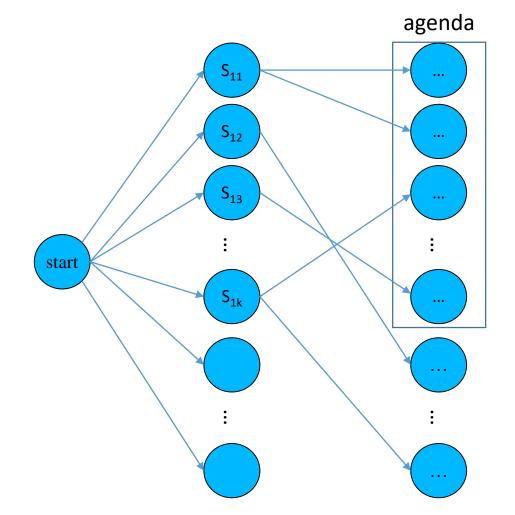


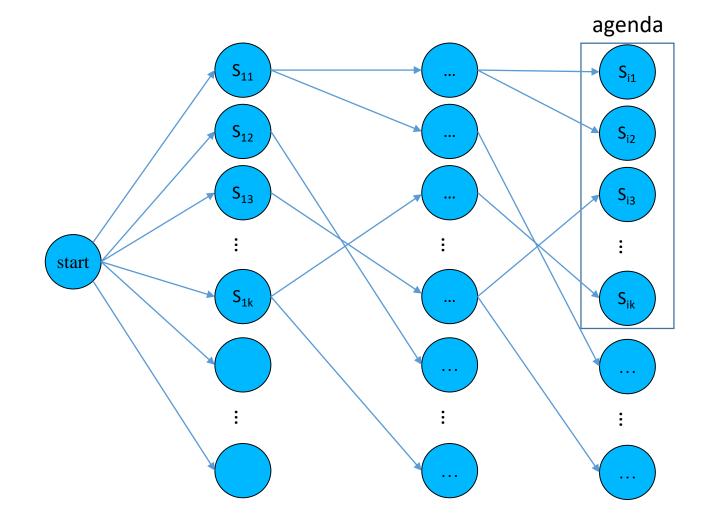
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

start

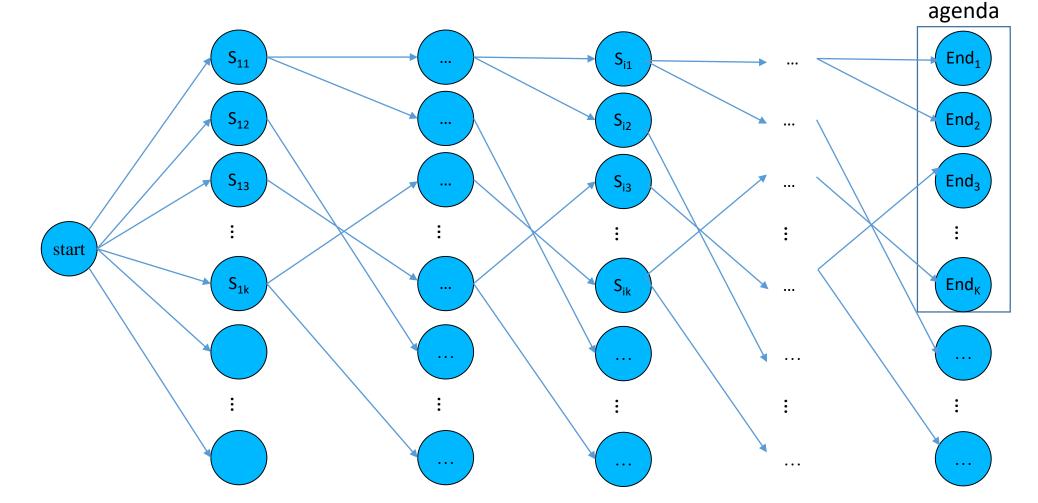
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.





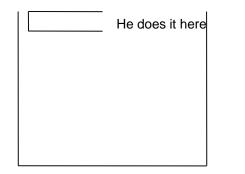


Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.



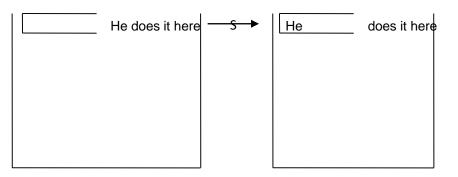
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

- Dependency Parsing Example
 - Decoding



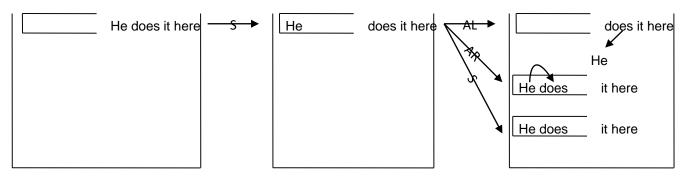
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

- Dependency Parsing Example
 - Decoding



Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

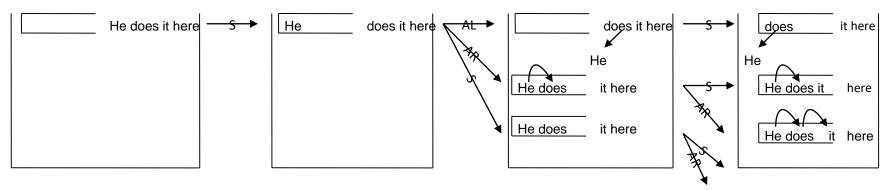
- Dependency Parsing Example
 - Decoding



Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

Dependency Parsing Example

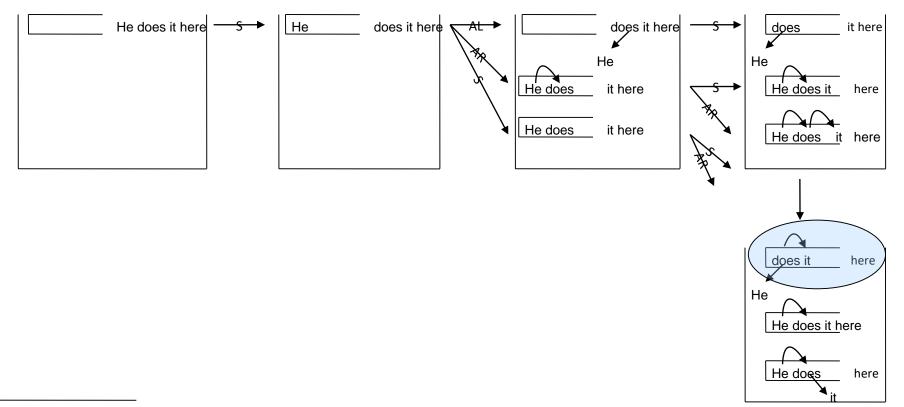
• Decoding



Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

Dependency Parsing Example

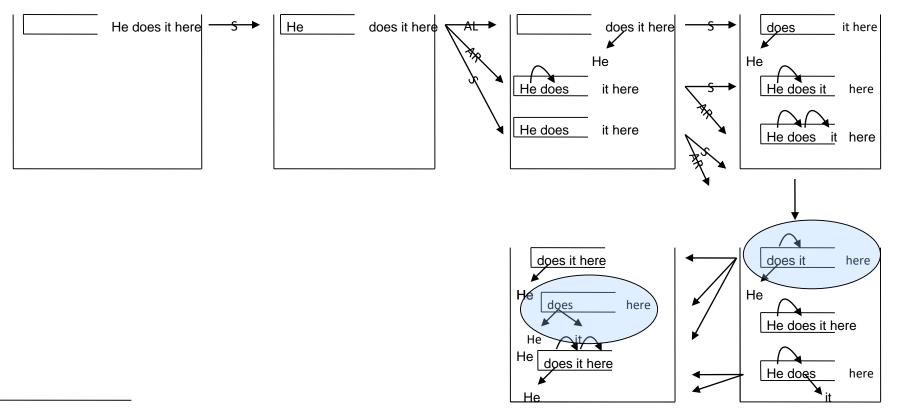
• Decoding



Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

Dependency Parsing Example

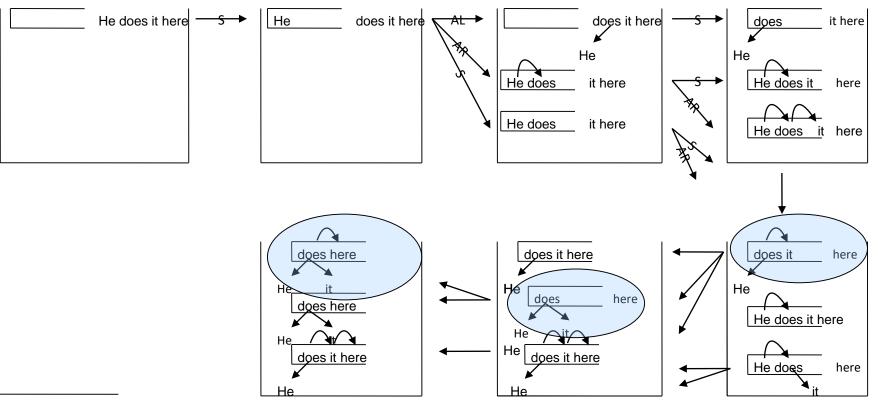
• Decoding



Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

Dependency Parsing Example

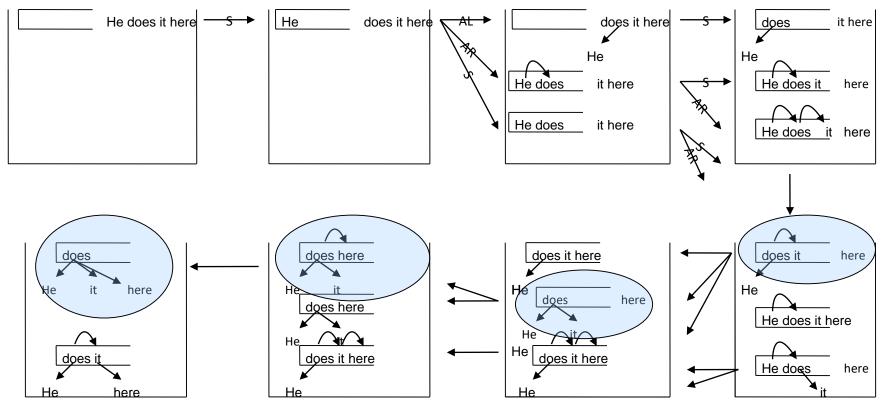
• Decoding



Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

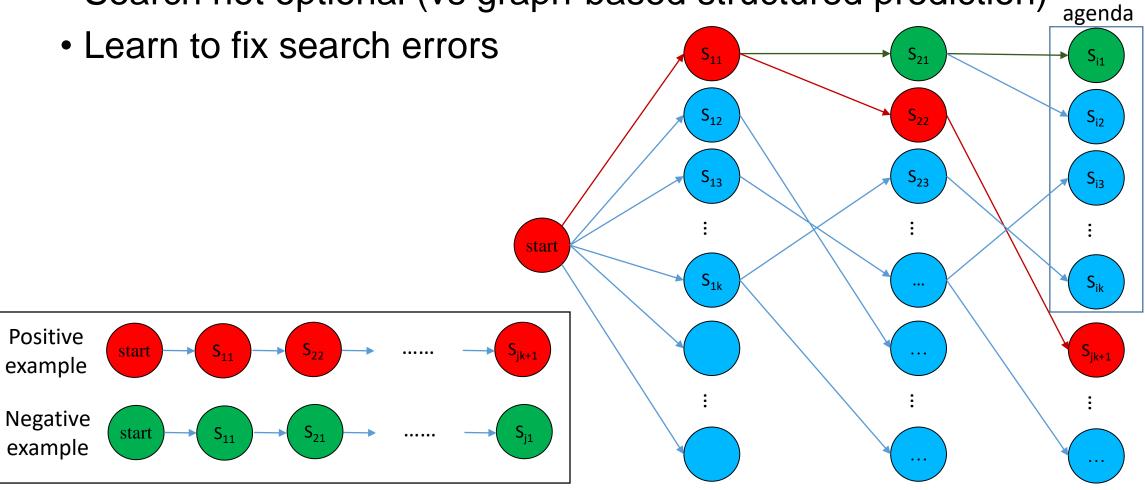
Dependency Parsing Example

• Decoding



Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

• Search not optional (vs graph-based structured prediction)



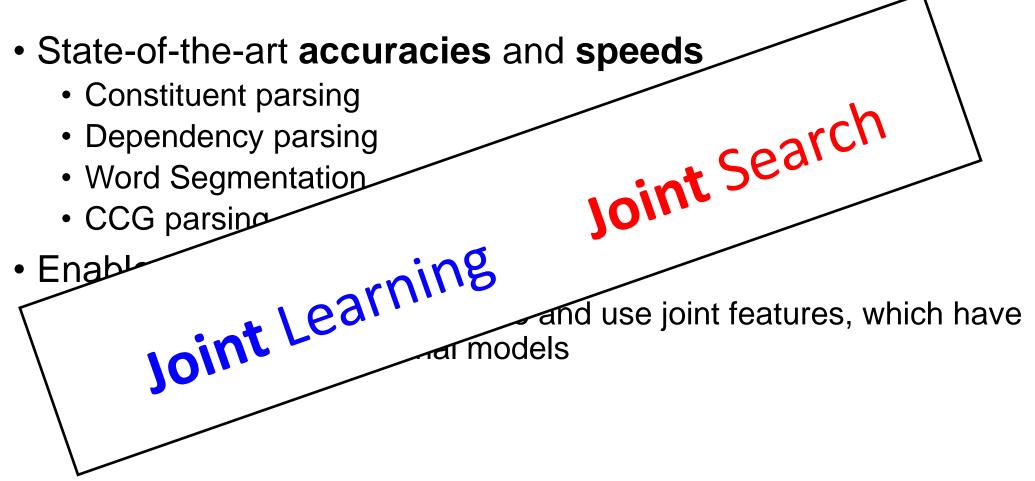
Advantages

- Low computation complexity
- Arbitrary non-local features
- Learning-guided-search

Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

- State-of-the-art accuracies and speeds
 - Constituent parsing
 - Dependency parsing
 - Word Segmentation
 - CCG parsing
- Enable joint models
 - Address complex search space and use joint features, which have been difficult for traditional models

Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.



Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

- Global Normalization for Neural Structured Prediction
 - Zhou et al., (2015)
 - Watanabe et al., (2015)
 - Andor et al., (2016)
 - Rush et al., (2016)

Hao Zhou, Yue Zhang, Shujian Huang and Jiajun Chen. A Neural Probabilistic Structured-Prediction Model for Transition-based Dependency Parsing. In Proceedings of ACL 2015, Beijing, China, July.

Watanabe, Taro, and Eiichiro Sumita. "Transition-based neural constituent parsing." Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Vol. 1. 2015.

Andor Daniel, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman Ganchev, Slav Petrov, Michael Collins "Globally normalized transitionbased neural networks." arXiv preprint arXiv:1603.06042 (2016).

Wiseman, Sam, and Alexander M. Rush. "Sequence-to-sequence learning as beam-search optimization." arXiv preprint arXiv:1606.02960 (2016).

- The transition system
 - State
 - Partial segmented results
 - Unprocessed characters
 - Two actions
 - Separate (t) : t is a POS tag
 - Append

Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.

- The transition system
 - Initial state

我喜欢读书

我/PN 喜欢/V 读/V 书/N [I] [like] [reading] [books]

Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.

- The transition system
 - Separate(PN)

我/PN

喜欢读书

我/PN 喜欢/V 读/V 书/N [I] [like] [reading] [books]

Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.

- The transition system
 - Separate (V)

我/PN 喜/V

欢读书

我/PN 喜欢/V 读/V 书/N [I] [like] [reading] [books]

Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.

- The transition system
 - Append

我/PN 喜欢/V

读书

我/PN 喜欢/V 读/V 书/N [I] [like] [reading] [books]

Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.

- The transition system
 - Separate (V)

我/PN 喜欢/V 读/V

书

我/PN 喜欢/V 读/V 书/N [I] [like] [reading] [books]

Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.

- The transition system
 - Separate (N)

我/PN 喜欢/V 读/V 书/N

我/PN 喜欢/V 读/V 书/N [I] [like] [reading] [books]

Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.

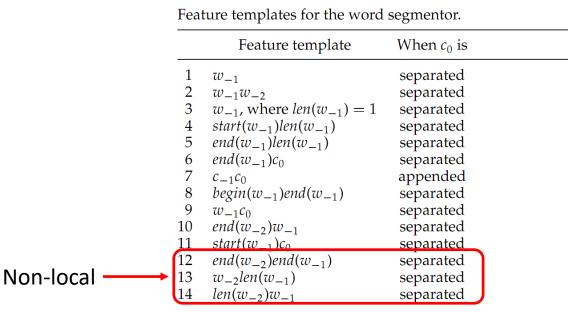
- The transition system
 - End state

我/PN 喜欢/V 读/V 书/N

我/PN 喜欢/V 读/V 书/N [I] [like] [reading] [books]

Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.

Segmentation Feature templates



w = word; c = character. The index of the current character is 0.

Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.

• POS Feature templates

		Feature template	when c_0 is
	1	$w_{-1}t_{-1}$	separated
	2	$t_{-1}\bar{t}_{0}$	separated
	3	$t_{-2}t_{-1}t_{0}$	separated
	4	$w_{-1}t_0$	separated
	5	$t_{-2}w_{-1}$	separated
	6	$w_{-1}t_{-1}end(w_{-2})$	separated
	7	$w_{-1}t_{-1}c_{0}$	separated
	8	$c_{-2}c_{-1}c_{0}t_{-1}$, where $len(w_{-1}) = 1$	separated
	9	Coto	separated
	10	t_{-1} start (w_{-1})	separated
Vord-level	11	$t_0 c_0$	separated or appended
	12	$c_0 t_0 start(w_0)$	appended
	13	$ct_{-1}end(w_{-1})$, where $c \in w_{-1}$ and $c \neq end(w_{-1})$	separated
	14	$c_0 t_0 cat(start(w_0))$	separated
	15	$ct_{-1}cat(end(w_{-1}))$, where $c \in w_{-1}$ and $c \neq end(w_{-1})$	appended
	16	$c_0 t_0 c_{-1} t_{-1}$	separated
	17	$c_0 t_0 c_{-1}$	appended

POS feature templates for the joint segmentor and POS-tagger.

w = word; c = character; t = POS-tag. The index of the current character is 0.

Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.

• Experiments on CTB 5

	SF	JF
K09 (error-driven)	97.87	93.67
This work	97.78	93.67
Zhang 2008	97.82	93.62
K09 (baseline)	97.79	93.60
J08a	97.85	93.41
J08b	97.74	93.37
N07	97.83	93.32

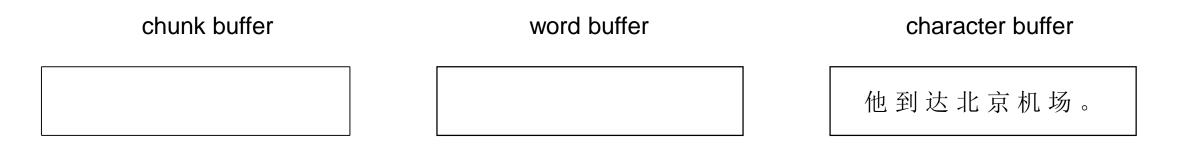
SF = segmentation F-score; JF = joint segmentation and POS-tagging F-score

Yue Zhang and Stephen Clark. A Fast Decoder for Joint Word Segmentation and POS-tagging Using a Single Discriminative Model. In proceedings of EMNLP 2010. Massachusetts, USA. October.

- Input 他到达北京机场。
 Output [NP 他/NR] [VP 到达/VV] [NP 北京/NR 机场/NN] [O。/PU]
 [He] [arrived] [Beijing airport] [.]
- Chunking knowledge can potentially improve segmentation/tagging.
- Chunk cluster features to avoid sparsity.

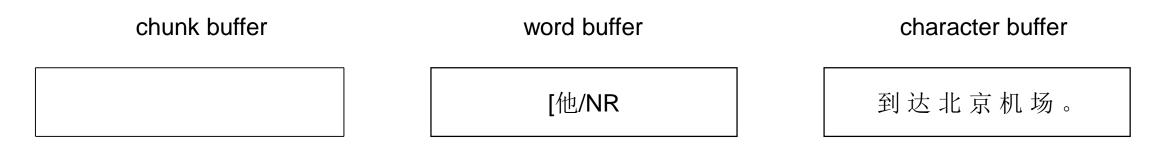
Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
 - Action: initial state



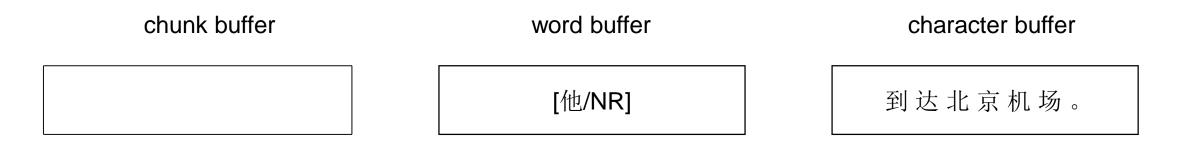
Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
 - Action: SEP(NR)



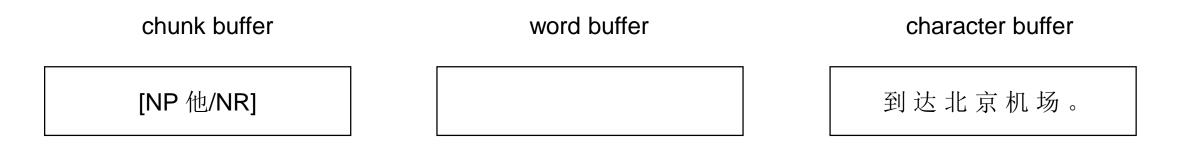
Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
 - Action: FIN W



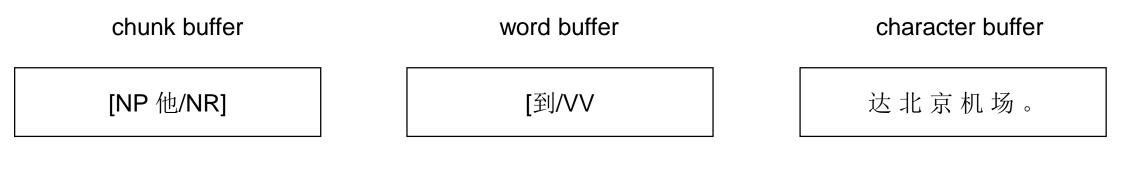
Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
 - Action: SEP(NP)



Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
 - Action: SEP(VV)



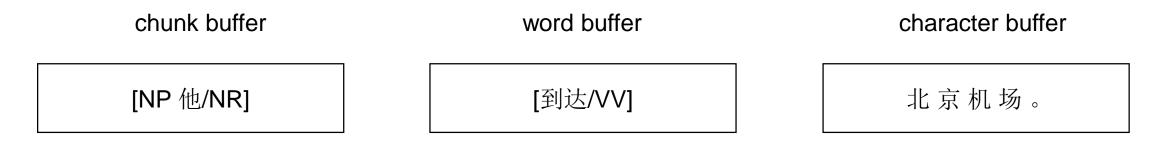
Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
 - Action: APP W



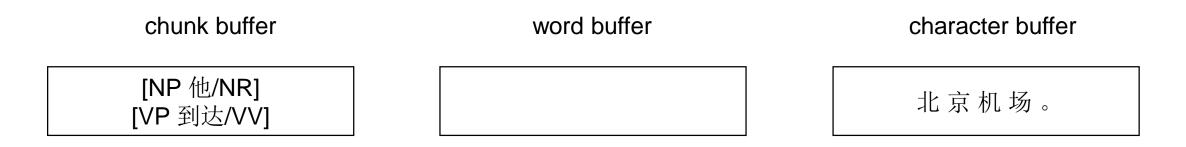
Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
 - Action: FIN W



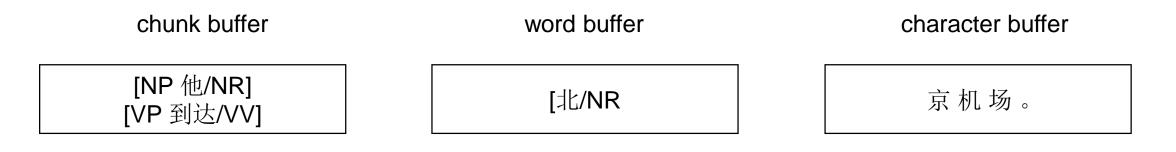
Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
 - Action: SEP(VP)



Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
 - Action: SEP(NR)



Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
 - Action: APP W

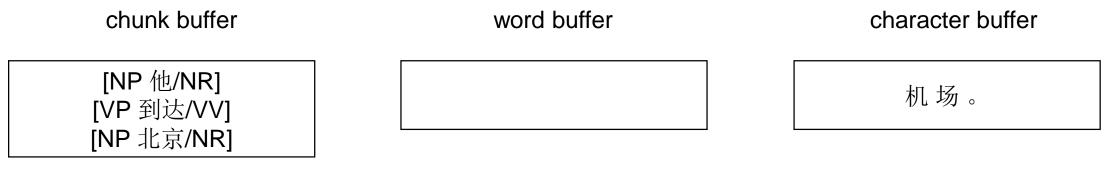
Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
 - Action: FIN W



Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
 - Action: SEP(NP)

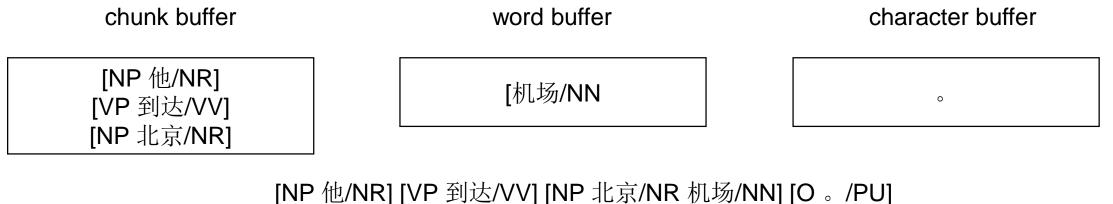


Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
 - Action: SEP(NN)

Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

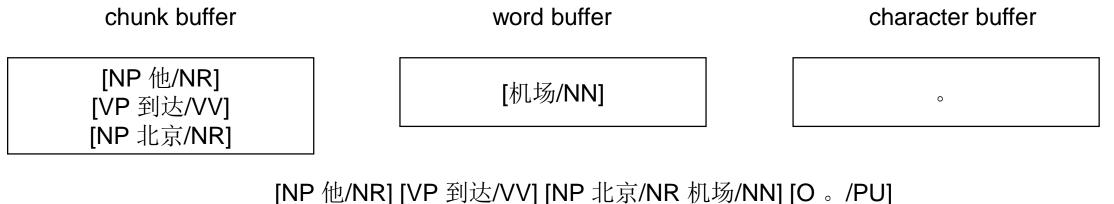
- Character-based chunking
 - Action: APP W



[He] [arrived] [Beijing airport] [.]

Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

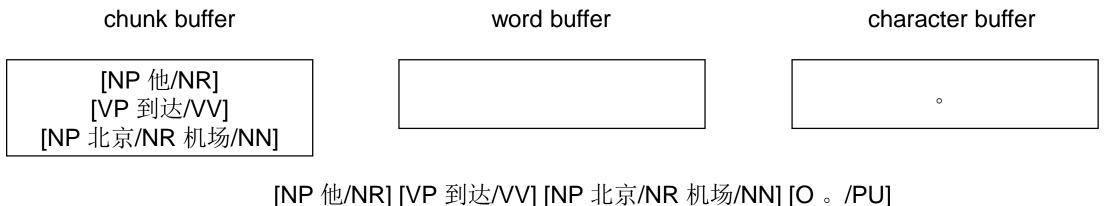
- Character-based chunking
 - Action: FIN W



[He] [arrived] [Beijing airport] [.]

Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
 - Action: APP C



^P 彵/NR] [VP 到达/VV] [NP 北京/NR 机场/NN] [O 。/F [He] [arrived] [Beijing airport] [.]

Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

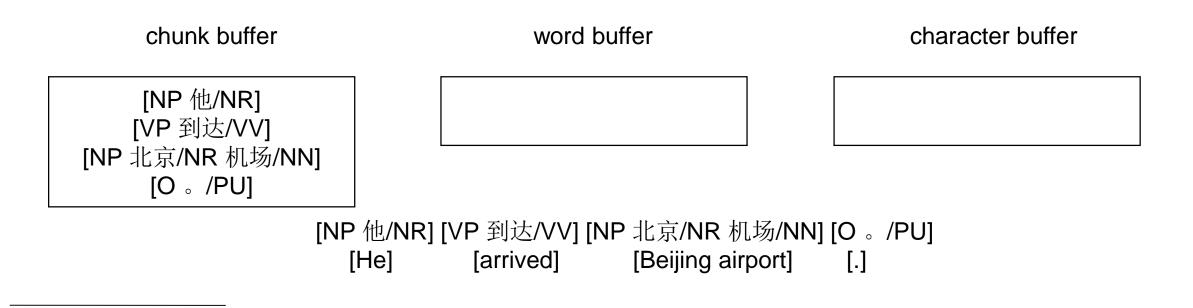
- Character-based chunking
 - Action: SEP(PU)

Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
 - Action: FIN W

Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking
 - Action: SEP(O)



Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Character-based chunking feature template
 - **Feature Templates** ID C_0 $C_0 \cdot T_0$ 3 $C_0 \cdot POSset(C_0)$ C_0 , where $len(C_0) = 1$ 5 $C_0 \cdot N_0 w$ $C_0 \cdot N_0 w \cdot T_0$ $C_{-1} \cdot C_0$ 8 $T_{-1} \cdot C_0$ 9 $C_{-1} \cdot T_0$ $C_0 \cdot end_word(C_{-1})$ 10 11 $C_{-1} \cdot len(C_0)$ $C_0 \cdot len(C_{-1})$ 12 $C_0 \cdot end_word(C_{-1}) \cdot T0$ 13 $C_{-1} \cdot T_{-1} \cdot C_0 \cdot T_0$ 14 15 $w_{-2} \cdot w_{-1}$

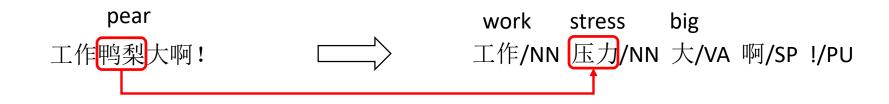
Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

Results on CTB

	SEG	POS	CHUNK
Pipeline	88.81	80.64	69.02
Pipeline-C	88.81	80.64	68.82
Pipeline-Semi-C	88.81	80.64	69.45
Joint	89.85	81.94	70.96
Joint-C	89.83	81.78	70.63
Joint-Semi-C	90.67	82.45	72.09

Chen Lyu, Yue Zhang and Donghong Ji. *Joint Word Segmentation, POS-Tagging and Syntactic Chunking.* In Proceedings of the AAAI 2016, Phoenix, Arizona, USA, February.

- Text normalization is introduced as a pre-processing step for microblog processing, which transforms informal words into their standard forms. For example, "tmrw" has been frequently used in tweets for is for "tomorrow".
- Task



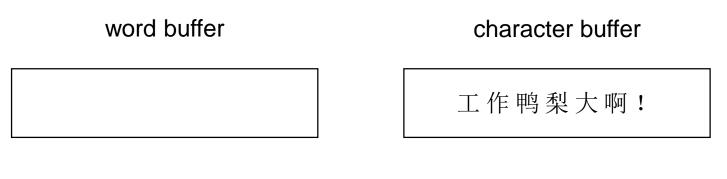
Tao Qian, Yue Zhang, Meishan Zhang and Donghong Ji. A Transition-based Model for Joint Segmentation, POStagging and Normalization. In proceedings of EMNLP 2015, Lisboa, Portugal, September.

Normalization dictionary

鸭梨- 压力 pear - pressure 孩纸- 孩子 child paper - child 围脖- 微博 neckerchief - microblog 盆友- 朋友 basin friend - friend

Tao Qian, Yue Zhang, Meishan Zhang and Donghong Ji. A Transition-based Model for Joint Segmentation, POStagging and Normalization. In proceedings of EMNLP 2015, Lisboa, Portugal, September.

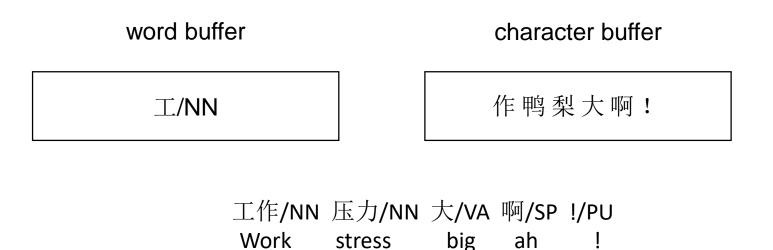
- Transition actions for joint segmentation, tagging and normalization
 - Actions: initial state



工作/NN 压力/NN 大/VA 啊/SP !/PU Work stress big ah !

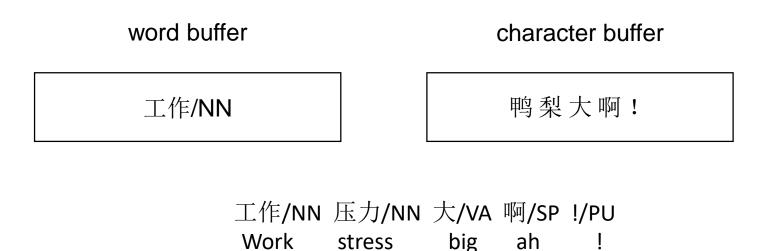
Tao Qian, Yue Zhang, Meishan Zhang and Donghong Ji. A Transition-based Model for Joint Segmentation, POStagging and Normalization. In proceedings of EMNLP 2015, Lisboa, Portugal, September.

- Transition actions for joint segmentation, tagging and normalization
 - Actions: SEP(\pm , NN)



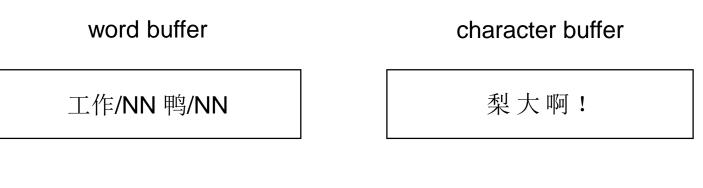
Tao Qian, Yue Zhang, Meishan Zhang and Donghong Ji. A Transition-based Model for Joint Segmentation, POStagging and Normalization. In proceedings of EMNLP 2015, Lisboa, Portugal, September.

- Transition actions for joint segmentation, tagging and normalization
 - Actions: APP(作)



Tao Qian, Yue Zhang, Meishan Zhang and Donghong Ji. A Transition-based Model for Joint Segmentation, POStagging and Normalization. In proceedings of EMNLP 2015, Lisboa, Portugal, September.

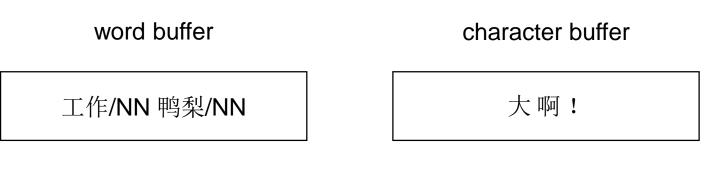
- Transition actions for joint segmentation, tagging and normalization
 - Actions: SEP(鸭, NN)



工作/NN 压力/NN 大/VA 啊/SP !/PU Work stress big ah !

Tao Qian, Yue Zhang, Meishan Zhang and Donghong Ji. A Transition-based Model for Joint Segmentation, POStagging and Normalization. In proceedings of EMNLP 2015, Lisboa, Portugal, September.

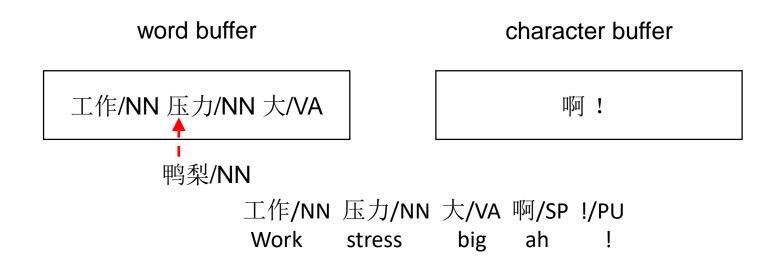
- Transition actions for joint segmentation, tagging and normalization
 - Actions: APP(梨)



工作/NN 压力/NN 大/VA 啊/SP !/PU Work stress big ah !

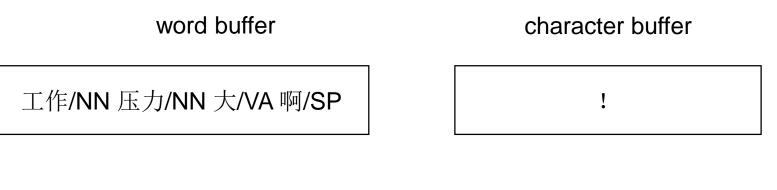
Tao Qian, Yue Zhang, Meishan Zhang and Donghong Ji. A Transition-based Model for Joint Segmentation, POStagging and Normalization. In proceedings of EMNLP 2015, Lisboa, Portugal, September.

- Transition actions for joint segmentation, tagging and normalization
 - Actions: SEPS(大, VA, 压力)



Tao Qian, Yue Zhang, Meishan Zhang and Donghong Ji. A Transition-based Model for Joint Segmentation, POStagging and Normalization. In proceedings of EMNLP 2015, Lisboa, Portugal, September.

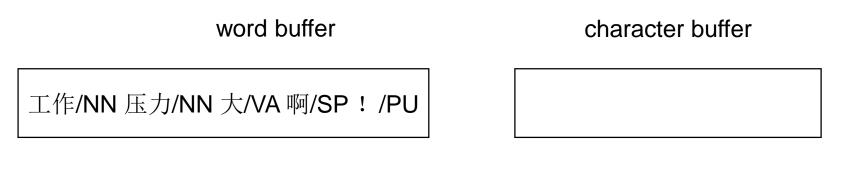
- Transition actions for joint segmentation, tagging and normalization
 - Actions: SEP(啊, SP)



工作/NN 压力/NN 大/VA 啊/SP !/PU Work stress big ah !

Tao Qian, Yue Zhang, Meishan Zhang and Donghong Ji. A Transition-based Model for Joint Segmentation, POStagging and Normalization. In proceedings of EMNLP 2015, Lisboa, Portugal, September.

- Transition actions for joint segmentation, tagging and normalization
 - Actions: SEP(!, PU)



工作/NN 压力/NN 大/VA 啊/SP !/PU Work stress big ah !

Tao Qian, Yue Zhang, Meishan Zhang and Donghong Ji. A Transition-based Model for Joint Segmentation, POStagging and Normalization. In proceedings of EMNLP 2015, Lisboa, Portugal, September.

- Features
 - The segmentation feature templates of Zhang and Clark (2011)
 - Extracting language model features by using word-based language model learned from a large quantity of standard texts

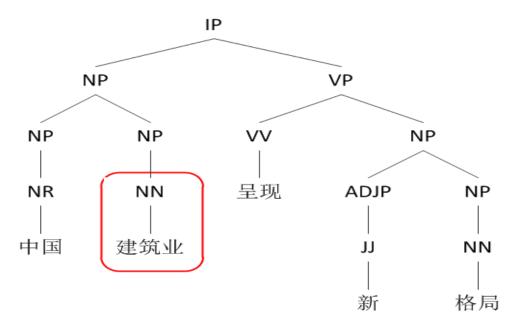
Tao Qian, Yue Zhang, Meishan Zhang and Donghong Ji. A Transition-based Model for Joint Segmentation, POStagging and Normalization. In proceedings of EMNLP 2015, Lisboa, Portugal, September.

Results on CTB

	Seg-F	POS-F	Nor-F
Stanford	0.9058	0.8163	
ST	0.8934	0.8263	
S;N;T	0.8885	0.8197	0.4058
SN;T	0.8945	0.8287	0.4207
SNT	0.8995	0.8296	0.4391
ST+lm	0.9162	0.8401	
S;N;T+lm	0.9132	0.8341	0.6276
SN;T+lm	0.9240	0.8439	0.6392
SNT+lm	0.9261	0.8459	0.6413

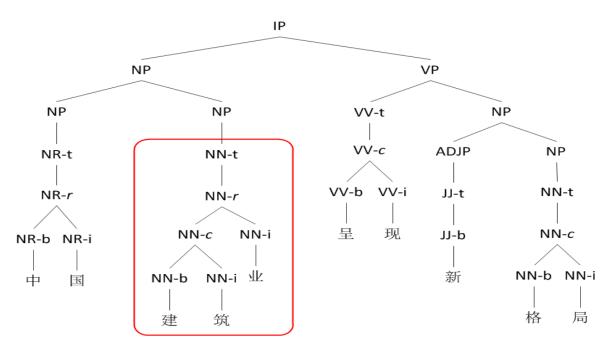
Tao Qian, Yue Zhang, Meishan Zhang and Donghong Ji. A Transition-based Model for Joint Segmentation, POStagging and Normalization. In proceedings of EMNLP 2015, Lisboa, Portugal, September.

Traditional: word-based Chinese parsing



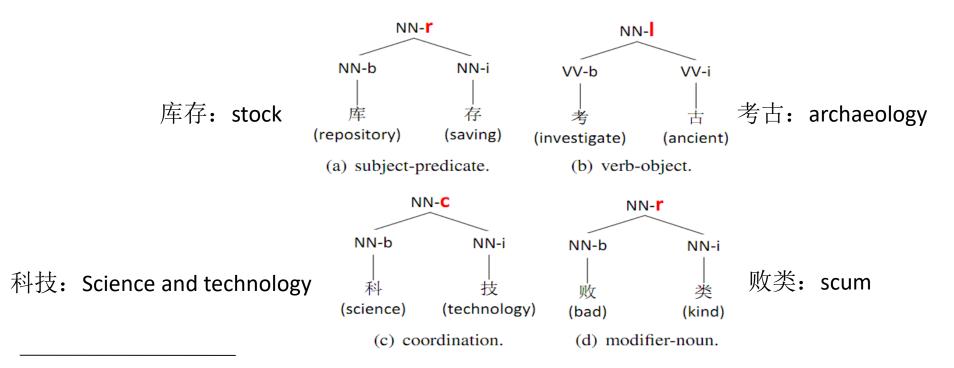
CTB-style word-based syntax tree for "中国 (China) 建筑业 (architecture industry) 呈现 (show) 新 (new) 格局 (pattern)".

• This: character-based Chinese parsing

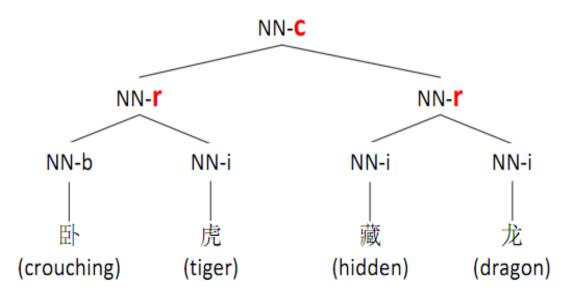


Character-level syntax tree with hierarchal word structures for "中 (middle) 国 (nation) 建 (construction) <u>筑 (</u>building) 业 (industry) 呈 (present) 现 (show) 新 (new) 格 (style) 局 (situation)".

- Why character-based?
 - Chinese words have syntactic structures.

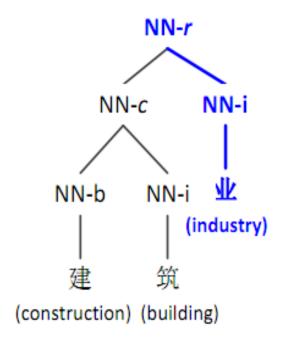


- Why character-based?
 - Chinese words have syntactic structures.



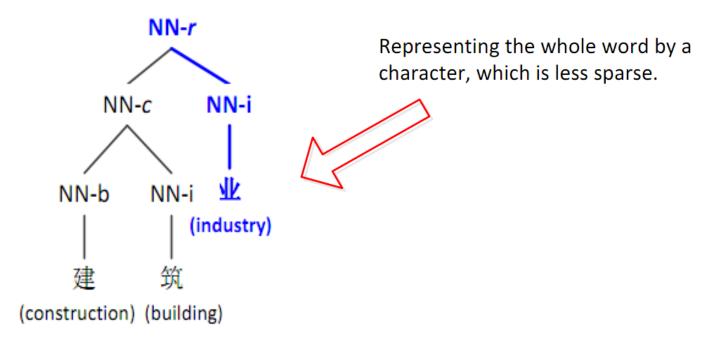
Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Chinese Parsing Exploiting Characters.* In proceedings of ACL 2013. Sophia, Bulgaria. August.

- Why character-based?
 - Deep character information of word structures.



Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Chinese Parsing Exploiting Characters.* In proceedings of ACL 2013. Sophia, Bulgaria. August.

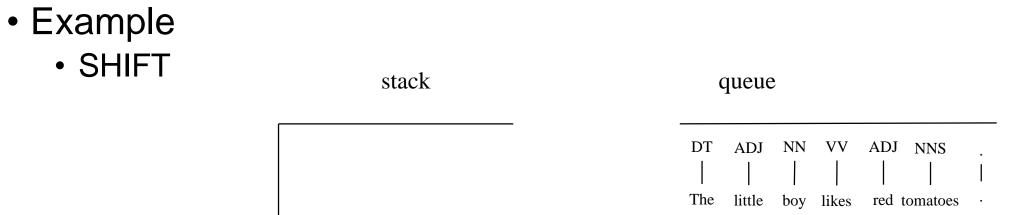
- Why character-based?
 - Deep character information of word structures.



Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Chinese Parsing Exploiting Characters*. In proceedings of ACL 2013. Sophia, Bulgaria. August.

- The character-based parsing model
 - A transition-based parser

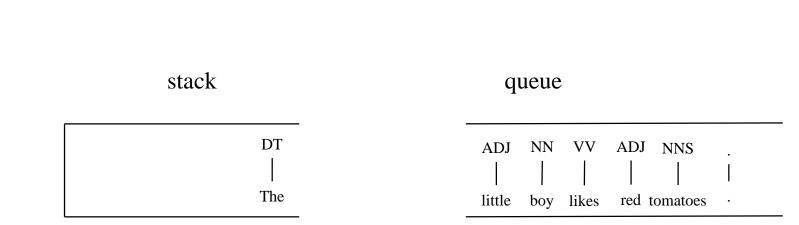
Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Chinese Parsing Exploiting Characters.* In proceedings of ACL 2013. Sophia, Bulgaria. August.



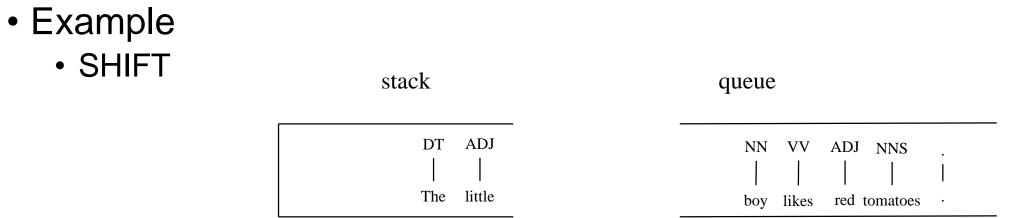
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.

• Example

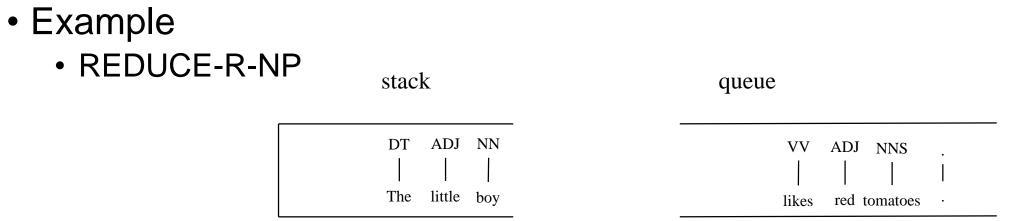
• SHIFT



Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.



Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.



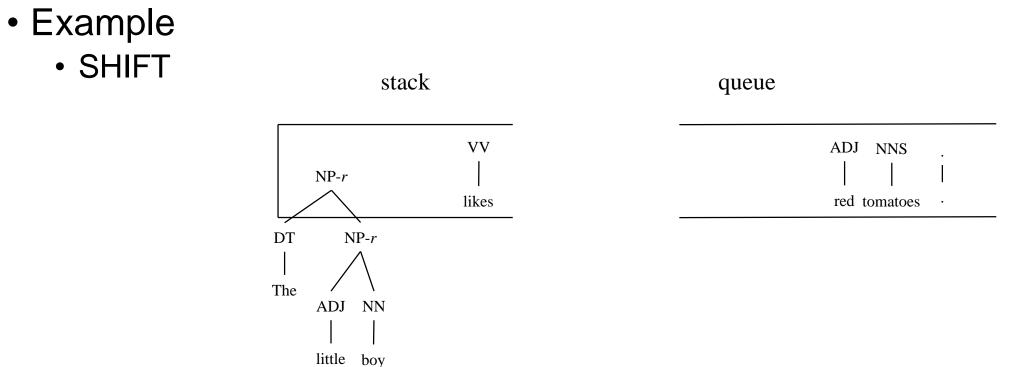
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.



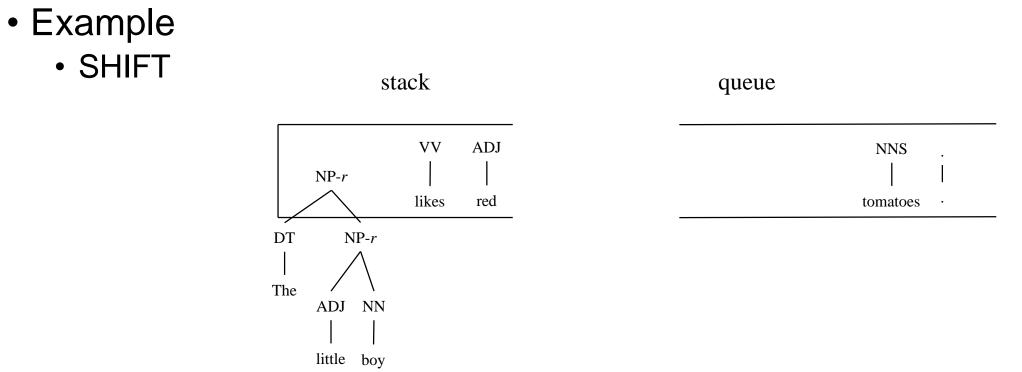
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.



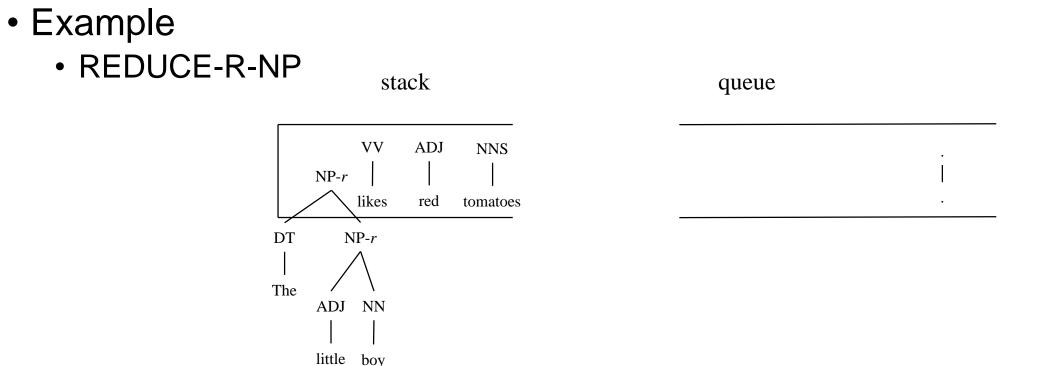
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.



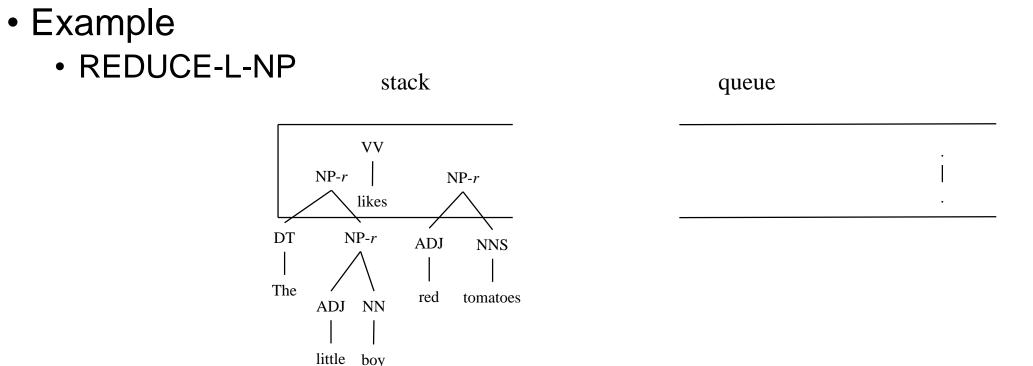
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.



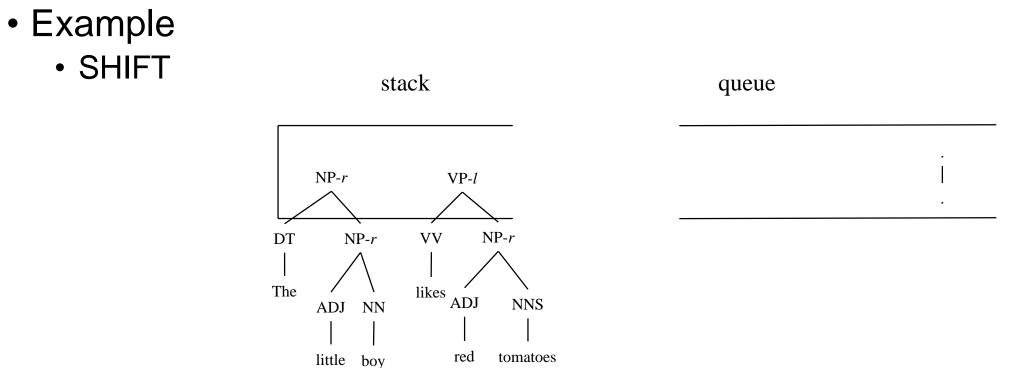
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.



Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.



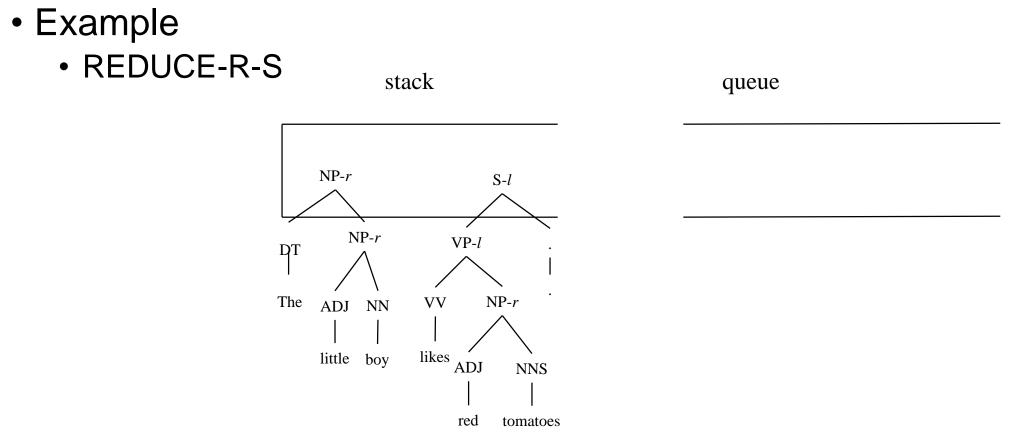
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.



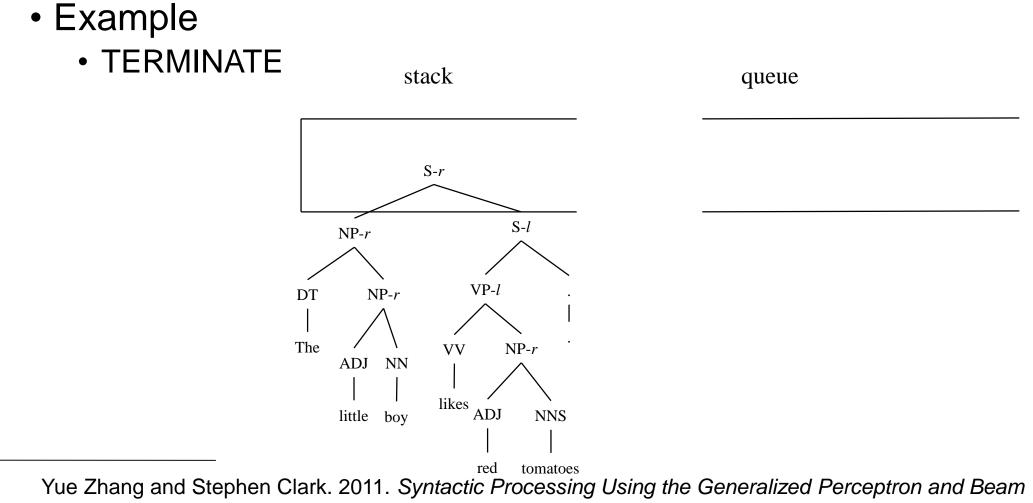
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.



Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.



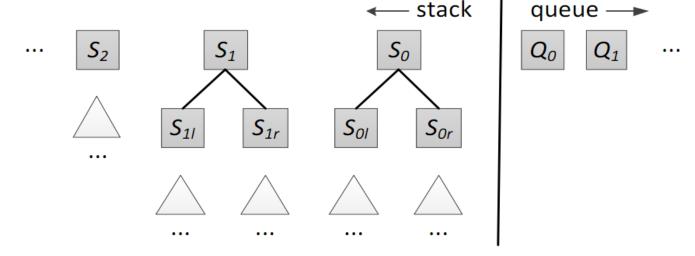
Yue Zhang and Stephen Clark. 2011. Syntactic Processing Using the Generalized Perceptron and Beam Search. In Computational Linguistics, 37(1), March.



Search. In Computational Linguistics, 37(1), March.

• The transition system

State:

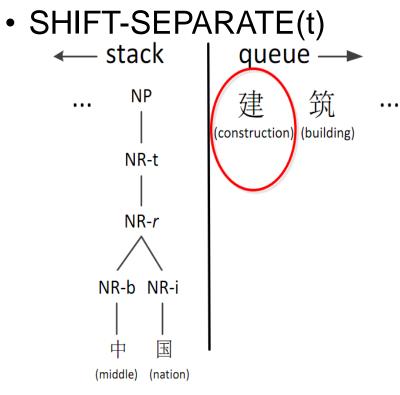


Actions:

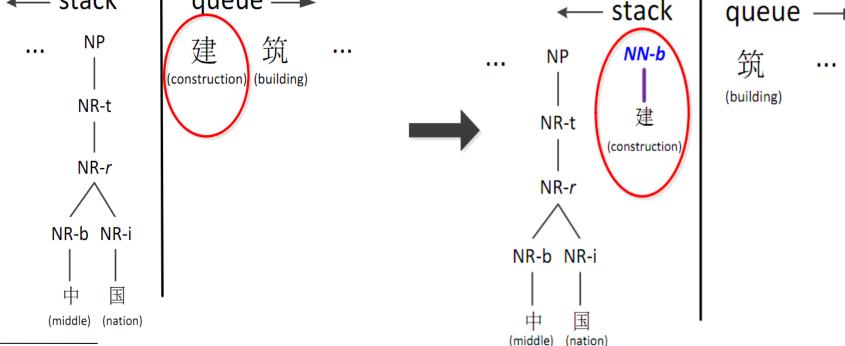
•SHIFT-SEPARATE(*t*), SHIFT-APPEND, REDUCE-SUBWORD(*d*), REDUCE-WORD, REDUCE-BINARY(*d*;*l*), REDUCE-UNARY(*l*), TERMINATE

Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Chinese Parsing Exploiting Characters*. In proceedings of ACL 2013. Sophia, Bulgaria. August.

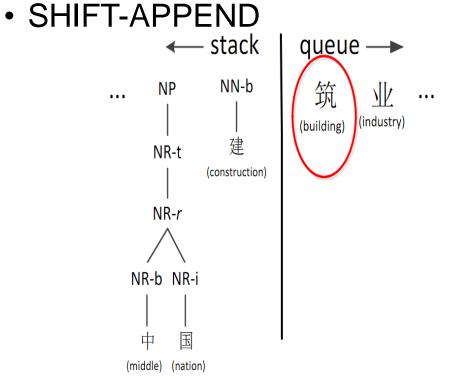
Actions



 Actions SHIFT-SEPARATE(t) ← stack queue — NP 筑 建 NP ... (construction) (building) NR-t NR-t NR-r NR-r



Actions



queue —

(industry)

...

 Actions SHIFT-APPEND ← stack queue stack NN-b 筑 NP NN-b NN-i NP (industry) (building) 銉 筑 NR-t 建 NR-t (construction) (building) (construction) NR-r NR-r NR-b NR-i NR-b NR-i

(middle) (nation)

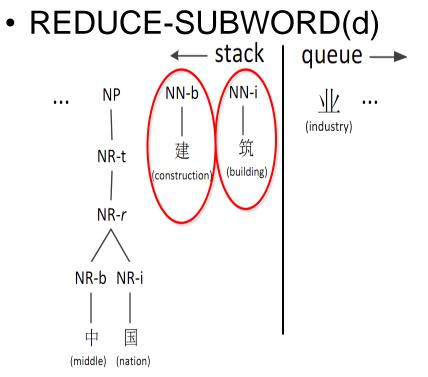
Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Chinese Parsing Exploiting Characters*. In proceedings of ACL 2013. Sophia, Bulgaria. August.

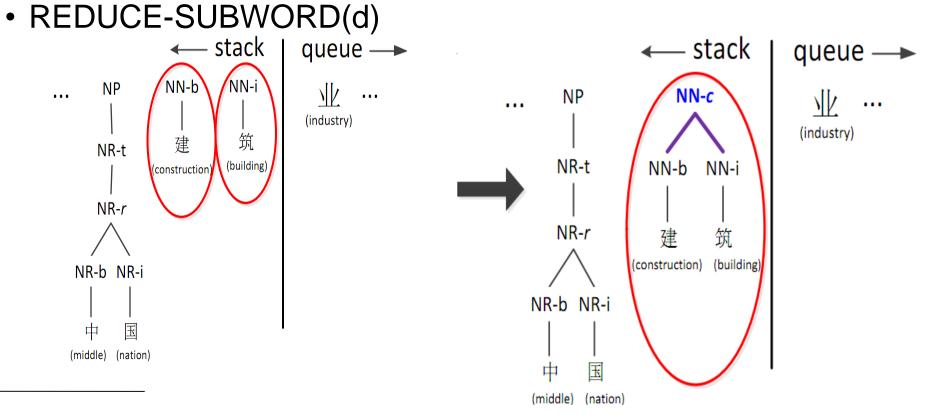
Ξ

曲

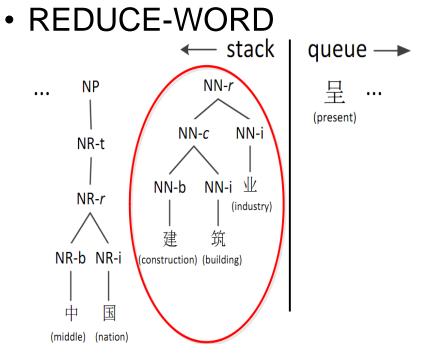
(middle) (nation)

• Actions

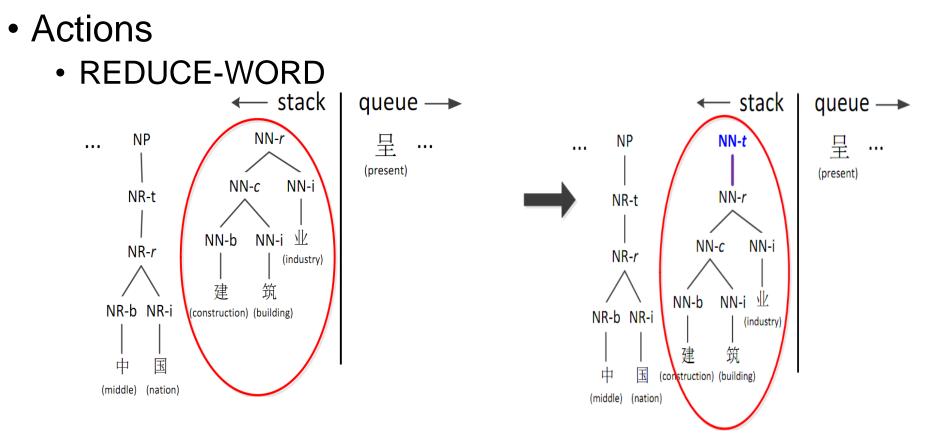




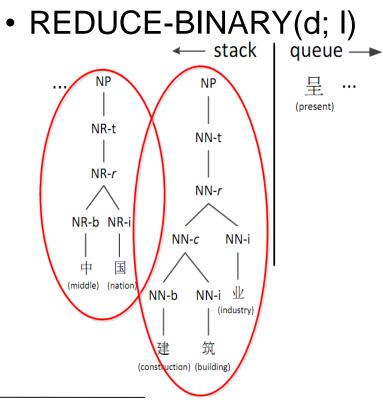
Actions

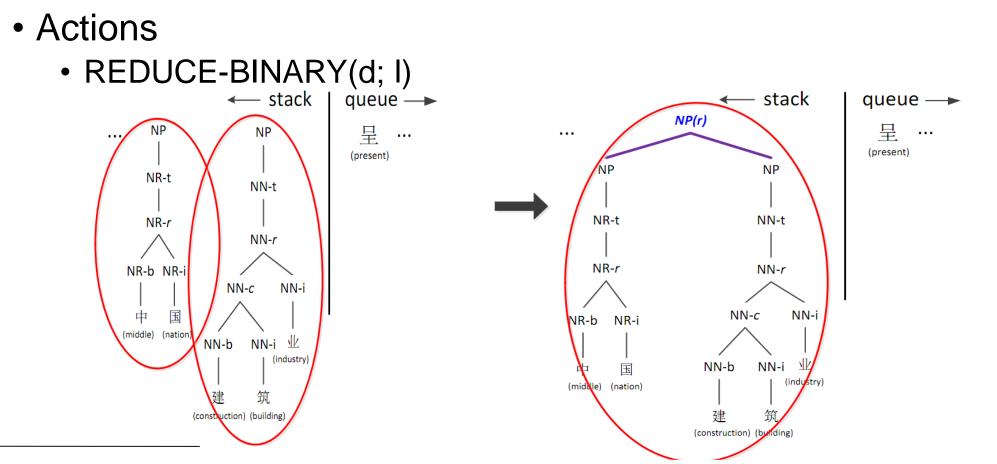


Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Chinese Parsing Exploiting Characters*. In proceedings of ACL 2013. Sophia, Bulgaria. August.

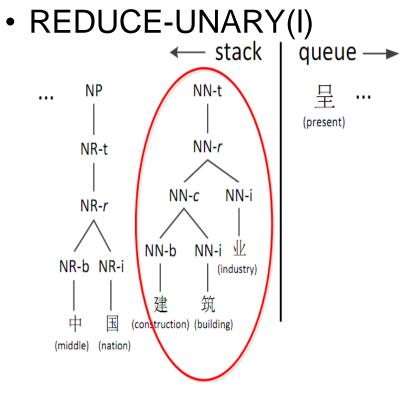


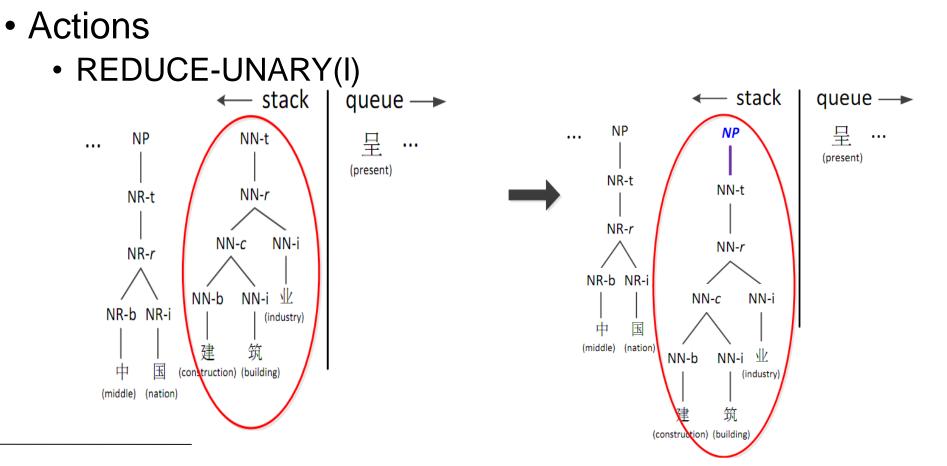
Actions



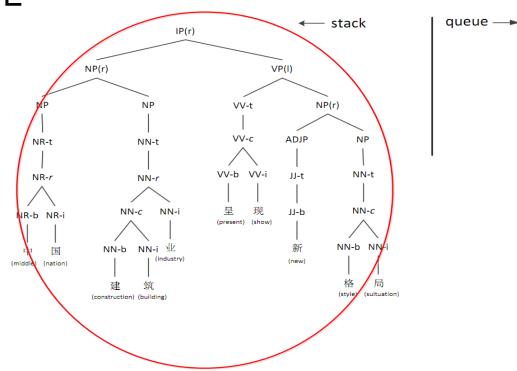


Actions

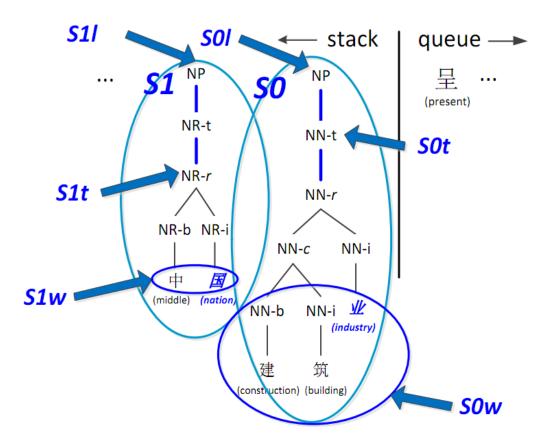




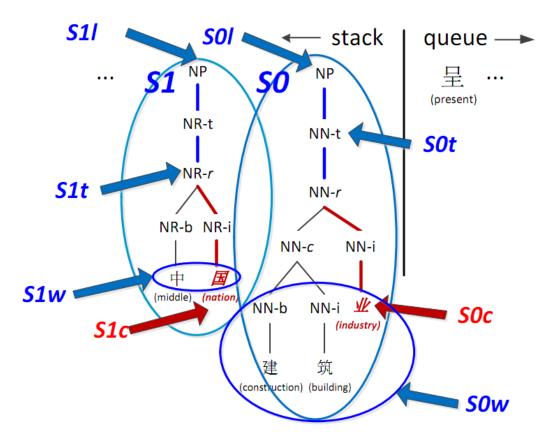
- Actions
 - TERMINATE



• Features



• Features



Results on CTB

	Task	Р	R	F
Pipeline	Seg	97.35	98.02	97.69
	Tag	93.51	94.15	93.83
	Parse	81.58	82.95	82.26
Flat word	Seg	97.32	98.13	97.73
structures	Tag	94.09	94.88	94.48
	Parse	83.39	83.84	83.61
Annotated	Seg	97.49	98.18	97.84
word structures	Tag	94.46	95.14	94.80
	Parse	84.42	84.43	84.43
	WS	94.02	94.69	94.35

Results on CTB

Task	Seg	Tag	Parse	
Kruengkrai+ '09	97.87	93.67	-	
Sun '11	98.17	94.02	-	
Wang+'11	98.11	94.18	_	
Li '11	97.3	93.5	79.7	
Li+ '12	97.50	93.31	_	
Hatori+ '12	98.26	94.64	_	
Qian+ '12	97.96	93.81	82.85	
Ours pipeline	97.69	93.83	82.26	
Ours joint flat	97.73	94.48	83.61	
Ours joint annotated	97.84	94.80	84.43	

- Actions
 - INITIALIZATION

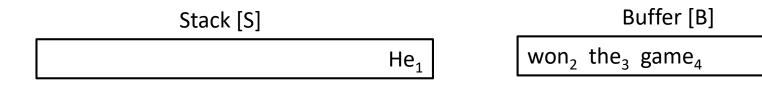
Buffer [B]

 $He_1 won_2 the_3 game_4$

Bohnet, Bernd, and Joakim Nivre. "A transition-based system for joint part-of-speech tagging and labeled non-projective dependency parsing." Proceedings of the 2012 Joint Conference on EMNLP and CoNLL. ACL, 2012.

endency

- Actions
 - SHIFT

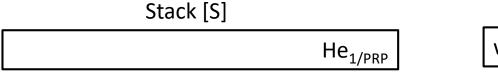


Bohnet, Bernd, and Joakim Nivre. "A transition-based system for joint part-of-speech tagging and labeled non-projective dependency parsing." Proceedings of the 2012 Joint Conference on EMNLP and CoNLL. ACL, 2012.

\mathcal{M} \land

Joint POS tagging and Dependency Parsing

- Actions
 - TAG_{PRP}



won₂ the₃ game₄

Bohnet, Bernd, and Joakim Nivre. "A transition-based system for joint part-of-speech tagging and labeled nonprojective dependency parsing." Proceedings of the 2012 Joint Conference on EMNLP and CoNLL. ACL, 2012.

endency

Joint POS tagging and Dependency Parsing

- Actions
 - SHIFT

 the_3 game₄

Bohnet, Bernd, and Joakim Nivre. "A transition-based system for joint part-of-speech tagging and labeled non-projective dependency parsing." Proceedings of the 2012 Joint Conference on EMNLP and CoNLL. ACL, 2012.

- Actions
 - TAG_{VBD}

Stack [S]

He_{1/PRP} won_{2/VBD}

Buffer [B]

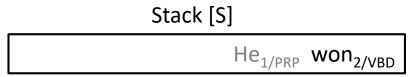
 the_3 game₄

Bohnet, Bernd, and Joakim Nivre. "A transition-based system for joint part-of-speech tagging and labeled non-projective dependency parsing." Proceedings of the 2012 Joint Conference on EMNLP and CoNLL. ACL, 2012.

Joint POS tagging and Dependency

- Actions
 - LEFT

Parsing



Buffer [B]

the₃ game₄

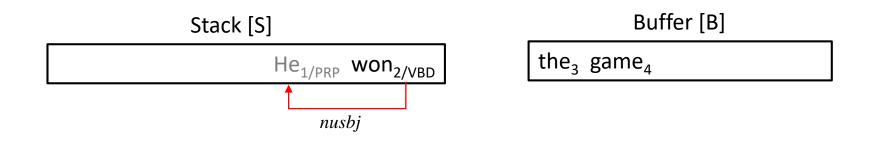
Bohnet, Bernd, and Joakim Nivre. "A transition-based system for joint part-of-speech tagging and labeled nonprojective dependency parsing." Proceedings of the 2012 Joint Conference on EMNLP and CoNLL. ACL, 2012.

Joint POS tagging and Dependency \mathcal{M}

Actions

Parsing

• LABEL_{nsubj}



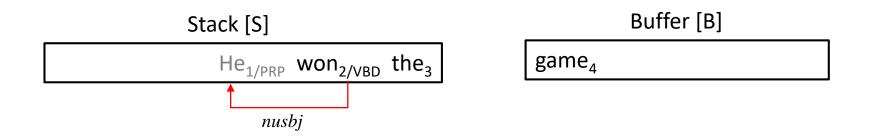
Bohnet, Bernd, and Joakim Nivre. "A transition-based system for joint part-of-speech tagging and labeled nonprojective dependency parsing." Proceedings of the 2012 Joint Conference on EMNLP and CoNLL. ACL, 2012.

Joint POS tagging and Dependency

 \mathcal{M}

- Actions
 - SHIFT

Parsing



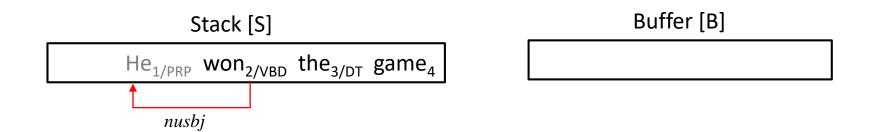
Bohnet, Bernd, and Joakim Nivre. "A transition-based system for joint part-of-speech tagging and labeled nonprojective dependency parsing." Proceedings of the 2012 Joint Conference on EMNLP and CoNLL. ACL, 2012.

\mathbb{W}

- Actions
 - TAG_{DT}

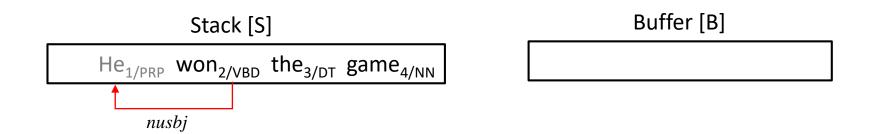
Bohnet, Bernd, and Joakim Nivre. "A transition-based system for joint part-of-speech tagging and labeled nonprojective dependency parsing." Proceedings of the 2012 Joint Conference on EMNLP and CoNLL. ACL, 2012.

- Actions
 - SHIFT



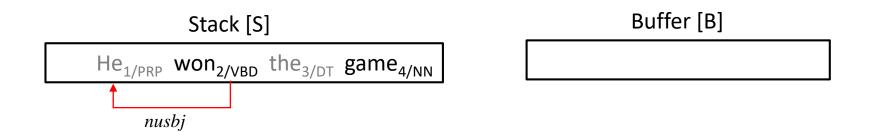
Bohnet, Bernd, and Joakim Nivre. "A transition-based system for joint part-of-speech tagging and labeled nonprojective dependency parsing." Proceedings of the 2012 Joint Conference on EMNLP and CoNLL. ACL, 2012.

- Actions
 - TAG_{NN}



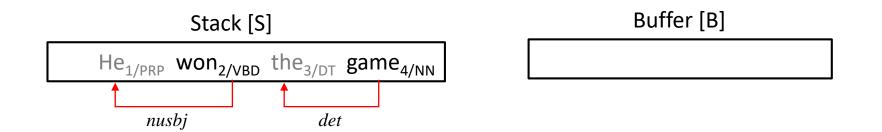
Bohnet, Bernd, and Joakim Nivre. "A transition-based system for joint part-of-speech tagging and labeled nonprojective dependency parsing." Proceedings of the 2012 Joint Conference on EMNLP and CoNLL. ACL, 2012.

- Actions
 - LEFT



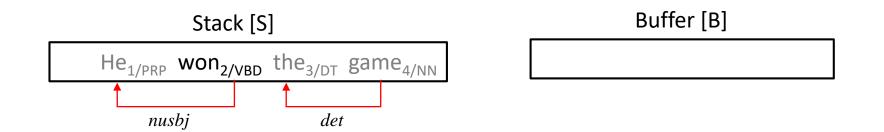
Bohnet, Bernd, and Joakim Nivre. "A transition-based system for joint part-of-speech tagging and labeled nonprojective dependency parsing." Proceedings of the 2012 Joint Conference on EMNLP and CoNLL. ACL, 2012.

- Actions
 - LABEL_{det}



Bohnet, Bernd, and Joakim Nivre. "A transition-based system for joint part-of-speech tagging and labeled nonprojective dependency parsing." Proceedings of the 2012 Joint Conference on EMNLP and CoNLL. ACL, 2012.

- Actions
 - RIGHT



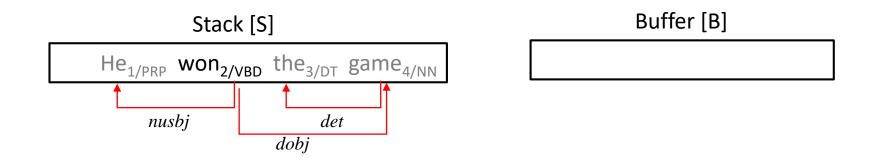
Bohnet, Bernd, and Joakim Nivre. "A transition-based system for joint part-of-speech tagging and labeled nonprojective dependency parsing." Proceedings of the 2012 Joint Conference on EMNLP and CoNLL. ACL, 2012.

Joint POS tagging and Dependency \mathbb{W} \mathbb{I}

Actions

Parsing

• LABEL_{dobi}



Bohnet, Bernd, and Joakim Nivre. "A transition-based system for joint part-of-speech tagging and labeled nonprojective dependency parsing." Proceedings of the 2012 Joint Conference on EMNLP and CoNLL. ACL, 2012.

- Traditional word-based dependency parsing
 - Inter-word dependencies

Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Character-Level Chinese Dependency Parsing*. In Proceedings of ACL 2014. Baltimore, USA, June. Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, Jun'ichi Tsujii. Incremental Joint Approach to Chinese Word Segmentation, POS Tagging, and Dependency Parsing. In the Proceedings of ACL. Jeju, Korea. 2012.

- Character-level dependency parsing
 - Inter- and intra-word dependencies



Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Character-Level Chinese Dependency Parsing*. In Proceedings of ACL 2014. Baltimore, USA, June.

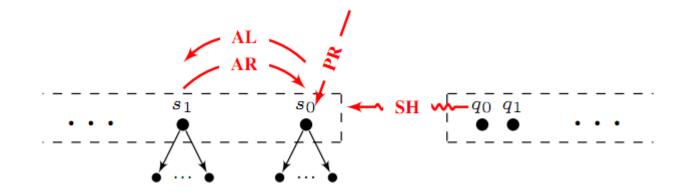
Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, Jun'ichi Tsujii. Incremental Joint Approach to Chinese Word Segmentation, POS Tagging, and Dependency Parsing. In the Proceedings of ACL. Jeju, Korea. 2012.

- Extensions from word-level transition-based dependency parsing models
 - Arc-standard (Nirve 2008; Huang et al., 2009)
 - Arc-eager (Nirve 2008; Zhang and Clark, 2008)

Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Character-Level Chinese Dependency Parsing*. In Proceedings of ACL 2014. Baltimore, USA, June.

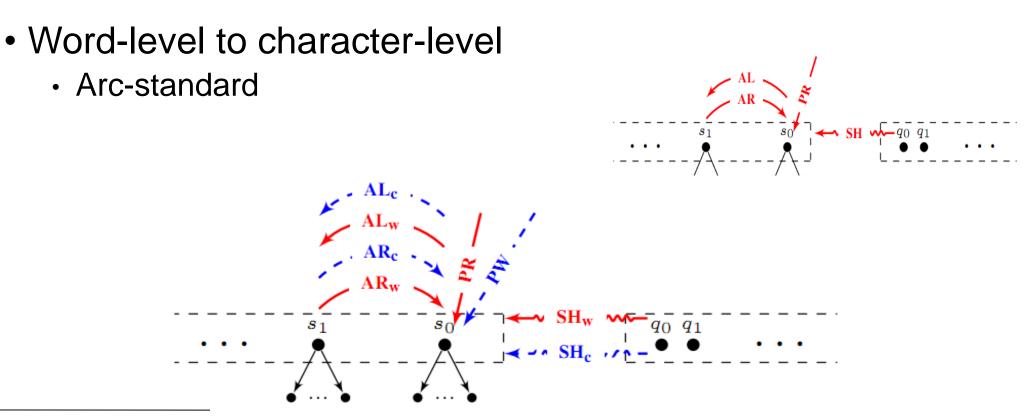
Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, Jun'ichi Tsujii. Incremental Joint Approach to Chinese Word Segmentation, POS Tagging, and Dependency Parsing. In the Proceedings of ACL. Jeju, Korea. 2012.

- Word-level transition-based dependency parsing
 - Arc-standard



Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Character-Level Chinese Dependency Parsing*. In Proceedings of ACL 2014. Baltimore, USA, June.

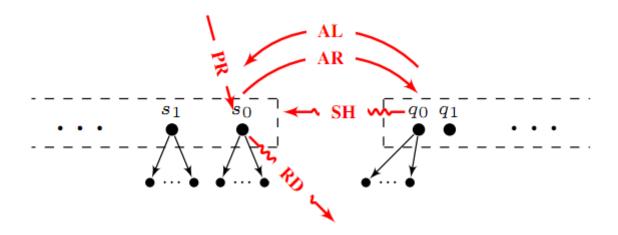
Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, Jun'ichi Tsujii. Incremental Joint Approach to Chinese Word Segmentation, POS Tagging, and Dependency Parsing. In the Proceedings of ACL. Jeju, Korea. 2012.



Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Character-Level Chinese Dependency Parsing*. In Proceedings of ACL 2014. Baltimore, USA, June.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, Jun'ichi Tsujii. Incremental Joint Approach to Chinese Word Segmentation, POS Tagging, and Dependency Parsing. In the Proceedings of ACL. Jeju, Korea. 2012.

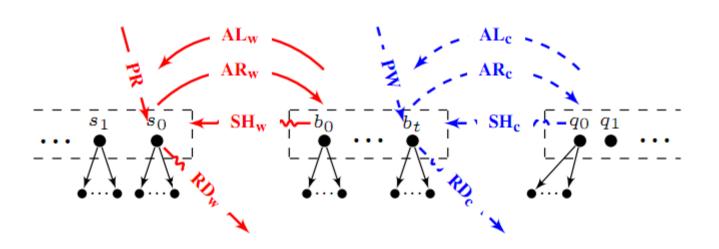
- Word-level transition-based dependency parsing
 - Arc-eager



Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Character-Level Chinese Dependency Parsing*. In Proceedings of ACL 2014. Baltimore, USA, June.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, Jun'ichi Tsujii. Incremental Joint Approach to Chinese Word Segmentation, POS Tagging, and Dependency Parsing. In the Proceedings of ACL. Jeju, Korea. 2012.

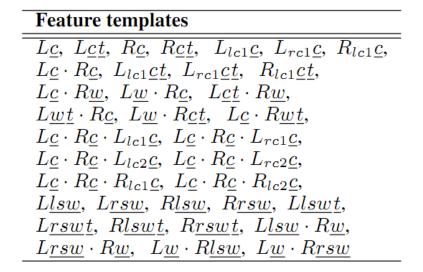
- Word-level to character-level
 - Arc-eager



Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Character-Level Chinese Dependency Parsing*. In Proceedings of ACL 2014. Baltimore, USA, June.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, Jun'ichi Tsujii. Incremental Joint Approach to Chinese Word Segmentation, POS Tagging, and Dependency Parsing. In the Proceedings of ACL. Jeju, Korea. 2012.

New features





Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Character-Level Chinese Dependency Parsing*. In Proceedings of ACL 2014. Baltimore, USA, June.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, Jun'ichi Tsujii. Incremental Joint Approach to Chinese Word Segmentation, POS Tagging, and Dependency Parsing. In the Proceedings of ACL. Jeju, Korea. 2012.

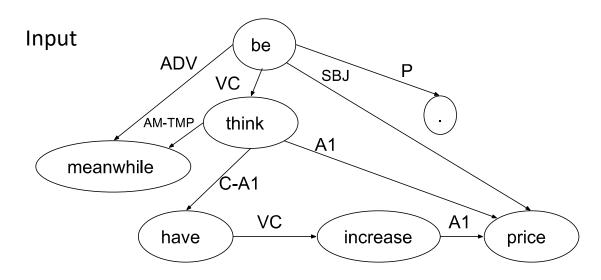
Results on CTB

Model	CTB50		CTB60			CTB70						
	SEG	POS	DEP	WS	SEG	POS	DEP	WS	SEG	POS	DEP	WS
The arc-standard models												
STD (pipe)	97.53	93.28	79.72	_	95.32	90.65	75.35	_	95.23	89.92	73.93	_
STD (real, pseudo)	97.78	93.74	_	97.40	95.77 [‡]	91.24 [‡]	_	95.08	95.59 [‡]	90.49 [‡]	_	94.97
STD (pseudo, real)	97.67	94.28 [‡]	81.63 [‡]	_	95.63 [‡]	91.40 [‡]	76.75 [‡]	_	95.53 [‡]	90.75 [‡]	75.63 [‡]	_
STD (real, real)	97.84	94.62 [‡]	82.14 [‡]	97.30	95.56 [‡]	91.39 [‡]	77.09 [‡]	94.80	95.51 [‡]	90.76 ‡	75.70 [‡]	94.78
Hatori+'12	97.75	94.33	81.56	-	95.26	91.06	75.93	_	95.27	90.53	74.73	_
The arc-eager models												
EAG (pipe)	97.53	93.28	79.59	_	95.32	90.65	74.98	_	95.23	89.92	73.46	_
EAG (real, pseudo)	97.75	93.88	_	97.45	95.63 [‡]	91.07 [‡]	_	95.06	95.50 [‡]	90.36 [‡]	_	95.00
EAG (pseudo, real)	97.76	94.36 ‡	81.70 [‡]	_	95.63 [‡]	91.34 [‡]	76.87 [‡]	_	95.39 [‡]	90.56 [‡]	75.56 [‡]	_
EAG (real, real)	97.84	94.36 [‡]	82.07 [‡]	97.49	95.71 [‡]	91.51 ‡	76.99 ‡	95.16	95.47 [‡]	90.72 [‡]	75.76 [‡]	94.94

Meishan Zhang, Yue Zhang, Wanxiang Che and Ting Liu. *Character-Level Chinese Dependency Parsing*. In Proceedings of ACL 2014. Baltimore, USA, June.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, Jun'ichi Tsujii. Incremental Joint Approach to Chinese Word Segmentation, POS Tagging, and Dependency Parsing. In the Proceedings of ACL. Jeju, Korea. 2012.

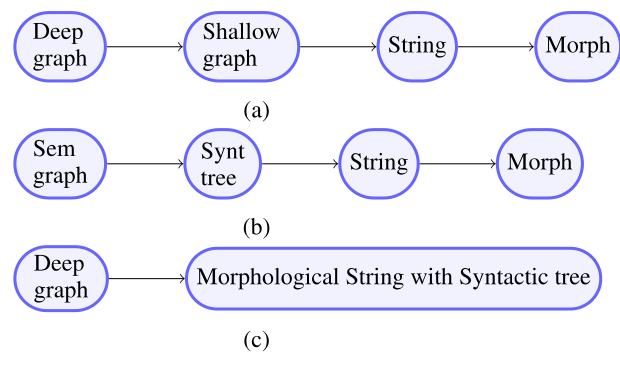
Task



Output: meanwhile, prices are thought to have increased.

Ratish Puduppully, Yue Zhang, Manish Shrivastava. Transition-Based Deep Input Linearization. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL). Valencia, Spain, April.

Model



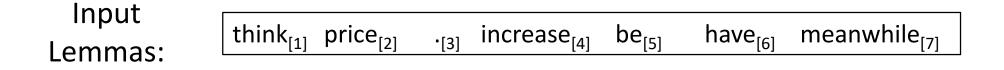
- (a) NLG pipeline with deep input graph
- (b) Pipeline based on the meaning text theory
- (c) This paper

Ratish Puduppully, Yue Zhang, Manish Shrivastava. Transition-Based Deep Input Linearization. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL). Valencia, Spain, April.

- Transition Actions
 - SHIFT-Word-POS [SH]
 - Shifts *Word* from ρ , as- signs POS to it and pushes it to top of stack as S_0 ;
 - LEFTARC-LABEL [LA]
 - Constructs dependency arc $S_1 \leftarrow LABEL$ S_0 and pops out second element from top of stack S_1
 - RIGHTARD-LABEL [RA]
 - Constructs dependency arc $S_1 \xrightarrow{LABEL} S_0$ and pops out top of stack S_0
 - INSERT [IN]
 - Inserts comma at the present position
 - SPLITARC-Word [SP]
 - splits an arc in the input graph *C*, inserting a function word between the words connected by the arc.

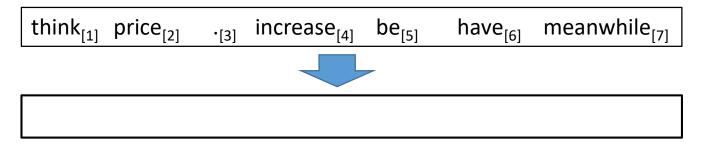
Ratish Puduppully, Yue Zhang, Manish Shrivastava. Transition-Based Deep Input Linearization. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL). Valencia, Spain, April.

Transition Example



Ratish Puduppully, Yue Zhang, Manish Shrivastava. Transition-Based Deep Input Linearization. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL). Valencia, Spain, April.

Transition Action



Ratish Puduppully, Yue Zhang, Manish Shrivastava. Transition-Based Deep Input Linearization. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL). Valencia, Spain, April.

- Transition Action
 - SH-meanwhile

think _[1] price _[2]	•[3]	increase _[4]	be _[5]	have _[6]	meanwhile _[7]
Meanwhile					

Ratish Puduppully, Yue Zhang, Manish Shrivastava. Transition-Based Deep Input Linearization. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL). Valencia, Spain, April.

- Transition Action
 - INSERT

think _[1] price _[2]	•[3]	increase _[4]	be _[5]	have _[6]	meanwhile _[7]
Meanwhile ,					

Ratish Puduppully, Yue Zhang, Manish Shrivastava. Transition-Based Deep Input Linearization. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL). Valencia, Spain, April.

- Transition Action
 - SH-prices

think _[1] price _[2]	. _[3] increase _[4]	be _[5]	have _[6]	meanwhile _[7]
Meanwhile ,	prices			

Ratish Puduppully, Yue Zhang, Manish Shrivastava. Transition-Based Deep Input Linearization. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL). Valencia, Spain, April.

- Transition Action
 - SH-are

think _[1] price _[2]	. _[3] increase _[4]	be _[5] have _[_{6]} meanwhile _[7]
Meanwhile ,	prices are		

Ratish Puduppully, Yue Zhang, Manish Shrivastava. Transition-Based Deep Input Linearization. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL). Valencia, Spain, April.

- Transition Action
 - SH-thought

think _[1]	price) [2]	. _[3] iı	ncrease	e _[4] be _[5]	have _[6]	meanwhile _[7]
Meanwl	nile	,	prices	are	thought		



Ratish Puduppully, Yue Zhang, Manish Shrivastava. Transition-Based Deep Input Linearization. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL). Valencia, Spain, April.

- Transition Action
 - SH-to

think _[1] price _[2]	. _[3] i	ncrease _[4]	be _[5]	have _[6]	meanwhile _[7]
Meanwhile ,	prices	are th	nought	to	

Ratish Puduppully, Yue Zhang, Manish Shrivastava. Transition-Based Deep Input Linearization. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL). Valencia, Spain, April.

- Transition Action
 - SH-have

think _[1] price _[2]	. _[3] in	crease _{[4}	_{1]} be _[5]	hav	e _[6]	meanwhile _[7]
Meanwhile ,	prices	are	thought	to	have	9

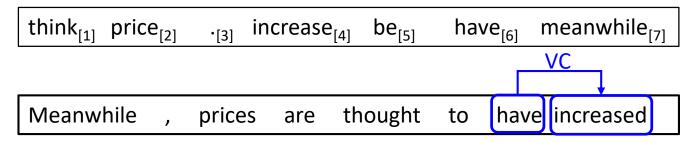
Ratish Puduppully, Yue Zhang, Manish Shrivastava. Transition-Based Deep Input Linearization. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL). Valencia, Spain, April.

- Transition Action
 - SH-increased

think _[1] price	; [2]	. _[3] i	ncrease	_[4] be _[5]	hav	/e _[6]	meanwhile _[7]
Meanwhile	,	prices	are	thought	to	hav	e increased

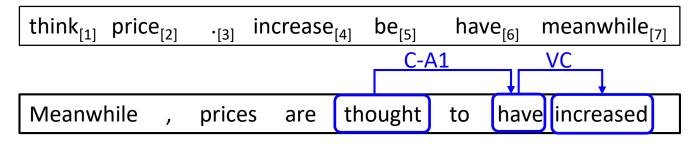
Ratish Puduppully, Yue Zhang, Manish Shrivastava. Transition-Based Deep Input Linearization. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL). Valencia, Spain, April.

Transition Action
RA (6 → 4) [VC]



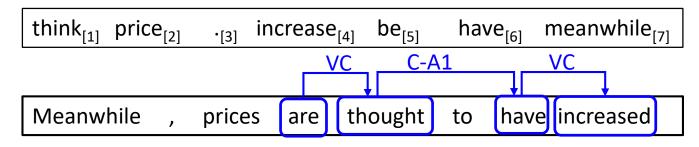
Ratish Puduppully, Yue Zhang, Manish Shrivastava. Transition-Based Deep Input Linearization. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL). Valencia, Spain, April.

Transition Action
RA (1 → 6) [C-A1]



Ratish Puduppully, Yue Zhang, Manish Shrivastava. Transition-Based Deep Input Linearization. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL). Valencia, Spain, April.

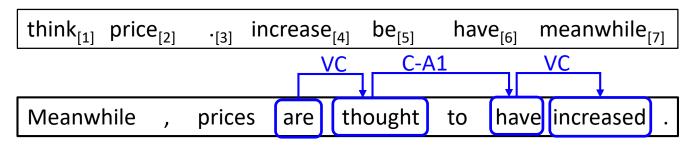
Transition Action
RA (5 → 1) [VC]



Ratish Puduppully, Yue Zhang, Manish Shrivastava. Transition-Based Deep Input Linearization. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL). Valencia, Spain, April.

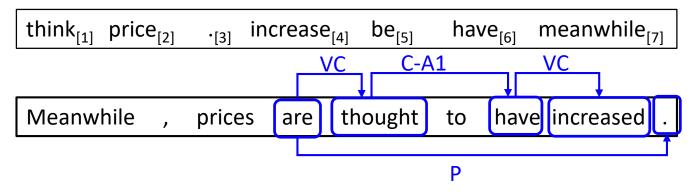
Transition Action

• SH-.



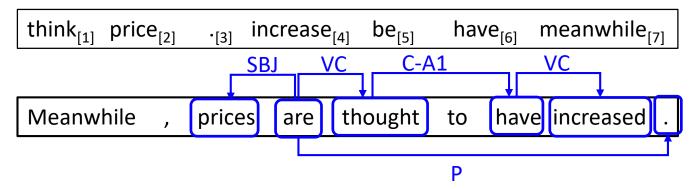
Ratish Puduppully, Yue Zhang, Manish Shrivastava. Transition-Based Deep Input Linearization. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL). Valencia, Spain, April.

Transition Action
RA (5 → 3) [P]



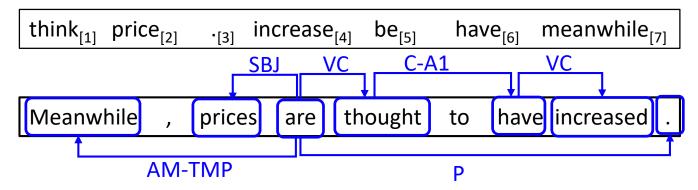
Ratish Puduppully, Yue Zhang, Manish Shrivastava. Transition-Based Deep Input Linearization. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL). Valencia, Spain, April.

Transition Action
LA (2 ← 5) [SBJ]



Ratish Puduppully, Yue Zhang, Manish Shrivastava. Transition-Based Deep Input Linearization. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL). Valencia, Spain, April.

- Transition Action
 - LA (7 ← 5) [AM-TMP]



Ratish Puduppully, Yue Zhang, Manish Shrivastava. Transition-Based Deep Input Linearization. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL). Valencia, Spain, April.

Results on dataset of the Surface Realisation Shared Task

System	BLEU Score
STUMABA-D	79.43
Pipeline	70.99
TBDIL	80.49

Ratish Puduppully, Yue Zhang, Manish Shrivastava. Transition-Based Deep Input Linearization. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL). Valencia, Spain, April.

 Task: simultaneously extracting drugs, diseases and adverse drug events.

Gliclazide_{drug}-induced acute hepatitis_{disease}

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceedings of IJCAI 2016. New York City, USA, July.

- Entity actions:
 - O, which marks the current word as not belong to either a drug or disease mention.
 - BC, which marks the current word as the beginning of a drug mention.
 - BD, which marks the current word as the beginning of a disease mention.
 - I, which marks the current word as part of a drug or disease mention but not the beginning.
- For example
 - Given a sentence: Gliclazide-induced acute hepatitis.
 - The action sequence: "BC O O BD I O " yields the result "Gliclazide_{drug}-induced acute hepatitis_{disease}."

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceedings of IJCAI 2016. New York City, USA, July.

- Relation actions
 - N, which indicates that a pair of entities does not have an ADE relation
 - Y, which indicates that a pair of entities has an ADE relation

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceedings of IJCAI 2016. New York City, USA, July.

- The state of the joint model as a tuple <*labels, disease, drugs, s* ADEs>
 - labels is a label sequence
 - *disease* is a list of readily-recognized disease entity mentions
 - drugs is a list of readily-recognized drug entity mentions
 - ADEs is a set of ADEs

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceddings of IJCAI 2016. New York City, USA, July.

State transition examples

Hepatitis caused by methotrexate and etretinate .

BD O O BC O BC O

state <labels, disease, drugs, relations>

<[],[],[],[]>

next action

BD

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceedings of IJCAI 2016. New York City, USA, July.

State transition examples

Hepatitis caused by methotrexate and etretinate .

BD O O BC O BC O

state <labels, disease, drugs, relations>

<[BD],[],[],[]>

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceedings of IJCAI 2016. New York City, USA, July.

next action

0

State transition examples

Hepatitis caused by methotrexate and etretinate .

BD O O BC O BC O

state <labels, disease, drugs, relations>

<[BD,O],[Hepatitis],[],[]>

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceedings of IJCAI 2016. New York City, USA, July.

next action

0

State transition examples

Hepatitis caused by methotrexate and etretinate .

BD O O BC O BC O

state <labels, disease, drugs, relations>

<[BD,O,O],[Hepatitis],[],[]>

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceedings of IJCAI 2016. New York City, USA, July.

next action

BC

State transition examples

Hepatitis caused by methotrexate and etretinate .

BD O O BC O BC O

state <labels, disease, drugs, relations>

<[BD,O,O,BC],[Hepatitis],[],[]>

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceedings of IJCAI 2016. New York City, USA, July.

next action

0

State transition examples

Hepatitis caused by methotrexate and etretinate .

BD O O BC O BC O

state <labels, disease, drugs, relations>

<[BD,O,O,BC,O],[Hepatitis],[methotrexate],[]>

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceddings of IJCAI 2016. New York City, USA, July.

next action

Y

State transition examples

Hepatitis caused by methotrexate and etretinate .

BD O O BC O BC O

state <labels, disease, drugs, relations>

<[BD,O,O,BC,O,Y],[Hepatitis],[methotrexate],[(Hepatitis,methotrexate)]>

next action

BC

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceddings of IJCAI 2016. New York City, USA, July.

State transition examples

Hepatitis caused by methotrexate and etretinate .

BD O O BC O BC O

state <labels, disease, drugs, relations>

<[BD,O,O,BC,O,Y,BC],[Hepatitis],[methotrexate],[(Hepatitis,methotrexate)]>

next action

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceedings of IJCAI 2016. New York City, USA, July.

State transition examples

Hepatitis caused by methotrexate and etretinate .

BD O O BC O BC O

state <labels, disease, drugs, relations>

<[BD,O,O,BC,O,Y,BC,O],[Hepatitis],[methotrexate,etretinate],[(Hepatitis, methotrexate)]>

next action

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceedings of IJCAI 2016. New York City, USA, July.

State transition examples

Hepatitis caused by methotrexate and etretinate .

BD O O BC O BC O

state <labels, disease, drugs, relations>

<[BD,O,O,BC,O,Y,BC,O,Y],[Hepatitis],[methotrexate,etretinate],[(Hepatiti s,methotrexate),(Hepatitis,etretinate)]>

next action

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceedings of IJCAI 2016. New York City, USA, July.

Results on ADE data

Method	Entity Recognition			ADE extraction		
	P	R	F ₁	Р	R	\mathbf{F}_1
Li <i>et al.</i> [2015]	75.9	71.6	73.6	55.2	47.9	51.1
Baseline	77.8	72.0	74.8	60.7	51.5	55.7
Discrete Joint	80.0	75.1	77.5	65.1	56.7	60.6

Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceedings of IJCAI 2016. New York City, USA, July.

Outline

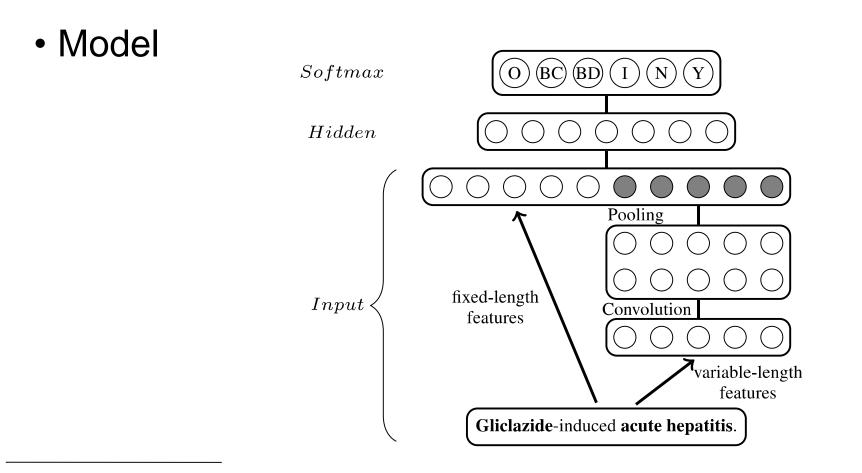
- Motivation
- Statistical Models
- Deep Learning Models

Deep Learning Models

- Neural Transition-based Models
- Neural Graph-based Models (Multi-task Learning)
 - Cross Task
 - Cross Domain
 - Cross Lingual
 - Cross Standard

Deep Learning Models

- Neural Transition-based Models
- Joint Search
 - Cross Task
 - Cross Domain
 - Joint Learning Cross Line



Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceedings of IJCAI 2016. New York City, USA, July.

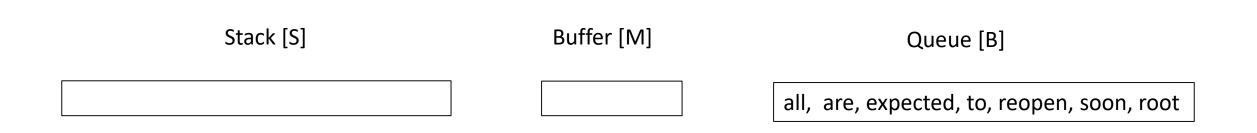
Results

Method	Entity Recognition			ADE extraction		
	Р	R	\mathbf{F}_1	Р	R	\mathbf{F}_1
Li <i>et al.</i> [2015]	75.9	71.6	73.6	55.2	47.9	51.1
Baseline	77.8	72.0	74.8	60.7	51.5	55.7
Discrete Joint	80.0	75.1	77.5	65.1	56.7	60.6
Neural Joint	79.5	79.6	79.5	64.0	62.9	63.4

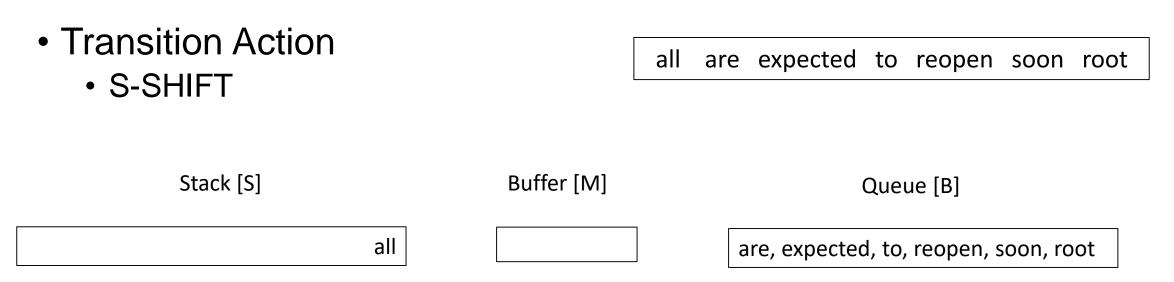
Fei Li, Yue Zhang, Meishan Zhang and Donghong Ji. *Joint Models for Extracting Adverse Drug Events from Biomedical Text*. In Proceedings of IJCAI 2016. New York City, USA, July.

Transition Action

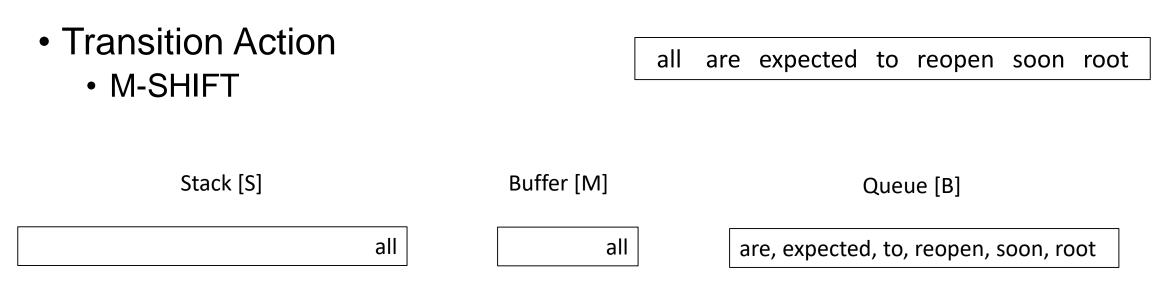
all are expected to reopen soon root



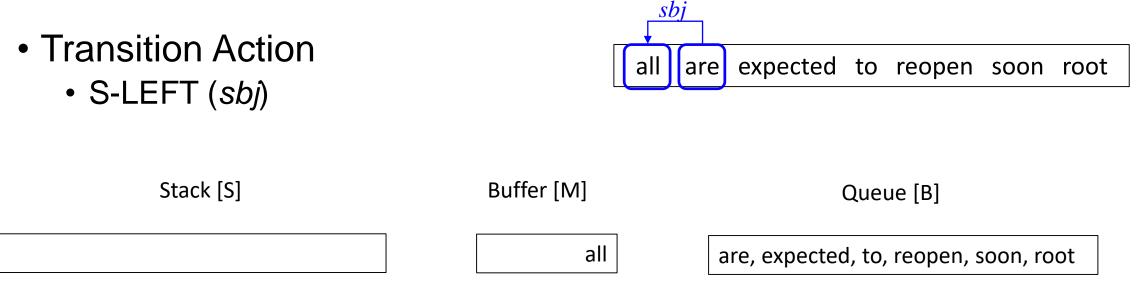
Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).



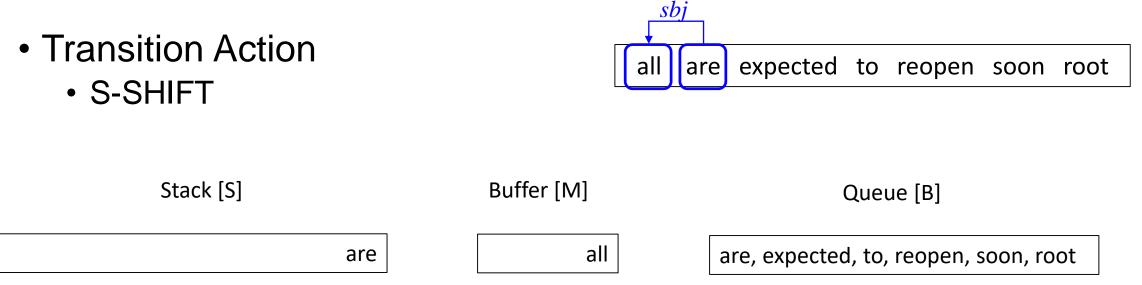
Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).



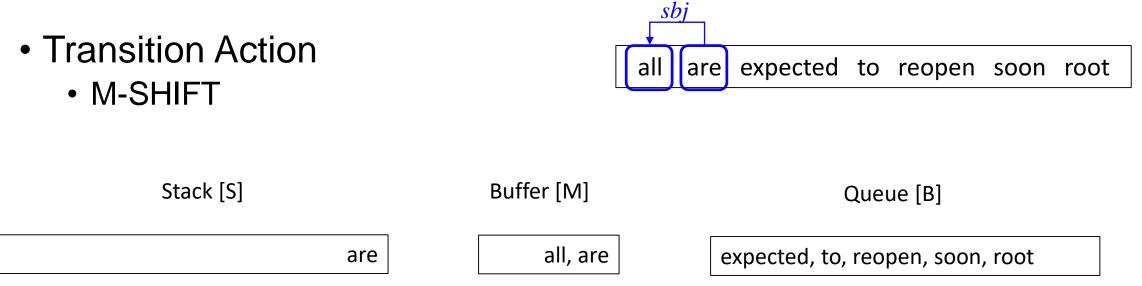
Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).



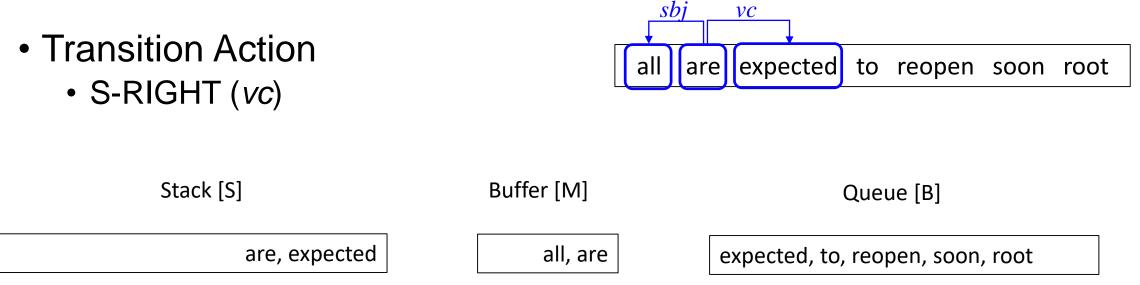
Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).



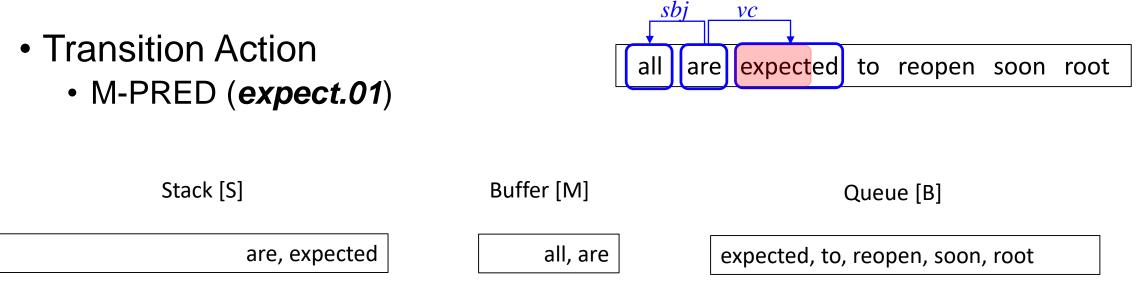
Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).



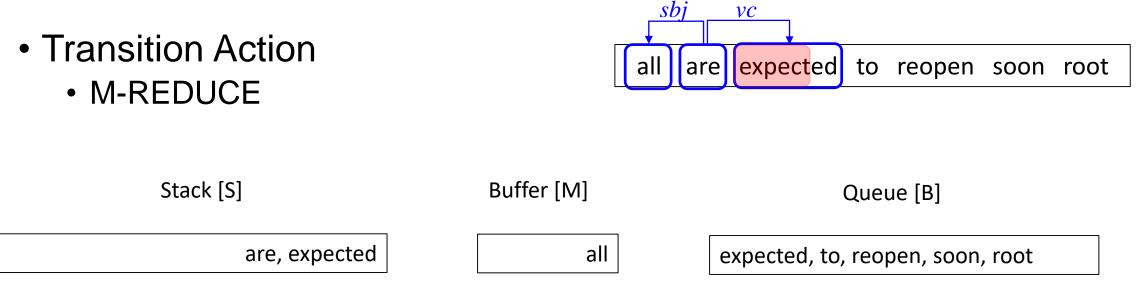
Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).



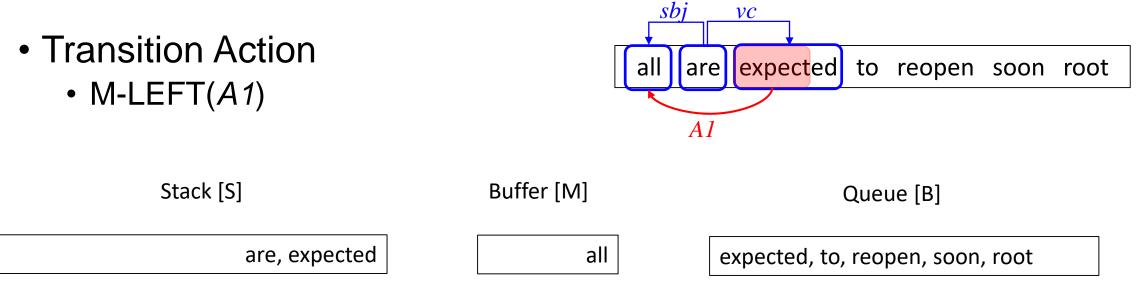
Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).



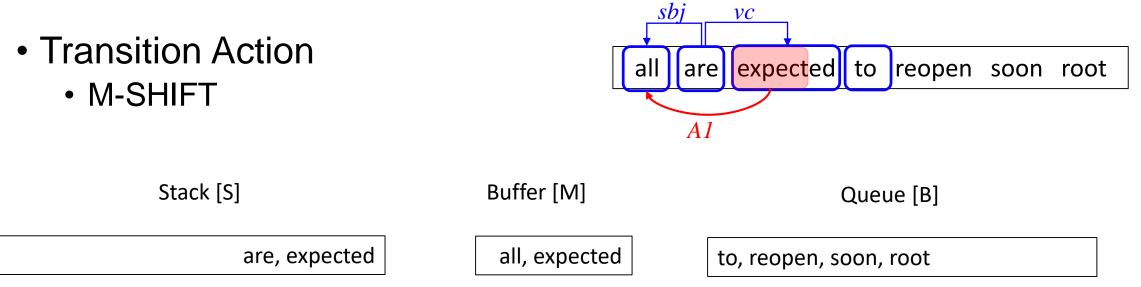
Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).



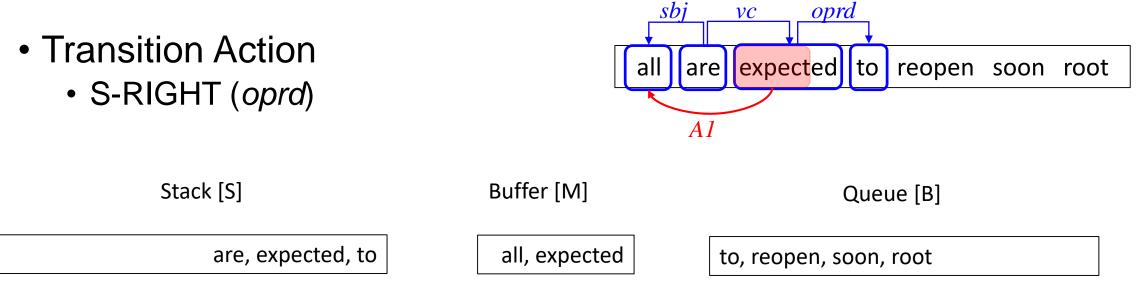
Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).



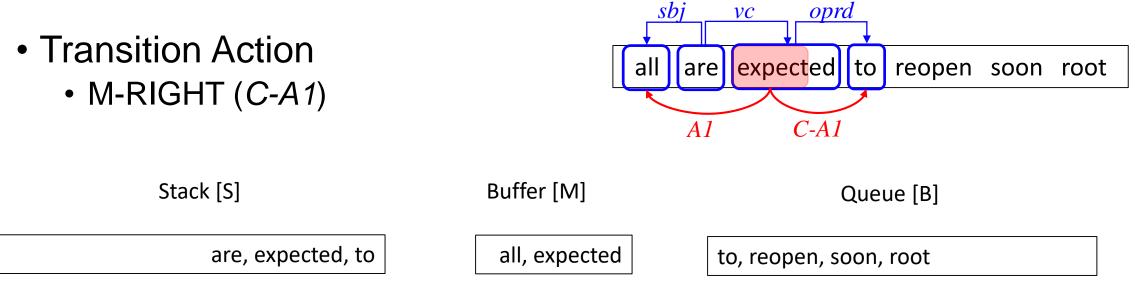
Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).



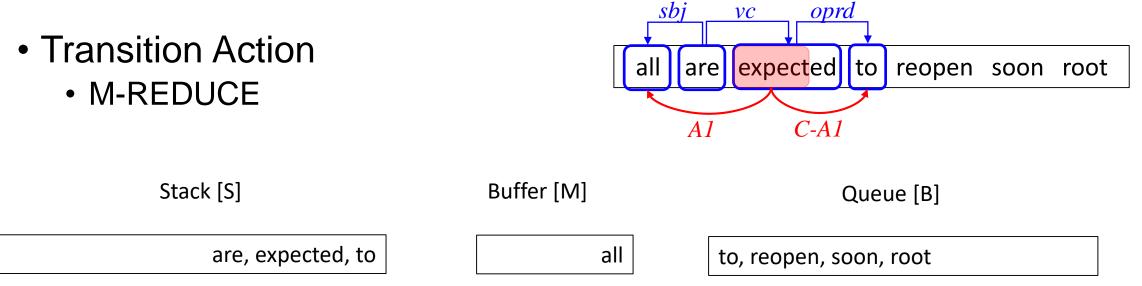
Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).



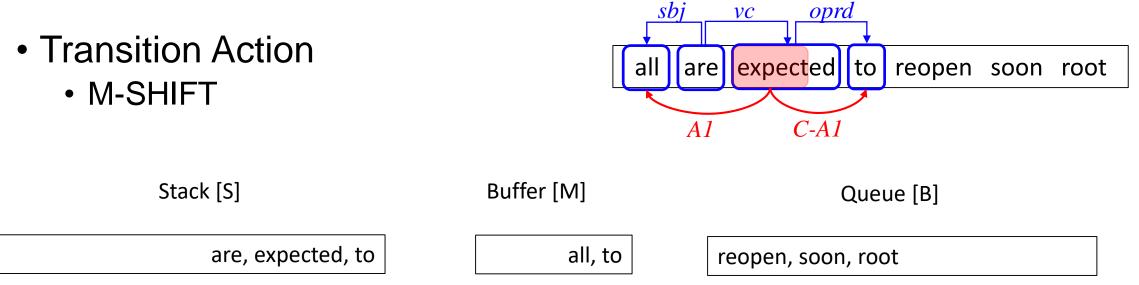
Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).



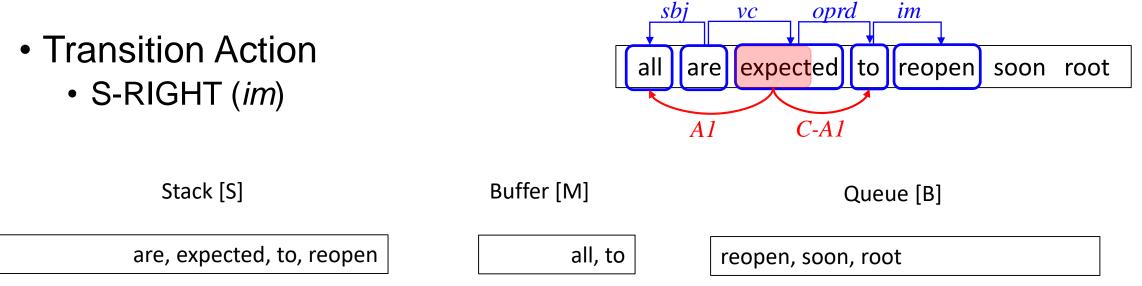
Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).



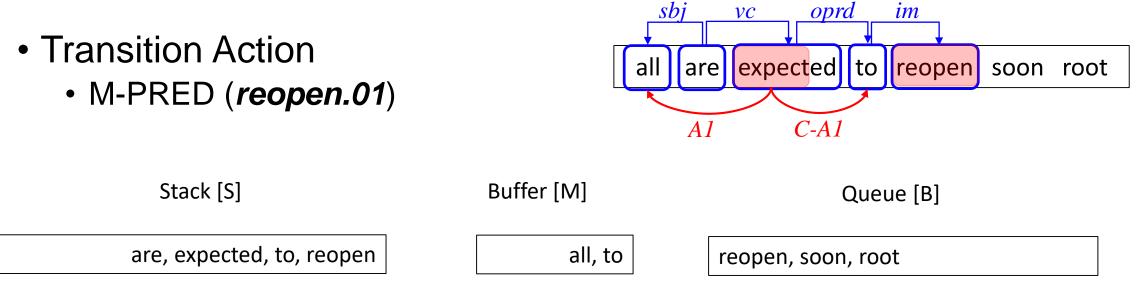
Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).



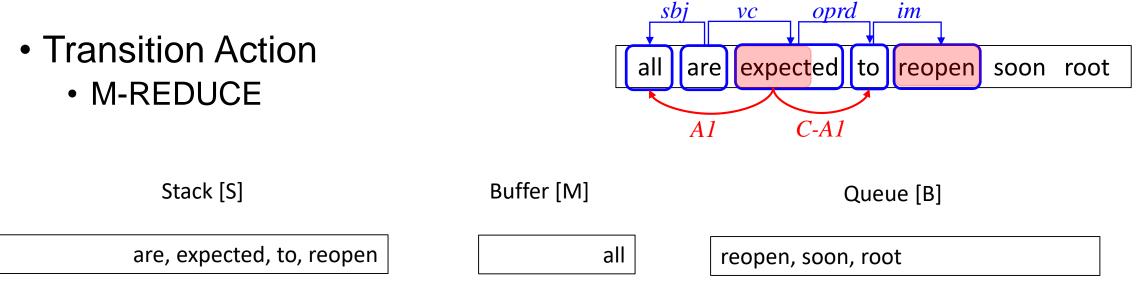
Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).



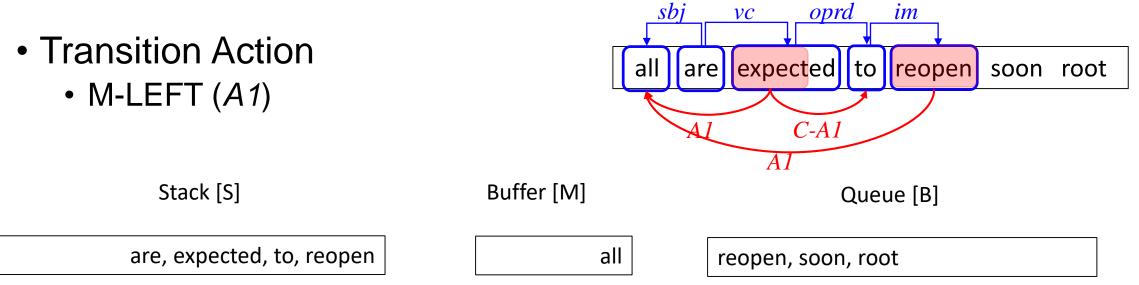
Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).



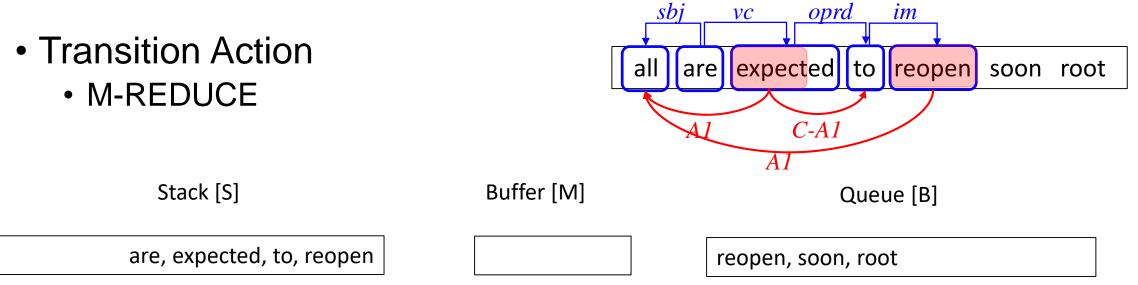
Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).



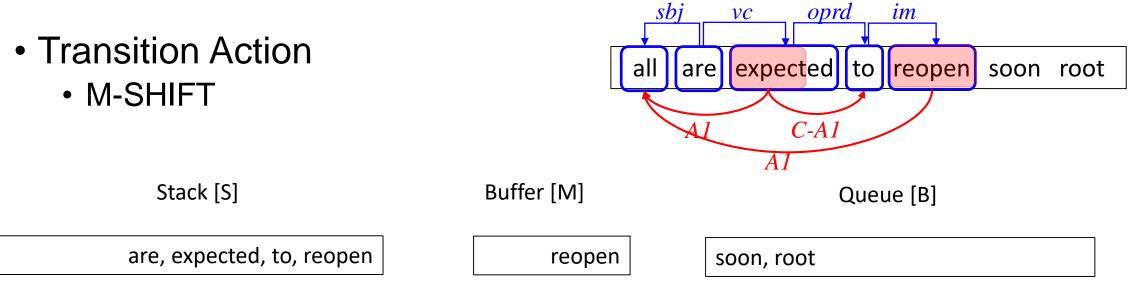
Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).



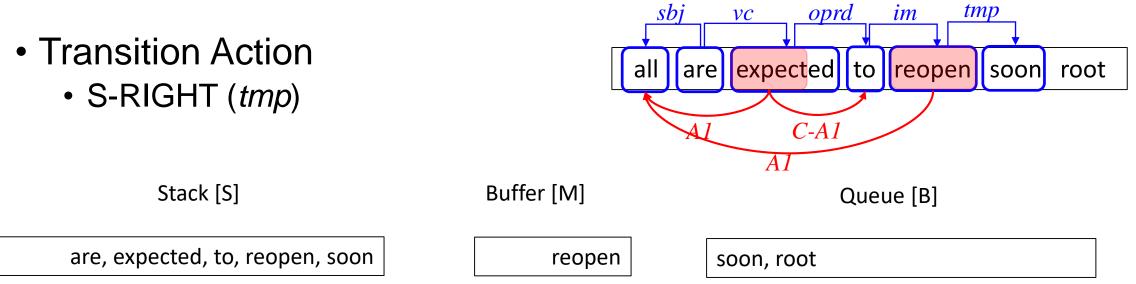
Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).



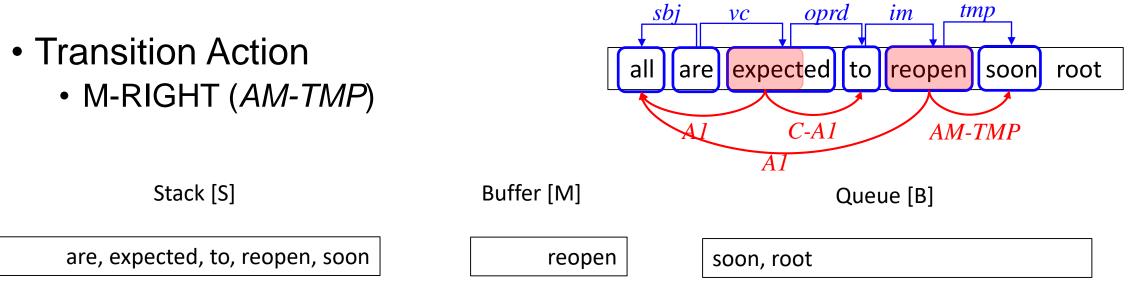
Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).



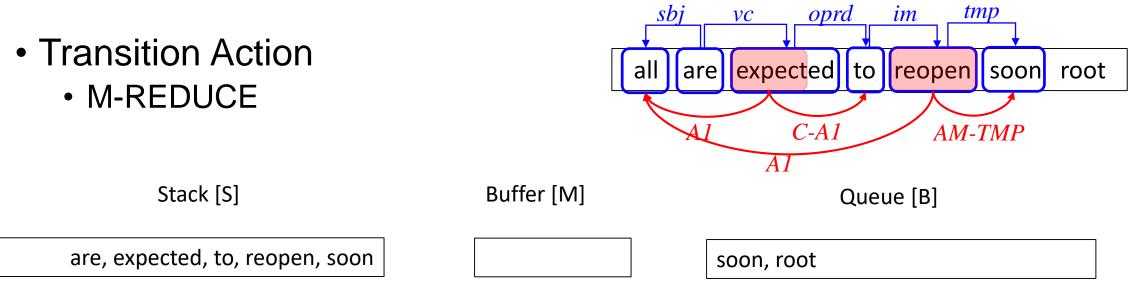
Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).



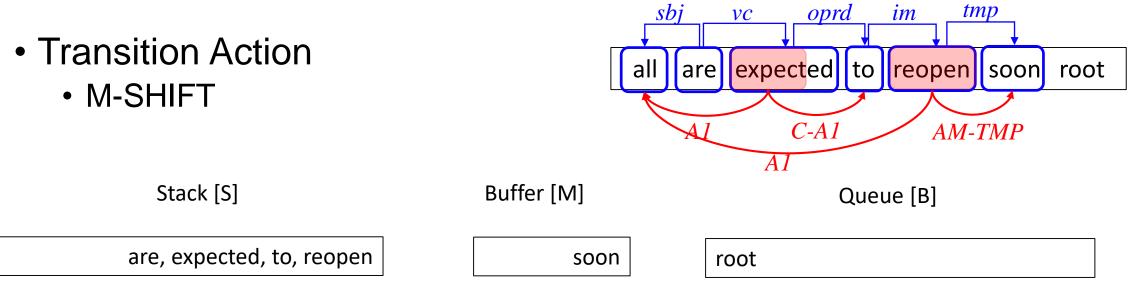
Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).



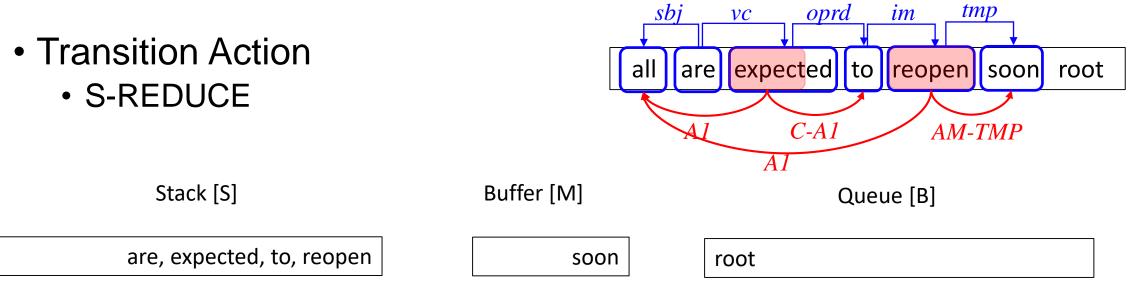
Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).



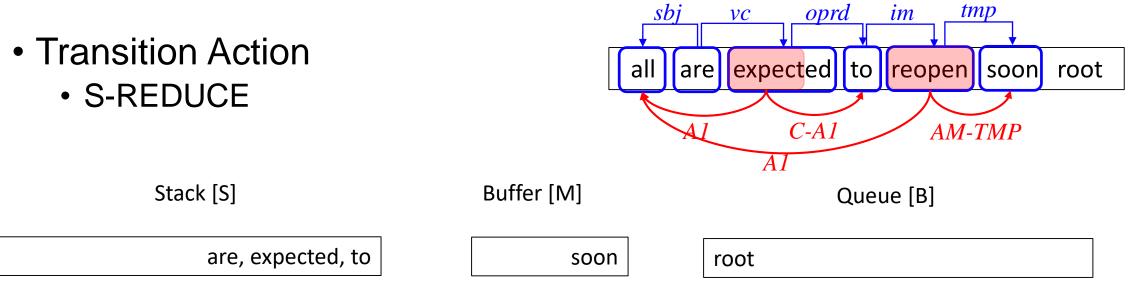
Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).



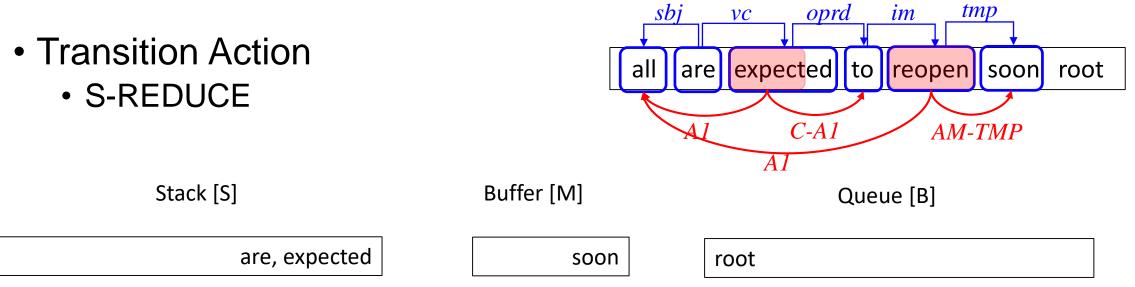
Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).



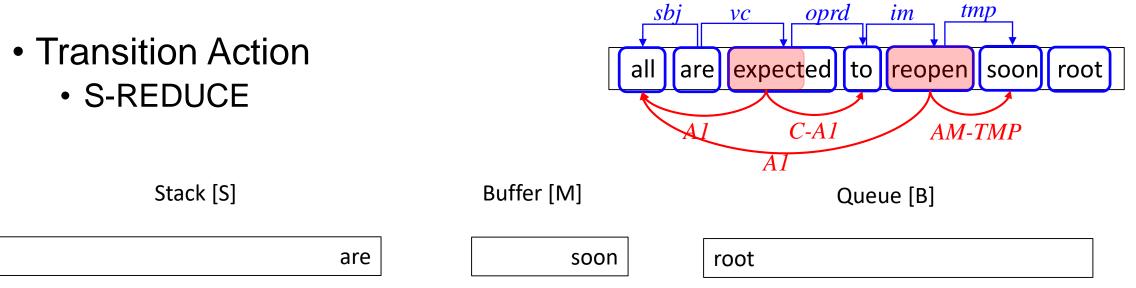
Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).



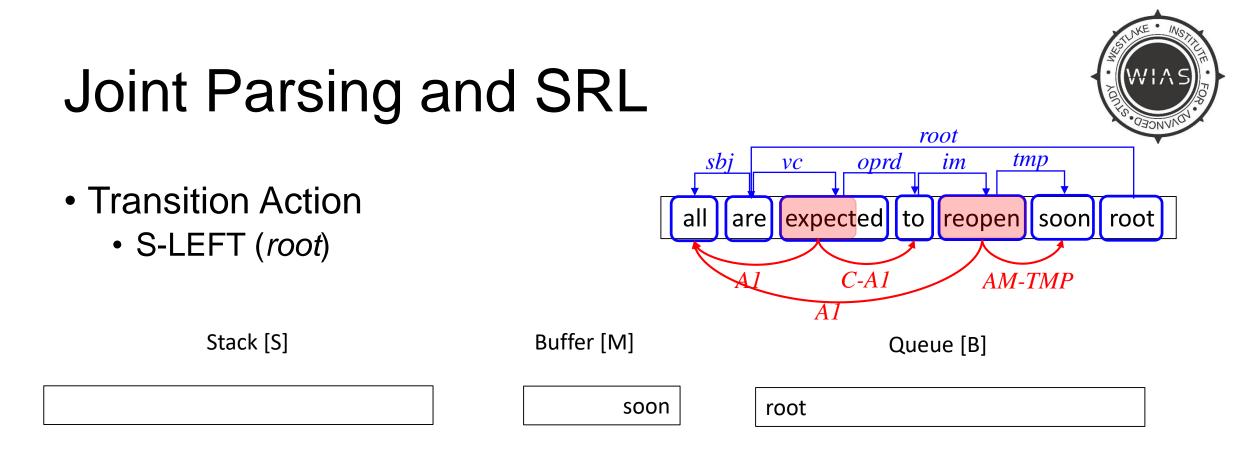
Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).



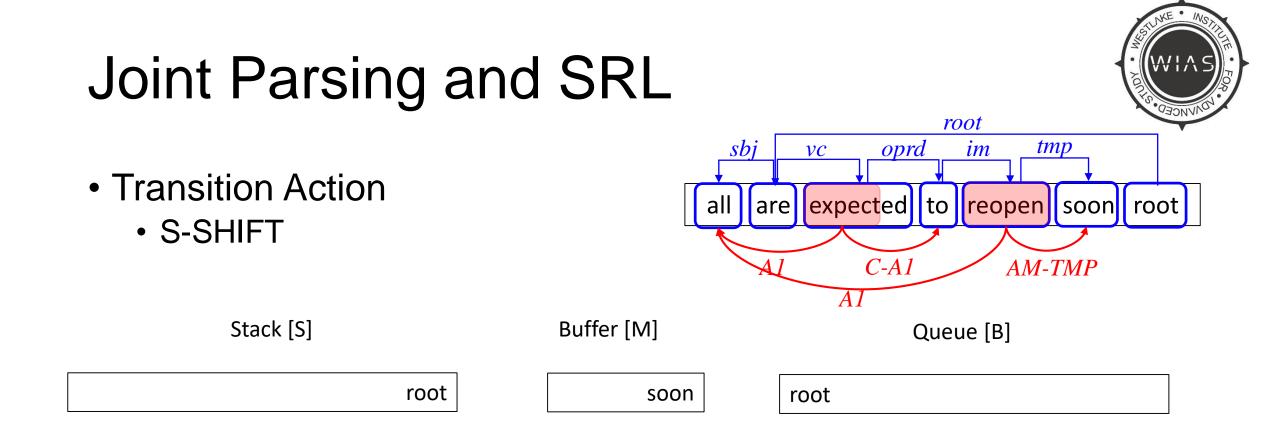
Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).



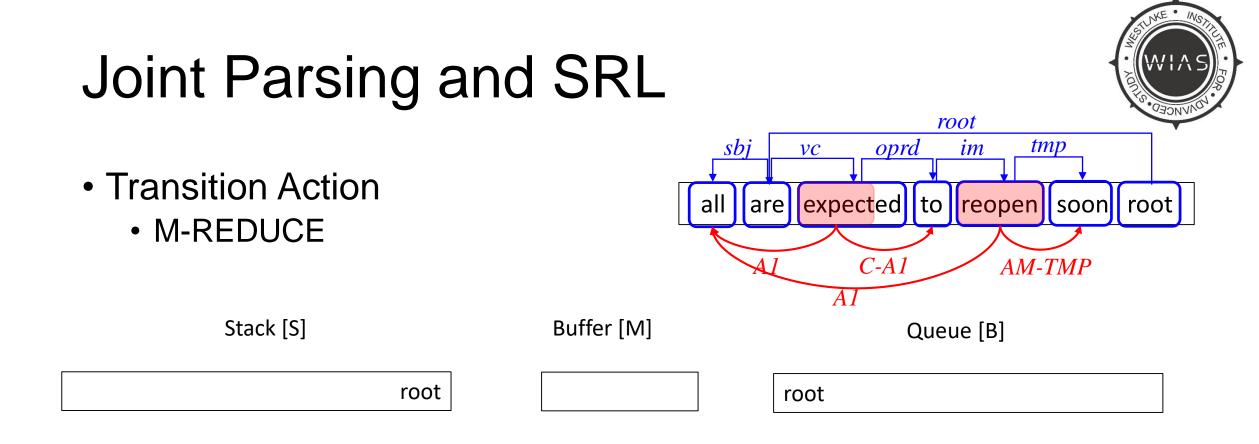
Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).



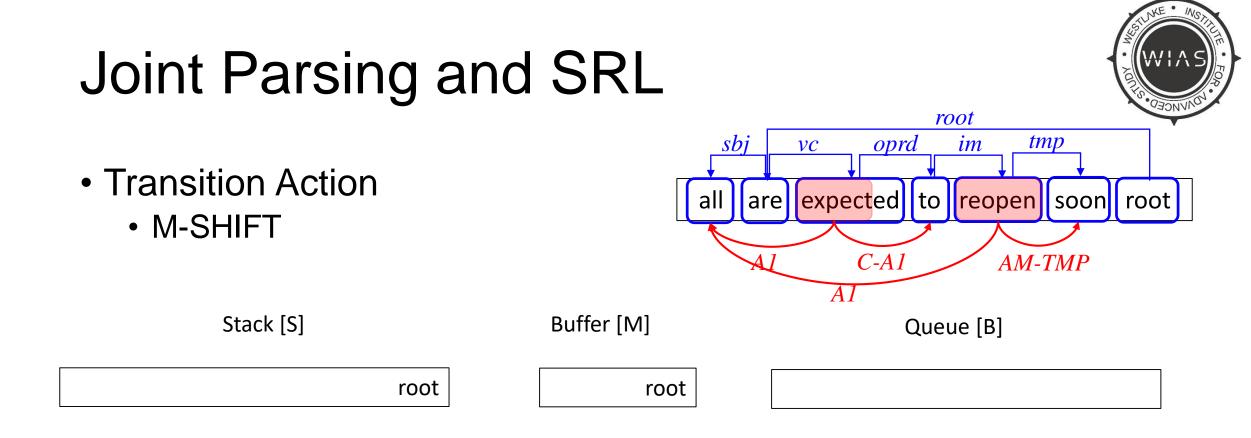
Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).



Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).



Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).



Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).

 Model \bigcirc 0 0 0 0 0 0 \bigcirc 0 0 0 \bigcirc B \bigcirc root soon reopen to 0 \bigcirc 0 0 0 0 0 0 \bigcirc S sbj are v expected 0 all \bigcirc are \bigcirc **S-RIGHT** (oprd) \bigcirc 0 0 0 0 0 \circ \bigcirc expect.01 all M0 all \bigcirc \bigcirc \bigcirc 0 0 0 0 0 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc M-PRED M-REDUCE M-SHIFT \bigcirc M-LEFT (expect.01) (A1)

Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).

Results on CONLL

Model	LAS	Sem.	Macro
		F_1	F_1
joint models:			
Lluís and Màrquez (2008)	85.8	70.3	78.1
Henderson et al. (2008)	87.6	73.1	80.5
Johansson (2009)	86.6	77.1	81.8
Titov et al. (2009)	87.5	76.1	81.8
CoNLL 2008 best:			
#3: Zhao and Kit (2008)	87.7	76.7	82.2
#2: Che et al. (2008)	86.7	78.5	82.7
#2: Ciaramita et al. (2008)	87.4	78.0	82.7
#1: J&N (2008)	89.3	81.6	85.5
Joint (this work)	89.1	80.5	84.9

Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).

• Joint VS Pipeline

Model	LAS	Sem. F_1	Sem. <i>F</i> ₁	Macro
		(WSJ)	(Brown)	F_1
CoNLL'09 best:				
#3 G+ '09	88.79	83.24	70.65	86.03
#2 C+ '09	88.48	85.51	73.82	87.00
#1 Z+ '09a	89.19	86.15	74.58	87.69
this work:				
Syntax-only	89.83			
Semonly		84.39	73.87	
Hybrid	89.83	84.58	75.64	87.20
Joint	89.94	84.97	74.48	87.45
pipelines:				
R&W '14		86.34	75.90	
L+ '15		86.58	75.57	
T+ '15		87.30	75.50	
F+ '15		87.80	75.50	

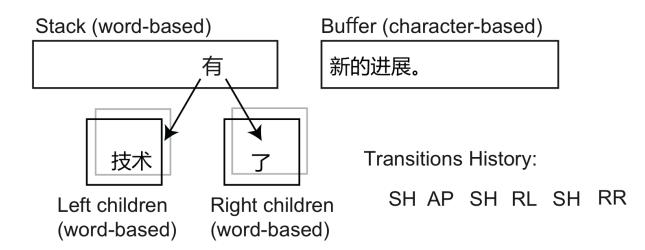
Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer and Noah A. Smith. Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs In proceedings of CoNLL (CoNLL 2016).

Joint Word Segmentation, POS Tagging and Dependency Parsing

Model

技术有了新的进展。

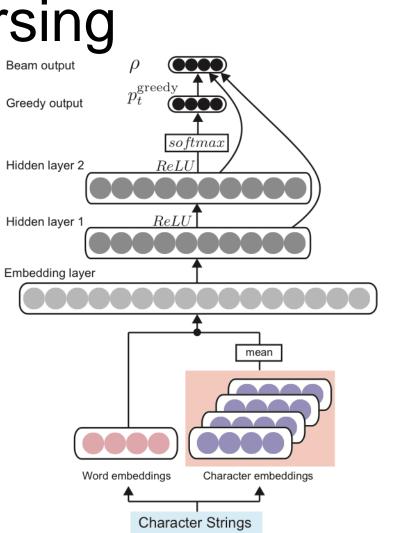
Technology have made new progress.



Kurita, Shuhei, Daisuke Kawahara, and Sadao Kurohashi. "Neural Joint Model for Transition-based Chinese Syntactic Analysis." *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.* Vol. 1. 2017.

Joint Word Segmentation, POS Tagging and Dependency Parsing

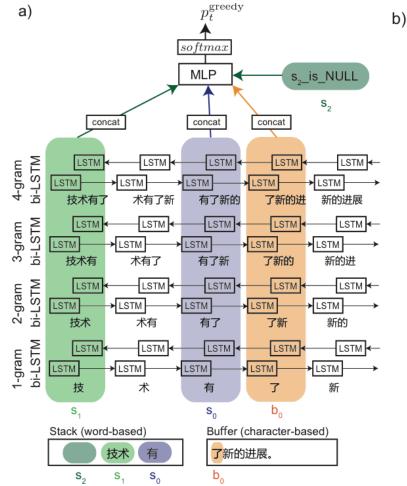
• Feed-forward NN model

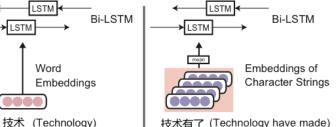


Kurita, Shuhei, Daisuke Kawahara, and Sadao Kurohashi. "Neural Joint Model for Transition-based Chinese Syntactic Analysis." *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.* Vol. 1. 2017.

Joint Word Segmentation, POS Tagging WINS and Dependency Parsing

The bi-LSTM model





技术有了 (Technology have made)

Kurita, Shuhei, Daisuke Kawahara, and Sadao Kurohashi. "Neural Joint Model for Transition-based Chinese Syntactic Analysis." Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Vol. 1. 2017.

Joint Word Segmentation, POS Tagging and Dependency Parsing

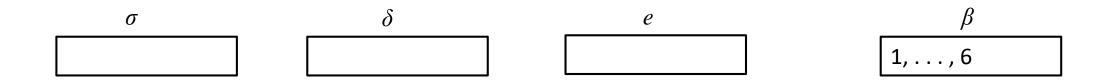
• Results on PTB

Model	Seg	POS	Dep
Hatori+12	97.75	94.33	81.56
M. Zhang+14 STD	97.67	94.28	81.63
M. Zhang+14 EAG	97.76	94.36	81.70
Y. Zhang+15	98.04	94.47	82.01
SegTagDep(g)	98.24	94.49	80.15
SegTagDep	98.37	94.83 [‡]	81.42 [‡]
SegTag+Dep	98.60 ‡	94.76 [‡]	82.60 [‡]

Kurita, Shuhei, Daisuke Kawahara, and Sadao Kurohashi. "Neural Joint Model for Transition-based Chinese Syntactic Analysis." *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics*. Vol. 1. 2017.

- Transition Actions
 - Initialization

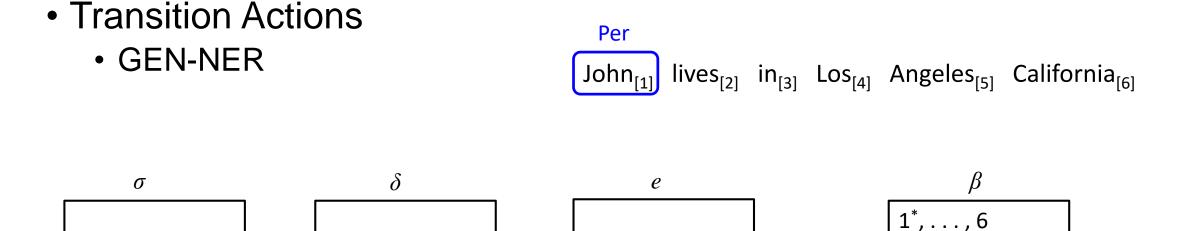
 $John_{[1]} lives_{[2]} in_{[3]} Los_{[4]} Angeles_{[5]} California_{[6]}$



Shaolei Wang, Yue Zhang, Wanxiang Che, Ting Liu. 2018. Joint Extraction of Entities and Relations Based on a Novel Graph Scheme. In Proceedings of 27th IJCAI-ECAI

- Transition Actions
 - GEN-SHIFT John_[1] lives_[2] in_[3] Los_[4] Angeles_[5] California_[6]

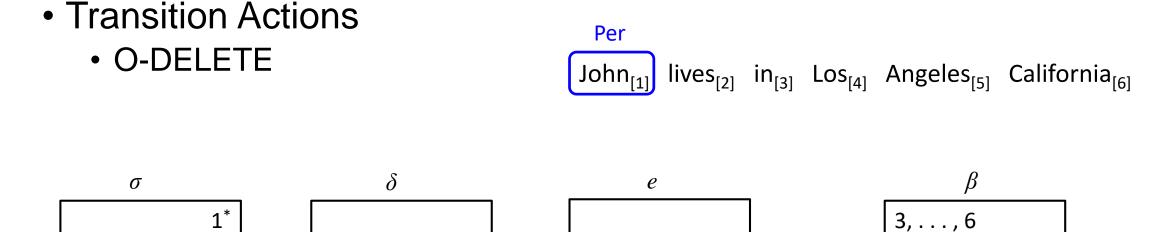
Shaolei Wang, Yue Zhang, Wanxiang Che, Ting Liu. 2018. Joint Extraction of Entities and Relations Based on a Novel Graph Scheme. In Proceedings of 27th IJCAI-ECAI



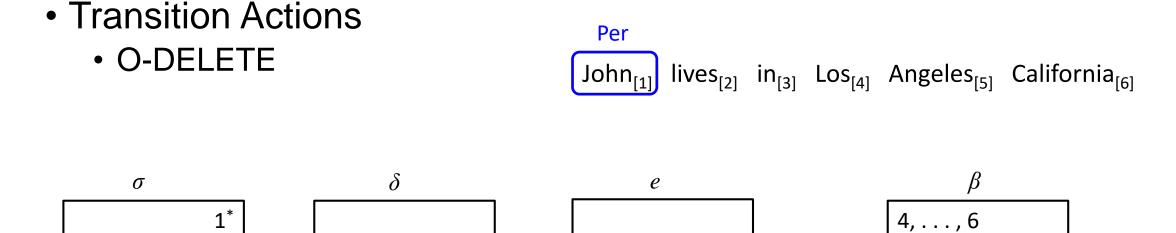
Shaolei Wang, Yue Zhang, Wanxiang Che, Ting Liu. 2018. Joint Extraction of Entities and Relations Based on a Novel Graph Scheme. In Proceedings of 27th IJCAI-ECAI

• Transition Actions • NO-SHIFT $Per \\ John_{[1]} lives_{[2]} in_{[3]} Los_{[4]} Angeles_{[5]} California_{[6]} \\ \hline 1^* \end{array}$

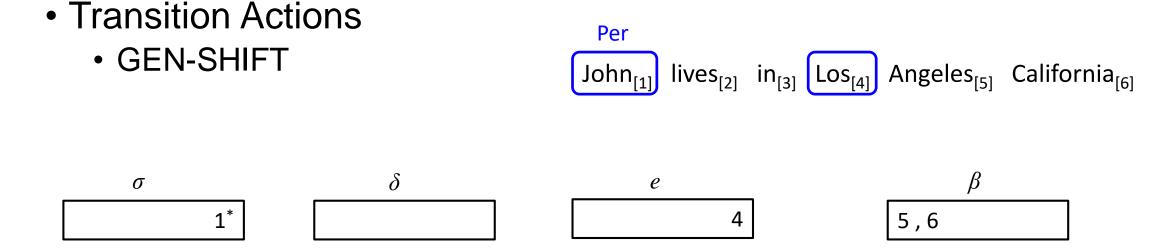
Shaolei Wang, Yue Zhang, Wanxiang Che, Ting Liu. 2018. Joint Extraction of Entities and Relations Based on a Novel Graph Scheme. In Proceedings of 27th IJCAI-ECAI



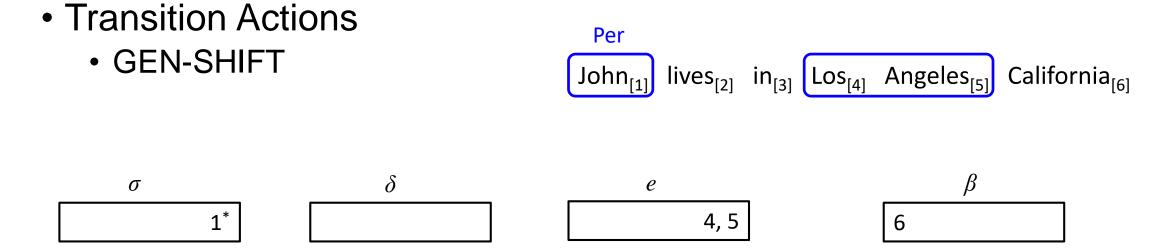
Shaolei Wang, Yue Zhang, Wanxiang Che, Ting Liu. 2018. Joint Extraction of Entities and Relations Based on a Novel Graph Scheme. In Proceedings of 27th IJCAI-ECAI



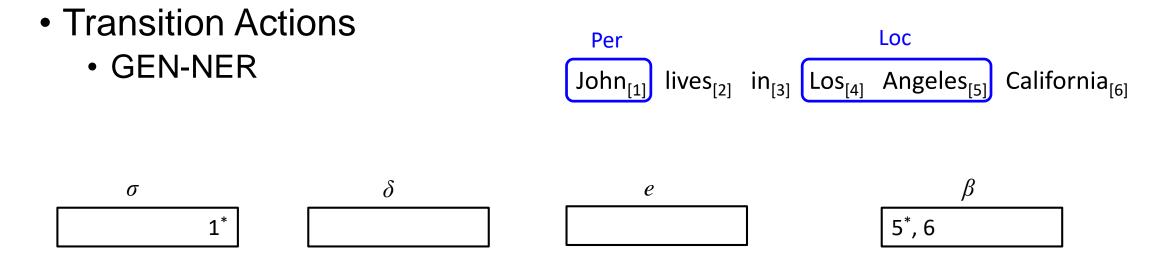
Shaolei Wang, Yue Zhang, Wanxiang Che, Ting Liu. 2018. Joint Extraction of Entities and Relations Based on a Novel Graph Scheme. In Proceedings of 27th IJCAI-ECAI



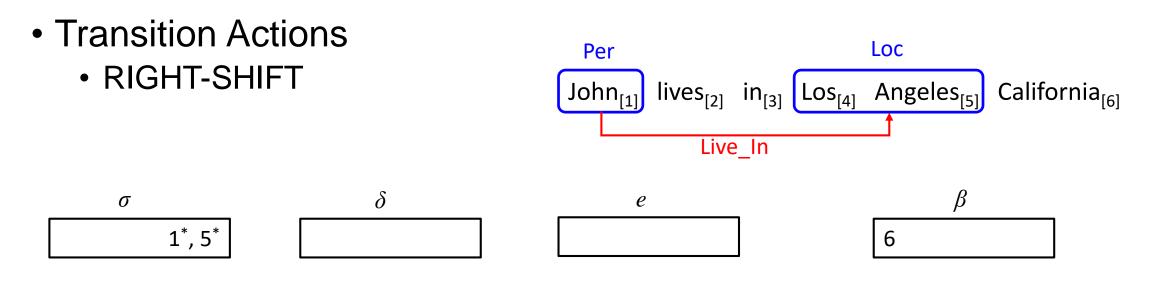
Shaolei Wang, Yue Zhang, Wanxiang Che, Ting Liu. 2018. Joint Extraction of Entities and Relations Based on a Novel Graph Scheme. In Proceedings of 27th IJCAI-ECAI



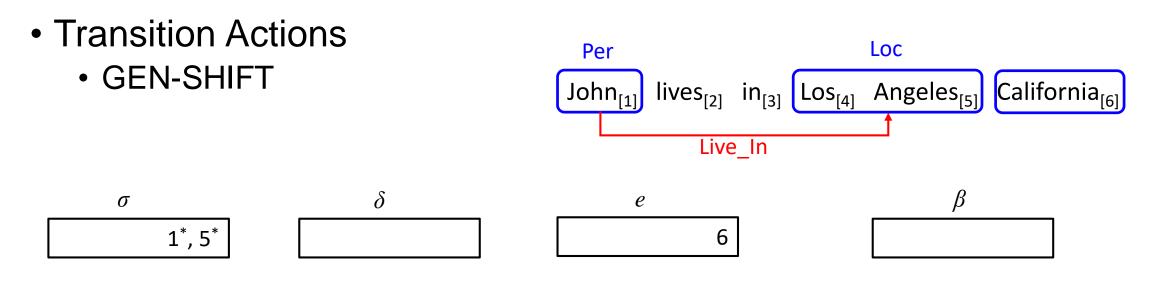
Shaolei Wang, Yue Zhang, Wanxiang Che, Ting Liu. 2018. Joint Extraction of Entities and Relations Based on a Novel Graph Scheme. In Proceedings of 27th IJCAI-ECAI



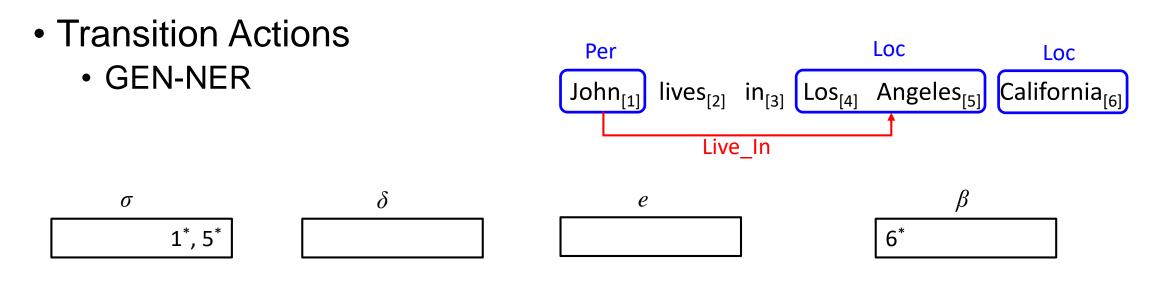
Shaolei Wang, Yue Zhang, Wanxiang Che, Ting Liu. 2018. Joint Extraction of Entities and Relations Based on a Novel Graph Scheme. In Proceedings of 27th IJCAI-ECAI



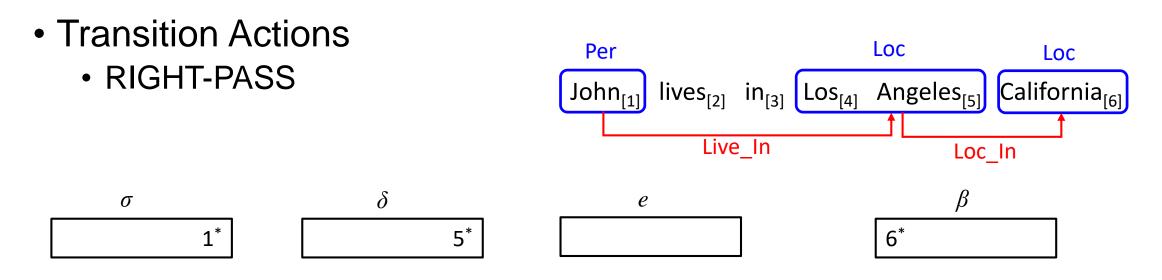
Shaolei Wang, Yue Zhang, Wanxiang Che, Ting Liu. 2018. Joint Extraction of Entities and Relations Based on a Novel Graph Scheme. In Proceedings of 27th IJCAI-ECAI



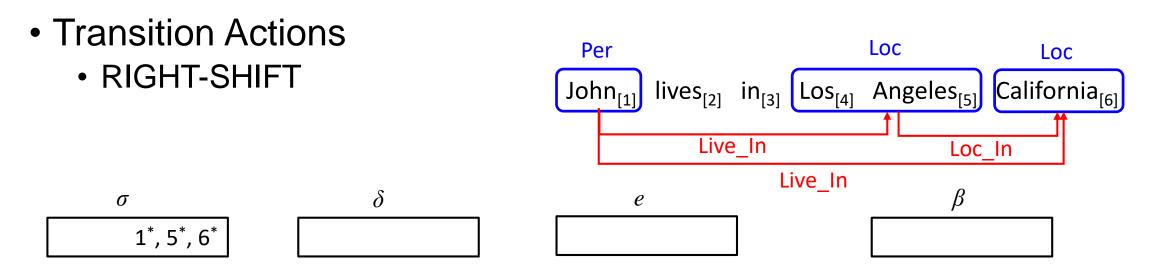
Shaolei Wang, Yue Zhang, Wanxiang Che, Ting Liu. 2018. Joint Extraction of Entities and Relations Based on a Novel Graph Scheme. In Proceedings of 27th IJCAI-ECAI



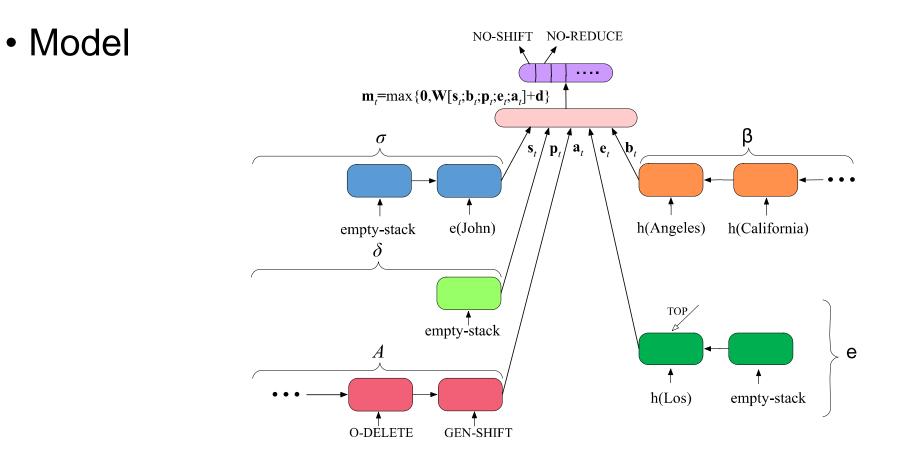
Shaolei Wang, Yue Zhang, Wanxiang Che, Ting Liu. 2018. Joint Extraction of Entities and Relations Based on a Novel Graph Scheme. In Proceedings of 27th IJCAI-ECAI



Shaolei Wang, Yue Zhang, Wanxiang Che, Ting Liu. 2018. Joint Extraction of Entities and Relations Based on a Novel Graph Scheme. In Proceedings of 27th IJCAI-ECAI



Shaolei Wang, Yue Zhang, Wanxiang Che, Ting Liu. 2018. Joint Extraction of Entities and Relations Based on a Novel Graph Scheme. In Proceedings of 27th IJCAI-ECAI



Shaolei Wang, Yue Zhang, Wanxiang Che, Ting Liu. 2018. Joint Extraction of Entities and Relations Based on a Novel Graph Scheme. In Proceedings of 27th IJCAI-ECAI

• Results on NYT

Method	Prec.	Rec.	F1
FCM [Gormley <i>et al.</i> , 2015]	55.3	15.4	24.0
DS+logistic [Mintz et al., 2009]	25.8	39.3	31.1
LINE [Tang et al., 2015]	33.5	32.9	33.2
MultiR [Hoffmann et al., 2011]	33.8	32.7	33.3
DS-Joint [Li and Ji, 2014]	57.4	25.6	35.4
CoType [Ren et al., 2017]	42.3	51.1	46.3
LSTM-LSTM-Bias	61.5	41.4	49.5
LSTM-LSTM-Bias*	60.8	41.3	49.1
Our Method	64.3	42.1	50.9

Shaolei Wang, Yue Zhang, Wanxiang Che, Ting Liu. 2018. Joint Extraction of Entities and Relations Based on a Novel Graph Scheme. In Proceedings of 27th IJCAI-ECAI

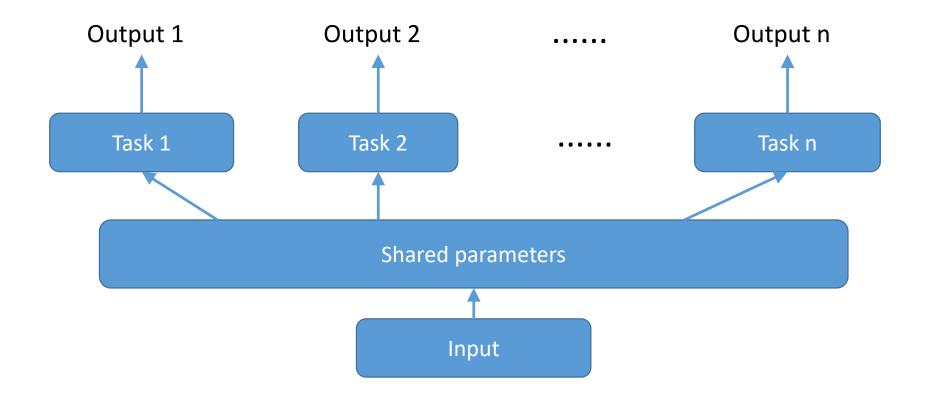
Deep Learning Models

- Neural Transition-based Models
- Neural Graph-based Models (Multi-task Learning)
 - Cross Task
 - Cross Lingual
 - Cross Domain
 - Cross Standard

Deep Learning Models

 Neural Transition-based Models separate Search • Neural Graph-based Models (Multi- Cross Task Cross Lingual Joint Learning Cross Dop

Neural Graph-based Models (Multi-task Learning)



Neural Graph-based Models (Multi-task Learning)

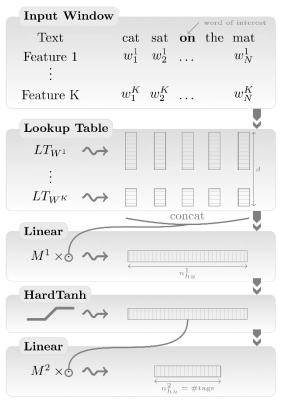
- Cross Task
- Cross Lingual
- Cross Domain
- Cross Standard

Neural Graph-based Models (Multi-task Learning)

- Cross Task
- Cross Lingual
- Cross Domain
- Cross Standard

Joint Tagging, Chunking and NER

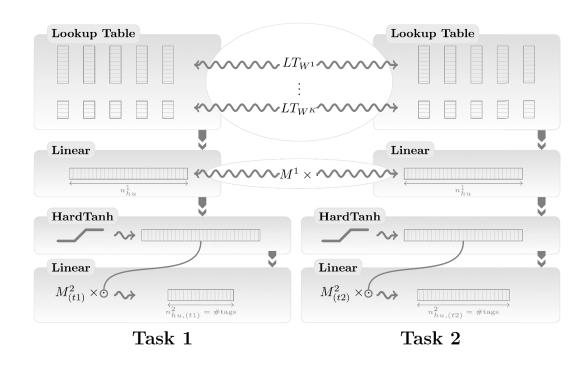
Seminal work in NLP



Collobert, Ronan, et al. "Natural language processing (almost) from scratch." *Journal of Machine Learning Research* 12.Aug (2011): 2493-2537.

Joint Tagging, Chunking and NER

- Multitasking between Tagging, Chunking and NER
 - Share lookup table
 - Share first linear layers



Collobert, Ronan, et al. "Natural language processing (almost) from scratch." *Journal of Machine Learning Research* 12.Aug (2011): 2493-2537.

Joint Tagging, Chunking and NER

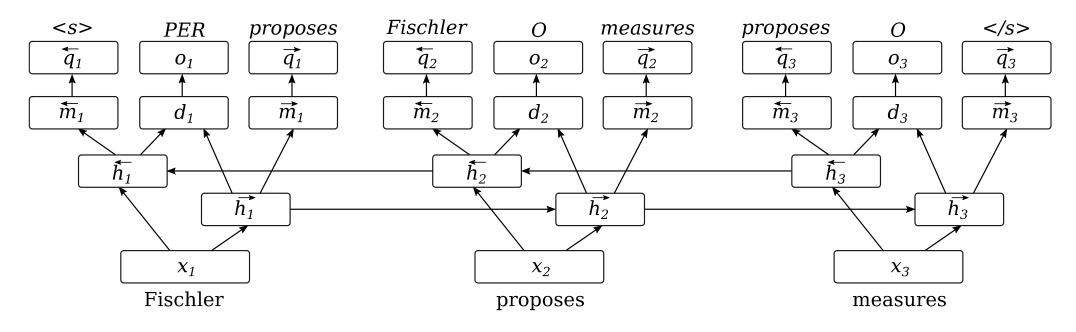
Results

Approach	POS	CHUNK	NER	
	(PWA)	(F1)	(F1)	
Benchmark Systems	97.24	94.29	89.31	
	Window Approach			
NN+SLL+LM2	97.20	93.63	88.67	
NN+SLL+LM2+MTL	97.22	94.10	88.62	

Collobert, Ronan, et al. "Natural language processing (almost) from scratch." *Journal of Machine Learning Research* 12.Aug (2011): 2493-2537.

NER and Language Modelling

• Model



Rei, Marek. "Semi-supervised Multitask Learning for Sequence Labeling.", In proceedings of ACL (2017).

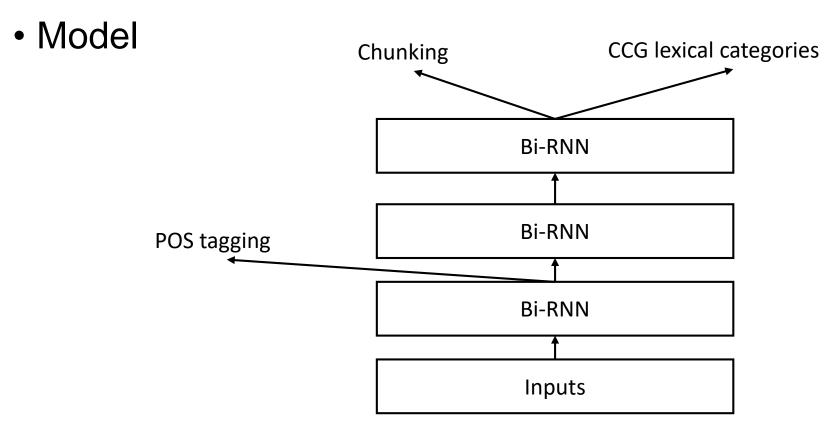
NER and Language Modelling

Results

	CoNLL-00		CoNLL-03		CHEMDNER		JNLPBA	
	DEV	TEST	DEV	TEST	DEV	TEST	DEV	TEST
Baseline	92.92	92.67	90.85	85.63	83.63	84.51	77.13	72.79
+ dropout	93.40	93.15	91.14	86.00	84.78	85.67	77.61	73.16
+ LMcost	94.22	93.88	91.48	86.26	85.45	86.27	78.51	73.83

Rei, Marek. "Semi-supervised Multitask Learning for Sequence Labeling.", In proceedings of ACL (2017).

Joint POS tagging/Chunking and CCG Super Tagging



Søgaard, Anders, and Yoav Goldberg. "Deep multi-task learning with low level tasks supervised at lower layers." Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Vol. 2. 2016.

Joint POS tagging/Chunking and CCG Super Tagging

Results

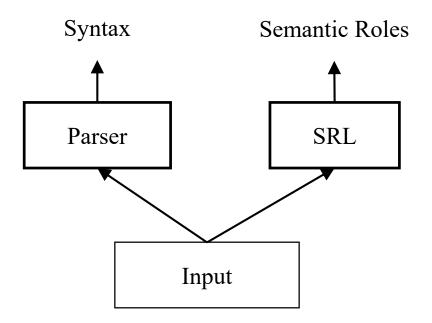
	POS	CHUNKS	CCG
BI-LSTM	-	95.28	91.04
	3	95.30	92.94
	1	95.56	93.26

• Additional tasks such as NER do not benefit from multi-task learning

Søgaard, Anders, and Yoav Goldberg. "Deep multi-task learning with low level tasks supervised at lower layers." Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Vol. 2. 2016.

Joint Parsing and SRL

Share only the embedding layer



Peng Shi, Zhiyang Teng and Yue Zhang. *Exploiting Mutual Benefits between Syntax and Semantic Roles using Neural Network*. In Proceeddings of EMNLP 2016.

Joint Parsing and SRL

Results on CONLL

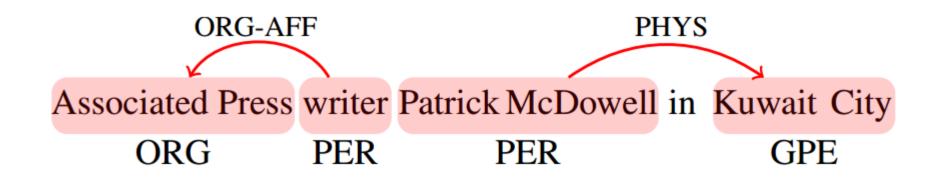
Model	$\mathbf{F_1}$	UAS	LAS
Bi-LSTM	72.71	-	-
S-LSTM	-	84.33	82.10
DEP→SRL(<i>lab/lstm</i>)	73.00/ 74.18	84.33	82.10
SRL→DEP	72.71	84.75	82.62
Joint	73.84	85.15	82.91

• Sharing more layers have mixed results

Peng Shi, Zhiyang Teng and Yue Zhang. *Exploiting Mutual Benefits between Syntax and Semantic Roles using Neural Network*. In Proceeddings of EMNLP 2016. *Peng Shi and Yue Zhang, Joint Bi-Affine Parsing and Semantic Role Labeling, IALP 2017, Best Paper*

Joint Entity and Relation Extraction

Task



Miwa, Makoto, and Mohit Bansal. "End-to-end relation extraction using lstms on sequences and tree structures." In proceedings of ACL (2016).

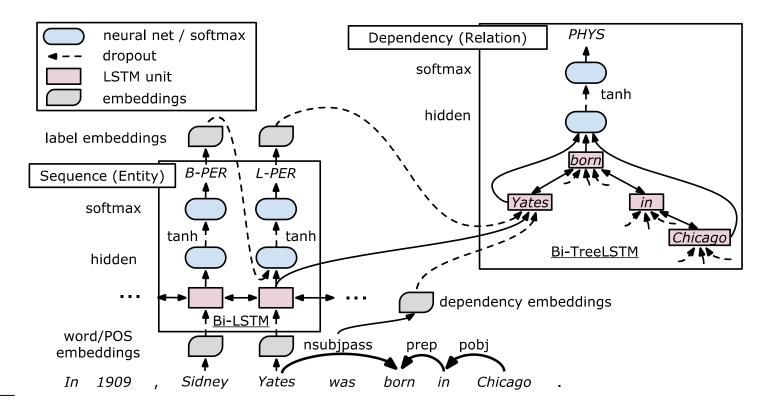
Joint Entity and Relation Extraction

• Table-Filling

	Associated	Press	writer	Patrick	McDowell	in	Kuwait	City
Associated	1 B-ORG	9⊥	16 🔟	22 ⊥	27 ⊥	31 ⊥	34 ⊥	36 ⊥
Press		2 L-ORG	10 ORG-AFF	17 ⊥	23 ⊥	28 ⊥	32 ⊥	35 ⊥
writer			3 U-PER	11 ⊥	18 🔟	24 ⊥	29 ⊥	33 ⊥
Patrick				4 B-PER	12 ⊥	19 🔟	25 ⊥	30 ⊥
McDowell					5 L-PER	13 ⊥	20 ⊥	26 PHYS
in						<u>6 O</u>	14 ⊥	21 ⊥
Kuwait							7 B-GPE	15 ⊥
City								8 L-GPE

Miwa, Makoto, and Mohit Bansal. "End-to-end relation extraction using lstms on sequences and tree structures." In proceedings of ACL (2016).

Share RNN hidden layers



Miwa, Makoto, and Mohit Bansal. "End-to-end relation extraction using lstms on sequences and tree structures." In proceedings of ACL (2016).

Results on ACE

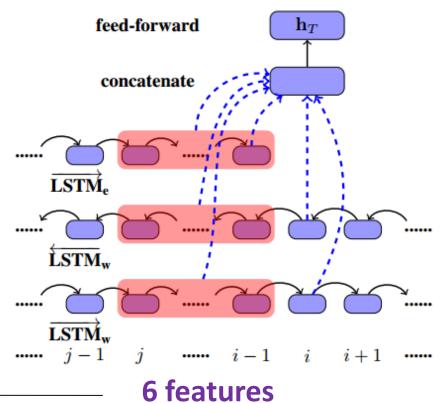
Settings	Macro-F1						
No External Knowledge Resources							
Our Model (SPTree)	0.844						
dos Santos et al. (2015)	0.841						
Xu et al. (2015a)	0.840						
+WordNet							
Our Model (SPTree + WordNet)	0.855						
Xu et al. (2015a)	0.856						
Xu et al. (2015b)	0.837						

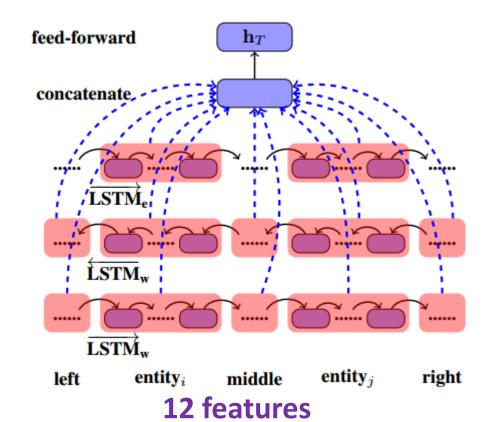
Miwa, Makoto, and Mohit Bansal. "End-to-end relation extraction using lstms on sequences and tree structures." In proceedings of ACL (2016).

Beam Search with Global Learning

- Novel Syntactic Features
 - Without any background on syntactic grammars

Share RNN Encoding Layers





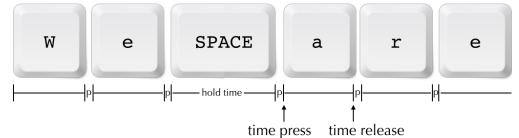
Zhang, Meishan, et al. "End-to-End Neural Relation Extraction with Global Optimization." EMNLP, 2017.

Results on ACE05

Model	Beam	Relation F1
Local	1	50.9
Local(+SS)	1	51.2
	1	51.4
Global	3	51.8
	5	52.6

Keystroke and Shallow Syntactic Parsing

Keystroke Logging



Pause (m s): 0 96 496 30769 96 2144 96 80 2975 240 680	Token:	[Coef fi cient	of	determ ination]	[is	a]	[m easure	used	in]	[statisitcal	model]	[analysis]
	Pause (m s):	0	96	496	30769	96	2144	96	80	2975	240	680

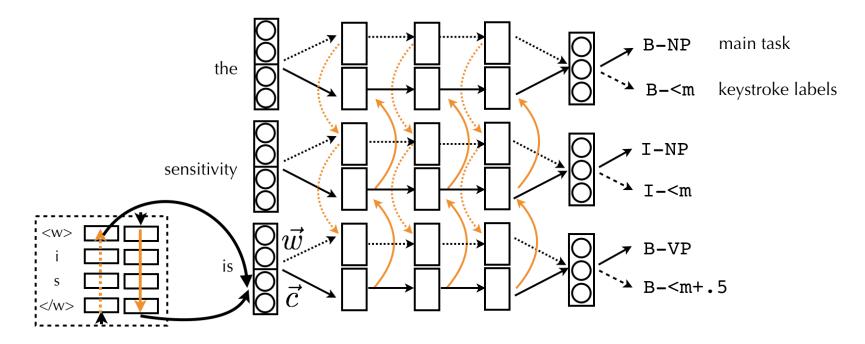
B - < m	B- <m+1< th=""><th>B-<m< th=""><th> I−<m< th=""><th>B-<m+.5< th=""><th>I-<m+.5< th=""><th>$B \rightarrow m+1$</th></m+.5<></th></m+.5<></th></m<></th></m<></th></m+1<>	B- <m< th=""><th> I−<m< th=""><th>B-<m+.5< th=""><th>I-<m+.5< th=""><th>$B \rightarrow m+1$</th></m+.5<></th></m+.5<></th></m<></th></m<>	I− <m< th=""><th>B-<m+.5< th=""><th>I-<m+.5< th=""><th>$B \rightarrow m+1$</th></m+.5<></th></m+.5<></th></m<>	B- <m+.5< th=""><th>I-<m+.5< th=""><th>$B \rightarrow m+1$</th></m+.5<></th></m+.5<>	I- <m+.5< th=""><th>$B \rightarrow m+1$</th></m+.5<>	$B \rightarrow m+1$
the	closer	the	num ber	is	to	1

Aggregate statistics

Barbara Plank. Keystroke dynamics as signal for shallow syntactic parsing. The 26th International Conference on Computational Linguistics (COLING). Osaka, Japan.

Keystroke and Shallow Syntactic Parsing

Model



Barbara Plank. Keystroke dynamics as signal for shallow syntactic parsing. The 26th International Conference on Computational Linguistics (COLING). Osaka, Japan.

Keystroke and Shallow Syntactic Parsing

Results

sentences	TRAIN	Dev	Test
CONLL 2000	8936		2012
Foster	_	269	250
RITTER	_		2364
CCG	39604	1913	2407

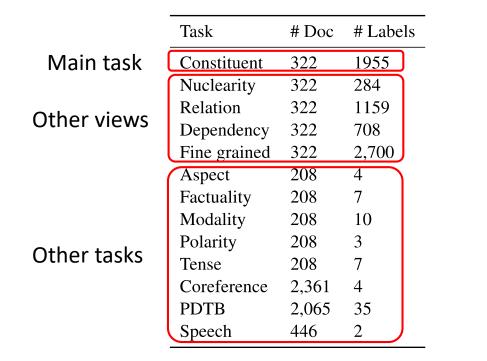
	Foster.dev	Foster.test	RITTER	CCG
Baseline +PAUSE		73.61 74.32 [†]	66.65 66.91 †	92.41 92.62 [†]
<i>p</i> -values	< 0.01	< 0.01	< 0.01	< 0.048

Chunking and CCG data

Barbara Plank. Keystroke dynamics as signal for shallow syntactic parsing. The 26th International Conference on Computational Linguistics (COLING). Osaka, Japan.

RST Discourse Parser

Many tasks





Braud, Chloé, Barbara Plank, and Anders Søgaard. "Multi-view and multi-task training of RST discourse parsers." Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers. 2016.

RST Discourse Parser

• Results on RST Discourse Treebank

System	RSTFin	Fact	Speech	A sp	RSTDep	Nuc+lab	M od	Pol	PD TB	Coref	Ten	Span	N uclearity	R elation
						Prior w or	rk							
DPLP concat	-	_	-	-	_	_	-	_	-	-	-	82.08	71.13	61.63
DPLP general	-	-	-	-	-	-	-	-	-	_	-	81.60	70.95	61.75
0 ur w ork														
H ier-LSTM	_	-	-	_	_	_	-	-	-	-	-	81.39	64.54	49.15
M TL-H ier-LSTM	v	_	_	_	_	_	_	_	_	-	_	82.88	67.46	53.25
M TL-H ier-LSTM	-	\checkmark	_	-	-	-	-	-	_	_	_	83.40	67.16	52.10
M TL-H ier-LSTM	-	-	\checkmark	-	-	-	-	-	-	-	-	83.26	67.51	51.75
M TL-H ier-LSTM	-	-	_	\checkmark	-	-	_	_	_	_	_	83.69	66.25	51.25
M TL-H ier-LSTM	-	_	_	_	\checkmark	-	_	_	_	-	_	81.25	65.34	51.24
M TL-H ier-LSTM	-	-	_	-	_	\checkmark	_	_	_	_	-	82.09	65.68	51.12
M TL-H ier-LSTM	-	-	_	-	-	-	\checkmark	-	_	_	_	81.66	65.31	50.58
M TL-H ier-LSTM	-	-	_	-	-	_	_	\checkmark	_	_	-	82.01	65.29	50.11
M TL-H ier-LSTM	-	-	_	_	-	-	-	-	\checkmark	_	_	81.61	63.10	48.89
M TL-H ier-LSTM	-	-	-	-	-	-	-	-	_	\checkmark	-	80.26	63.35	47.70
M TL-H ier-LSTM	-	-	-	_	-	-	-	-	-	-	\checkmark	81.33	62.34	47.57
Best com bination	-	_	-	_	√	√	✓	_	\checkmark	-	_	83.62	69.77	55.11
H um an annotation	_	_	_	_	_	_	-	_	-	-	-	88.70	77.72	65.75

Braud, Chloé, Barbara Plank, and Anders Søgaard. "Multi-view and multi-task training of RST discourse parsers." Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers. 2016.

Identifying beneficial task relations

• Not all tasks are mutually beneficial !

CCG Tagging
ChunkingCCG1.4ChunkingCHU0.0521.3Sentence Compression
Semantic frames
POS tagging
Hyperlink Prediction
Keyphrase Detection
MWE Detection
Super-sense TaggingFNT5.81.1MWE124.92.94.92.9MWEDetection
Super-sense TaggingMWE1.23.2SIR1.71.53.23.2

	CCG	CHU	COM	FNT	POS	HYP	KEY	MWE	SEM	STR
CCG		1.4	0.45	0.58	1.8	0.24	0.3	0.45	1.4	0.84
CHU	-0.052		-0.15	-0.12	-0.45	-0.5	-0.22	-0.27	-0.099	-0.32
COM	-5	1.3		1.3	-1.4	-2.4	-4.8	0.82	-3	-0.63
FNT	-5.8	-1	-6.1		-9.4	-5.7	-3.6	-9.4	-3	-0.68
POS	4.9	2.9	1.9	0.9		-0.85	-0.26	1.3	3.4	2.9
HYP	12	4	-11	9.2	22		1.5	-7.7	23	8.1
KEY	5.7	3.2	-1	-0.43	-1.3	-2.6		-4.7	0.59	0.69
MWE	18	20	7.4	5.5	1.6	-3.8	-5.8		16	8.6
SEM	-5	-0.76	-1.2	-0.81	-0.85	-1.3	-0.83	-1.1		-1.7
STR	-1.7	1.5	-0.26	-0.72	0.037	-1.5	-1.4	-1.6	1.7	

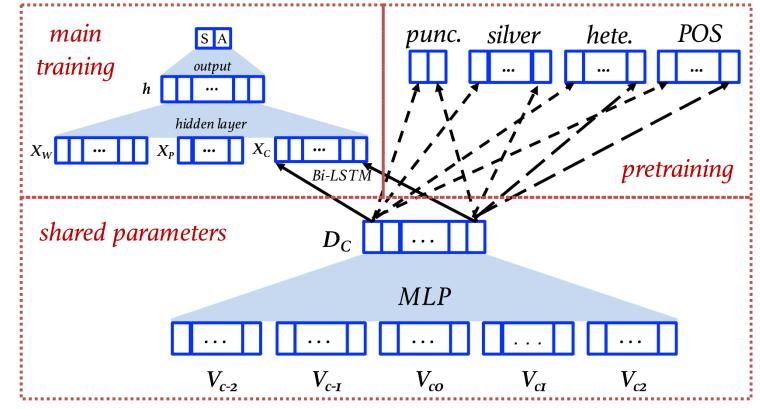
Bingel, Joachim, and Anders Søgaard. "Identifying beneficial task relations for multi-task learning in deep neural networks." arXiv preprint arXiv:1702.08303 (2017).

Hector Mart ´´ınez Alonso and Barbara Plank. 2017. Multitask learning for semantic sequence prediction under varying data conditions. In EACL.

Mou, Lili, et al. "How transferable are neural networks in nlp applications?." arXiv preprint arXiv:1603.06111 (2016).

Pretraining: Word Segmentation

• Rich Multi-task pretraining of character window representations



Jie Yang, Yue Zhang, Fei Dong. Neural Word Segmentation with Rich Pretraining. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (2017)

Pretraining: Word Segmentation

Results

Models	Р	R	F
Baseline	95.3	95.5	95.4
Punc. pretrain	96.0	95.6	95.8
Auto-seg pretrain	95.8	95.6	95.7
Multitask pretrain	96.4	96.0	96.2
Sun and Xu (2011) baseline	95.2	94.9	95.1
Sun and Xu (2011) multi-source semi	95.9	95.6	95.7
Zhang et al. (2016b) neural	95.3	94.7	95.0
Zhang et al. (2016b)* hybrid	96.1	95.8	96.0
Chen et al. (2015a) window	95.7	95.8	95.8
Chen et al. (2015b) char LSTM	96.2	95.8	96.0
Zhang et al. (2014) POS and syntax	—	_	95.7
Wang et al. (2011) statistical semi	95.8	95.8	95.8
Zhang and Clark (2011) statistical	95.5	94.8	95.1

Jie Yang, Yue Zhang, Fei Dong. Neural Word Segmentation with Rich Pretraining. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (2017)

Pretraining: Word Segmentation

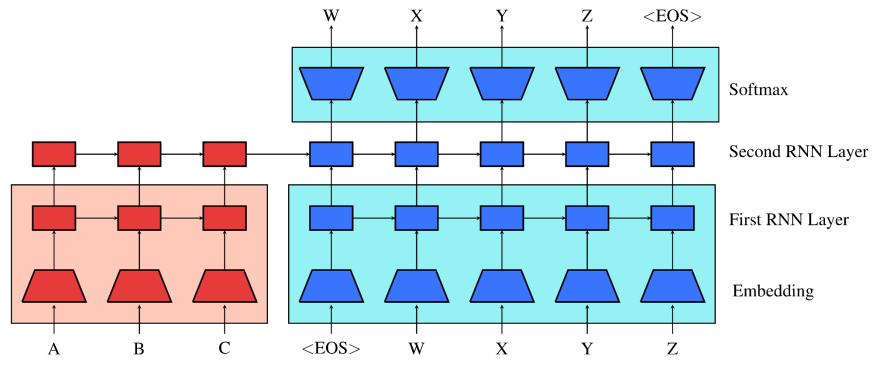
Results

F1 measure	PKU	MSR	AS	CityU	Weibo
Multitask pretrain	96.3	97.5	95.7	96.9	95.5
Cai and Zhao (2016)	95.5	96.5	—	_	_
Zhang et al. (2016b)	95.1	97.0	—	—	_
Zhang et al. (2016b)*	95.7	97.7	_	—	_
Pei et al. (2014)	95.2	97.2	_	_	_
Sun et al. (2012)	95.4	97.4	_	_	_
Zhang and Clark (2007)	94.5	97.2	94.6	95.1	_
Zhang et al. (2006)	95.1	97.1	95.1	95.1	_
Sun et al. (2009)	95.2	97.3	_	94.6	_
Sun (2010)	95.2	96.9	95.2	95.6	_
Wang et al. (2014)	95.3	97.4	95.4	94.7	_
Xia et al. (2016)	_		_	_	95.4

Jie Yang, Yue Zhang, Fei Dong. Neural Word Segmentation with Rich Pretraining. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (2017)

Pretraining: Language Translation and Language Modelling

• Language Model Pretrain for both the source and target



Ramachandran, Prajit, Peter J. Liu, and Quoc V. Le. "Unsupervised pretraining for sequence to sequence learning." In Proceeddings of EMNLP, (2016).

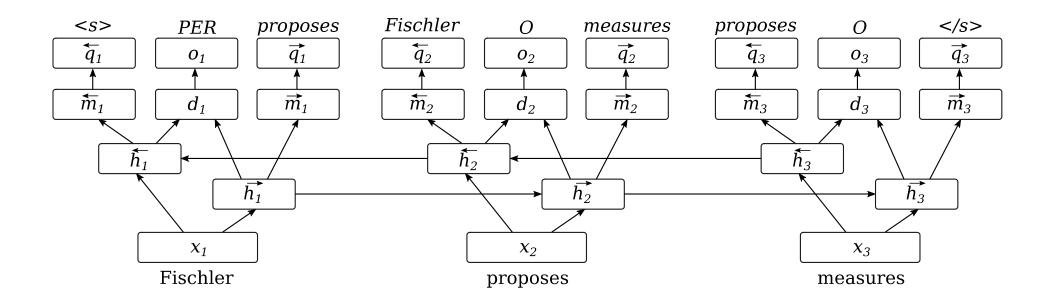
Pretraining: Language Translation and Language Modelling

Results on WMT

		BL	EU
System	ensemble?	newstest2014	newstest2015
Phrase Based MT (Williams et al., 2016)	-	21.9	23.7
Supervised NMT (Jean et al., 2015)	single	-	22.4
Edit Distance Transducer NMT (Stahlberg et al., 2016)	single	21.7	24.1
Edit Distance Transducer NMT (Stahlberg et al., 2016)	ensemble 8	22.9	25.7
Backtranslation (Sennrich et al., 2015a)	single	22.7	25.7
Backtranslation (Sennrich et al., 2015a)	ensemble 4	23.8	26.5
Backtranslation (Sennrich et al., 2015a)	ensemble 12	24.7	27.6
No pretraining	single	21.3	24.3
Pretrained seq2seq	single	24.0	27.0
Pretrained seq2seq	ensemble 5	24.7	28.1

Ramachandran, Prajit, Peter J. Liu, and Quoc V. Le. "Unsupervised pretraining for sequence to sequence learning." In Proceeddings of EMNLP, (2016).

• Embeddings from Language Models (ELMo)



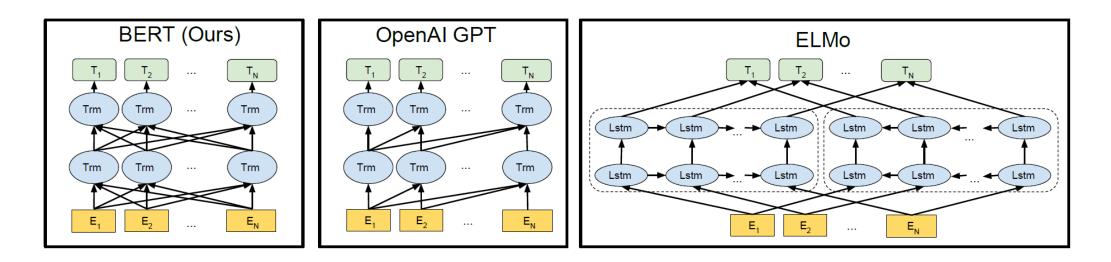
Peters, Matthew E., et al. "Deep contextualized word representations." arXiv preprint arXiv:1802.05365 (2018).

Results

TASK	PREVIOUS SOTA		OUR BASELINH	ELMO + E BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2/9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

Peters, Matthew E., et al. "Deep contextualized word representations." arXiv preprint arXiv:1802.05365 (2018).

• BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding



Devlin, Jacob, et al. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805 (2018).

Results on GLUE

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

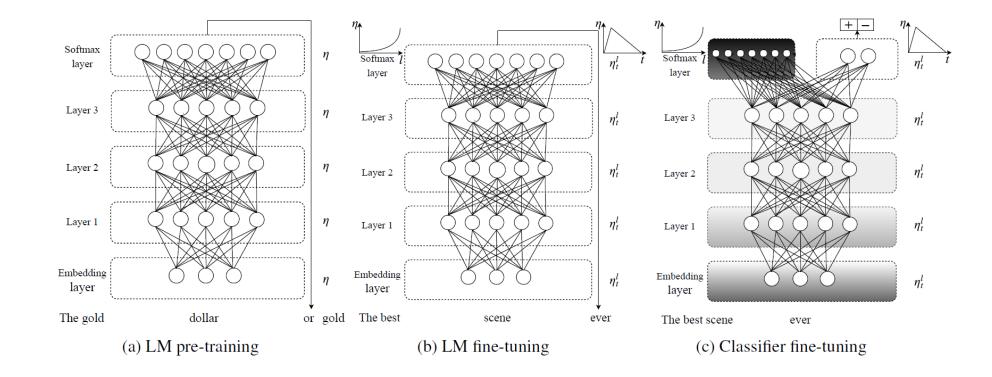
Devlin, Jacob, et al. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805 (2018).

• Results on SQuAD

System	D	ev	Test		
2	EM	F1	EM	F1	
Leaderboard (Oct	: 8th, 2	018)			
Human	-	-	82.3	91.2	
#1 Ensemble - nlnet	-	-	86.0	91.7	
#2 Ensemble - QANet	-	-	84.5	90.5	
#1 Single - nlnet	-	-	83.5	90.1	
#2 Single - QANet	-	-	82.5	89.3	
Publishe	ed				
BiDAF+ELMo (Single)	-	85.8	-	-	
R.M. Reader (Single)	78.9	86.3	79.5	86.6	
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5	
Ours					
BERT _{BASE} (Single)	80.8	88.5	-	-	
BERT _{LARGE} (Single)	84.1	90.9	-	-	
BERT _{LARGE} (Ensemble)	85.8	91.8	-	-	
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	85.1	91.8	
BERT _{LARGE} (Ens.+TriviaQA)	86.2	92.2	87.4	93.2	

Devlin, Jacob, et al. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805 (2018).

• Universal Language Model Fine-tuning for Text Classification



Howard, Jeremy and Sebastian Ruder. "Universal Language Model Fine-tuning for Text Classification." ACL, 2018.

WVIAS

Language Model Pretraining

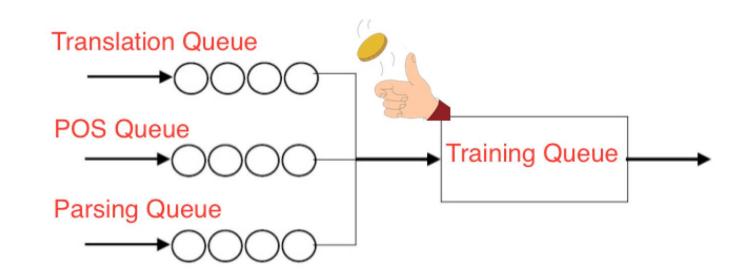
Results on classification tasks

	AG	DBpedia	Yelp-bi	Yelp-full
Char-level CNN (Zhang et al., 2015)	9.51	1.55	4.88	37.95
CNN (Johnson and Zhang, 2016)	6.57	0.84	2.90	32.39
DPCNN (Johnson and Zhang, 2017)	6.87	0.88	2.64	30.58
ULMFiT (ours)	5.01	0.80	2.16	29.98

Howard, Jeremy and Sebastian Ruder. "Universal Language Model Fine-tuning for Text Classification." ACL, 2018.

Correlation between multi-task learning, and pretraining

Tasks



Kiperwasser, Eliyahu and Miguel Ballesteros. "Scheduled Multi-Task Learning: From Syntax to Translation." TACL, 2018.

Correlation between multi-task learning and pretraining

Scheduler	Tasks	BLEU	POS	UAS	LAS
	NMT	27.70	_	_	_
No MTL	POS	_	95.41	_	_
	Parsing (Unlabeled)	_	_	80.28	_
	NMT + POS	30.4	93.51	_	_
Constant Scheduler	NMT + Parsing	28.73	_	79.78	74.25
	NMT + POS + Parsing	29.08	94.80	79.38	74.13
	NMT + POS	30.15	89.05	_	_
Exponent Scheduler	NMT + Parsing	29.37	_	67.60	60.71
	NMT + POS + Parsing	29.55	91.48	72.85	66.44
	NMT + POS	30.2	90.74	_	_
Sigmoid Scheduler	NMT + Parsing	28.78	_	69.26	62.43
	NMT + POS + Parsing	28.93	89.11	65.92	58.46

Multi-task with CRF

So excited to meet my [**baby Farah**]₊ !!!

[**Baseball Warehouse**]₊ : easy to understand information.

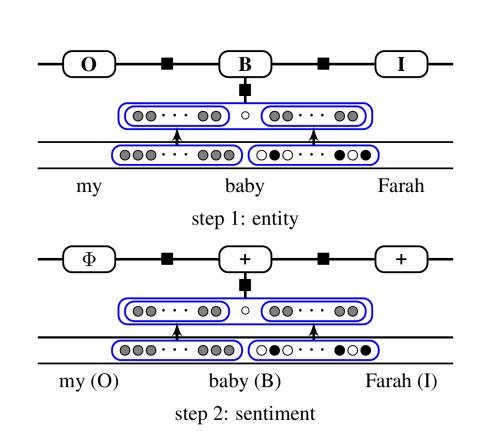
The [#Afghan #Parlaiment Speaker]_ should Resign .

Saw [Erykah Badu]_ last night, vile venue unfortunately.

[AW service]₀ will be back at work .

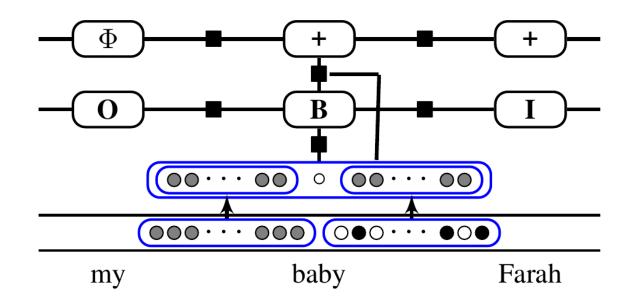
Zhang, Meishan, Yue Zhang, and Duy-Tin Vo. "Neural Networks for Open Domain Targeted Sentiment." *EMNLP*. 2015.

• Pipeline



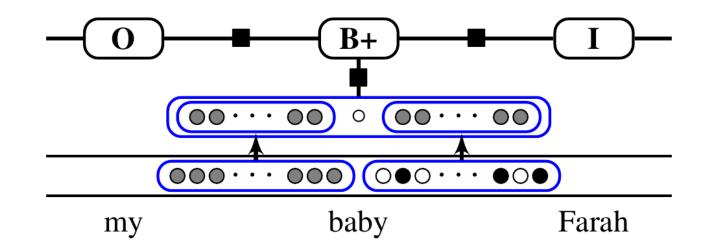
Zhang, Meishan, Yue Zhang, and Duy-Tin Vo. "Neural Networks for Open Domain Targeted Sentiment." *EMNLP*. 2015.

• Joint



Zhang, Meishan, Yue Zhang, and Duy-Tin Vo. "Neural Networks for Open Domain Targeted Sentiment." *EMNLP*. 2015.

Collapsed



Zhang, Meishan, Yue Zhang, and Duy-Tin Vo. "Neural Networks for Open Domain Targeted Sentiment." *EMNLP*. 2015.

Results

		English					Spanish					
Model		Entity			SA			Entity			SA	
	Р	R	F	Р	R	F	Р	R	F	Р	R	F
Pipeline												
discrete	59.37	34.83	43.84	42.97	25.21	31.73	70.77	47.75	57.00	46.55	31.38	37.47
neural	53.64	44.87	48.67	37.53	31.38	34.04	65.59	47.82	55.27	41.50	30.27	34.98
integrated	60.69	51.63	55.67	43.71	37.12	40.06	70.23	62.00	65.76	45.99	40.57	43.04
Joint												
discrete	59.55	34.06	43.30	43.09	24.67	31.35	71.08	47.56	56.96	46.36	31.02	37.15
neural	54.45	42.12	47.17	37.55	28.95	32.45	65.05	47.79	55.07	40.28	29.58	34.09
integrated	61.47	49.28	54.59	44.62	35.84	39.67	71.32	61.11	65.74	46.67	39.99	43.02
Collapsed												
discrete	64.16	26.03	36.95	48.35	19.64	27.86	73.18	35.11	47.42	49.85	23.91	32.30
neural	58.53	37.25	45.30	43.12	27.44	33.36	67.43	43.2	52.64	42.61	27.27	33.25
integrated	63.55	44.98	52.58	46.32	32.84	38.36	73.51	53.3	61.71	47.69	34.53	40.00

Zhang, Meishan, Yue Zhang, and Duy-Tin Vo. "Neural Networks for Open Domain Targeted Sentiment." *EMNLP*. 2015.

Neural Graph-based Models (Multi-task Learning)

- Cross Task
- Cross Lingual
- Cross Domain
- Cross Standard

Neural Graph-based Models (Multi-task Learning)

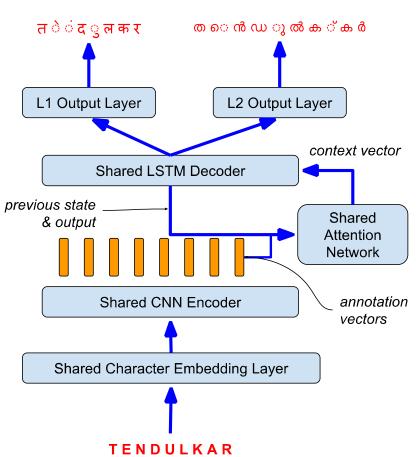
- Cross Task
- Cross Lingual
 - Standard
 - Regularization
 - Stacking
 - Pretraing
 - Adversarial Training
- Cross Domain
- Cross Standard

Standard: Multi-lingual Neural Transliteration

- Orthographically similar languages
 - (i) highly overlapping phoneme sets.
 - (ii) mutually compatible orthographic systems.
 - (iii) similar grapheme to phoneme mappings.

Standard: Multi-lingual Neural Transliteration

Standard multi-task



Kunchukuttan, Anoop, et al. "Leveraging Orthographic Similarity for Multilingual Neural Transliteration." Transactions of the Association for Computational Linguistics 6 (2018): 303-316.

Standard: Multi-lingual Neural Transliteration

• Results on NEWS 2015

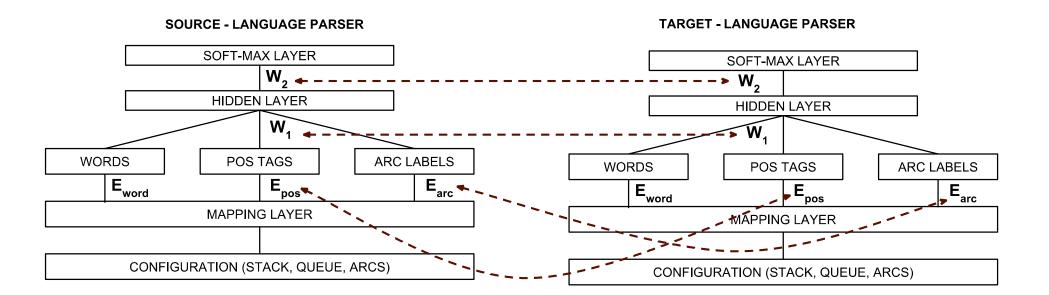
Pair	Р	В	Μ	Pair	Р	В	Μ
	Simil	ar Soui	rce and	Target	t Langı	lages	
Indic-I	<u>Indic</u> (4	5.5%)					
bn-hi	29.74	19.08	27.69	kn-bn	28.59	24.04	37.47
bn-kn	17.62	18.14	27.74	kn-ta	34.89	30.85	38.30
hi-bn	29.92	25.46	39.15	ta-hi	29.07	19.24	28.97
hi-ta	25.15	28.62	38.70	ta-kn	26.99	19.86	29.06
		Simila	r Sour	e Lang	guages		
<u>Slavic</u>	-Arabic			-	English	(24.2%	6)
cs-ar	38.91	37.10	59.17	bn-en	55.23	48.93	54.01
pl-ar	34.70	34.80	44.83	hi-en	49.19	38.26	51.11
sk-ar	43.26	37.49	62.21	kn-en	42.79	33.77	47.70
sl-ar	41.90	36.74	62.04	ta-en	33.93	23.22	25.93
		Simila	r Targ	et Lang	guages		
Arabic	<u>-Slavic</u>	(176.8	%) -	Englis	h-Indic	(1.1%)	
ar-cs	15.41	12.08	36.76	en-bn	42.90	41.70	46.10
ar-pl	13.68	12.26	24.21	en-hi	60.50	64.10	60.70
ar-sk	15.24	13.82	38.72	en-kn	48.70	52.00	53.90
ar-sl	18.31	13.63	44.35	en-ta	52.90	57.80	55.30

Comparison of bilingual (B) and multilingual (M) neural models as well as bilingual PBSMT (P) models (top-1 accuracy %). Figure in brackets for each dataset shows average increase in transliteration accuracy for multilingual neural model over bilingual neural model. Best accuracies for each language pair in **bold**.

Kunchukuttan, Anoop, et al. "Leveraging Orthographic Similarity for Multilingual Neural Transliteration." Transactions of the Association for Computational Linguistics 6 (2018): 303-316.

Regularization: Low resource dependency parsing

- English to Low Resource
 - Transferred Parameters $E_{word}^{en}, E_{pos}^{en}, E_{arc}^{en}, W_1^{en}, W_2^{en}$



Duong, Long, et al. "Low resource dependency parsing: Cross-lingual parameter sharing in a neural network parser." Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers). Vol. 2. 2015.

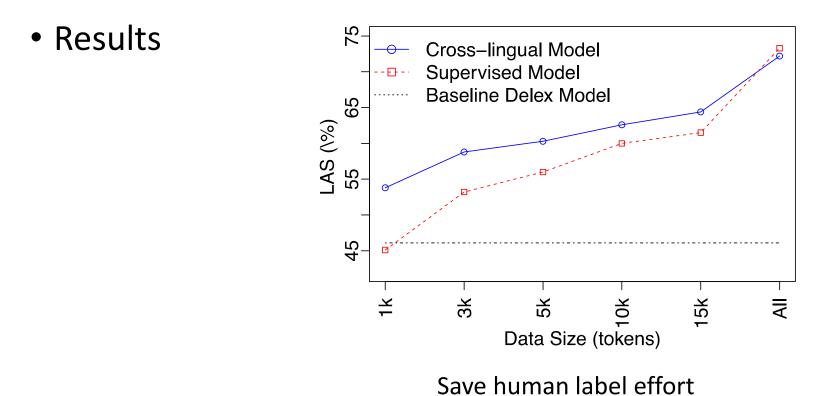
Regularization: Low resource dependency parsing

"To allow parameter sharing between languages we could jointly train the parser on the source and target language simultaneously. However, we leave this for **future work**. First we train a lexicalized neural network parser on the source resource-rich language (English), as described in Section 2. "

$$\mathcal{L} = \sum_{i=1}^{N} \log P(y^{(i)}|x^{(i)}) - \frac{\lambda_1}{2} \left[\|W_1^{pos} - W_1^{en:pos}\|_F^2 + \|W_1^{arc} - W_1^{en:arc}\|_F^2 + \|W_2 - W_2^{en}\|_F^2 \right] \\ - \frac{\lambda_2}{2} \left[\|E_{pos} - E_{pos}^{en}\|_F^2 + \|E_{arc} - E_{arc}^{en}\|_F^2 \right]$$

Duong, Long, et al. "Low resource dependency parsing: Cross-lingual parameter sharing in a neural network parser." Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers). Vol. 2. 2015.

Regularization: Low resource dependency parsing



Duong, Long, et al. "Low resource dependency parsing: Cross-lingual parameter sharing in a neural network parser." Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers). Vol. 2. 2015.

Language Embedding: Multi-lingual parser

- 'Future Work' mentioned in the previous work.
- Seven languages jointly trained
- Words: Cross-lingual embeddings and cross-lingual word cluster
- Languages: Language embeddings!

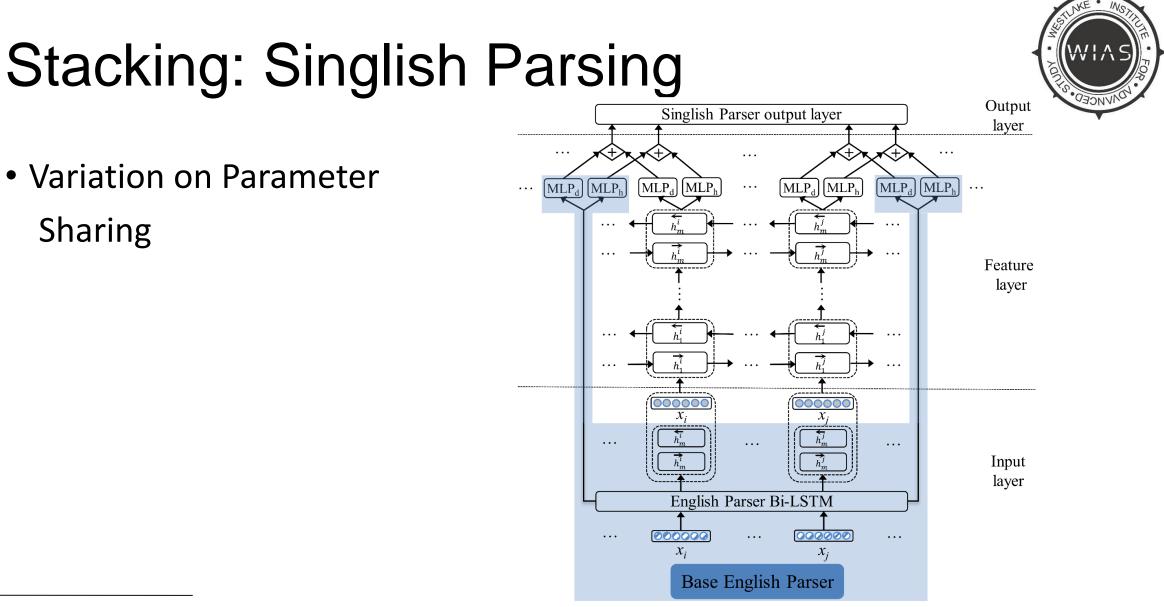
Ammar, Waleed, et al. "Many languages, one parser." arXiv preprint arXiv:1602.01595 (2016).

Language Embedding: Multi-lingual parser

• Results on UD Treebank

LAS		target language								
	de	de en es fr it pt sv								
monolingual	79.3	85.9	83.7	81.7	88.7	85.7	83.5	84.0		
MALOPA	70.4	69.3	72.4	71.1	78.0	74.1	65.4	71.5		
+lexical	76.7	82.0	82.7	81.2	87.6	82.1	81.2	81.9		
+language ID	78.6	84.2	83.4	82.4	89.1	84.2	82.6	83.5		
+fine-grained POS	78.9	85.4	84.3	82.4	89.0	86.2	84.5	84.3		

Ammar, Waleed, et al. "Many languages, one parser." arXiv preprint arXiv:1602.01595 (2016).



Hongmin Wang, Yue Zhang, GuangYong Leonard Chan, Jie Yang, Hai Leong Chieu. Universal Dependencies Parsing for Colloquial Singaporean English. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (ACL). Vancouver, Canada, July.

Stacking: Singlish Parsing

• Results

System	A ccuracy
ENG-on-SIN	81.39%
Base-ICE-SIN	78.35%
Stack-ICE-SIN	89.50%

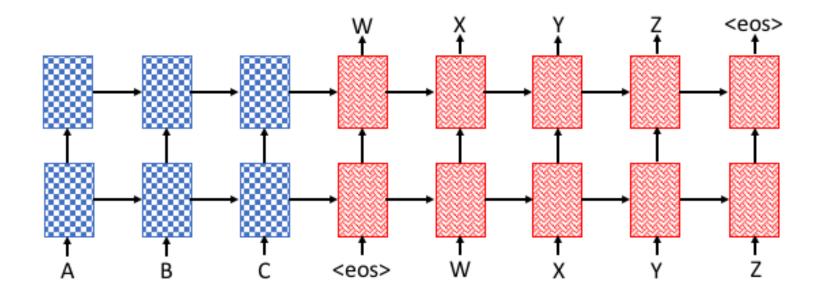
POS tagging

Trained on	System	UAS	LAS
English	ENG-on-SIN	75.89	65.62
	Baseline	75.98	66.55
Singlish	Base-Giga100M	77.67	67.23
	Base-GloVe6B	78.18	68.51
	Base-ICE-SIN	79.29	69.27
Both	ENG-plus-SIN	82.43	75.64
	Stack-ICE-SIN	84.47	77.76

Dependency Parsing

Hongmin Wang, Yue Zhang, GuangYong Leonard Chan, Jie Yang, Hai Leong Chieu. Universal Dependencies Parsing for Colloquial Singaporean English. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (ACL). Vancouver, Canada, July.

Pretraining: Low resource neural machine translation



Zoph, Barret, et al. "Transfer learning for low-resource neural machine translation." In Proceeddings of EMNLP, (2016).

Pretraining: Low resource neural machine translation

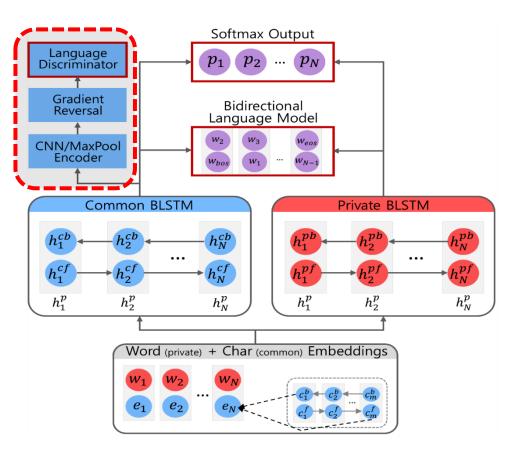
• Results

Language Pair	Parent	Train Size	BLEU \uparrow	$PPL\downarrow$
Uzbek–English	None	1.8m	10.7	22.4
OZUCK-English	French–English	1.8m	15.0 (+4.3)	13.9
French'–English	None	1.8m	13.3	28.2
	French–English	1.8m	20.0 (+6.7)	10.9

Zoph, Barret, et al. "Transfer learning for low-resource neural machine translation." In Proceeddings of EMNLP, (2016).

Adversarial Training: Cross-lingual Sequence Labelling

- Adversarial training
- Language model auxiliary task



Kim, Joo-Kyung, et al. "Cross-Lingual Transfer Learning for POS Tagging without Cross-Lingual Resources." Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. 2017.

Adversarial Training: Cross-lingual Sequence Labelling

		Targe	t only	Source (English) \rightarrow Target					
Language Family	Language	р	p,l	p,l	c,l	p,c,l	c,l+a	p,c,l+a	
	Swedish	87.43	90.49	91.02	90.45	90.48	90.72	90.70	
	Danish	86.42	90.00	90.74	90.69	90.02	90.16	90.79	
Germanic	Dutch	76.76	82.24	82.61	82.46	82.10	82.58	82.15	
	German	86.25	88.95	89.10	88.69	88.93	88.08	89.68	
	Āvg	$[-8\bar{4}.\bar{2}2^-]$	⁻ 87.92 ⁻	$[\bar{88.37}]$	$-8\overline{8}.\overline{0}7^{-}$	$-8\overline{7}.\overline{88}^{-}$	$-8\overline{7}.\overline{88}^{-}$	88.33	
	Slovenian	87.02	89.97	90.29	90.00	90.32	89.58	90.59	
	Polish	82.10	84.13	85.21	85.41	85.30	85.46	85.50	
Slavic	Slovak	76.22	81.03	82.95	83.40	82.68	82.70	83.17	
	Bulgarian	87.32	92.81	92.68	92.07	92.30	92.20	92.39	
	Āvg	83.16	⁻ 8 6 . <u>9</u> 8 ⁻	[-87.78]	-87.72^{-}	$-8\overline{7}.\overline{6}5^{-}$	$-87.\overline{48}$	87.91	
	Romanian	88.67	91.44	91.44	90.87	91.22	90.85	91.37	
	Portuguese	90.66	93.73	93.55	93.90	93.81	93.58	94.20	
Romance	Italian	89.78	93.99	93.82	93.27	93.46	93.51	94.00	
	Spanish	85.91	91.07	90.59	90.59	91.07	90.17	90.88	
	Āvg	88.76	⁻ 92.56 ⁻	92.35	⁻ 92.16 ⁻	⁻ 92.39 ⁻	⁻ 92.03 ⁻	-92.61	
Indo-Iranian	Persian	90.64	92.40	91.98	91.97	92.12	92.18	91.83	
Uralic	Hungarian	89.14	90.65	91.45	91.48	90.91	91.52	90.72	
	Total Avg	86.02	89.49	89.82	89.66	89.62	89.52	89.86	

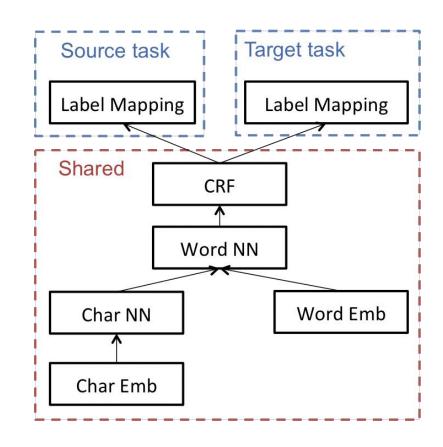
Kim, Joo-Kyung, et al. "Cross-Lingual Transfer Learning for POS Tagging without Cross-Lingual Resources." Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. 2017.

Neural Graph-based Models (Multi-task Learning)

- Cross Task
- Cross Lingual
- Cross Domain
- Cross Standard

Sequence Tagging

Standard Multi-task



Yang, Zhilin, Ruslan Salakhutdinov, and William W. Cohen. "Transfer learning for sequence tagging with hierarchical recurrent networks." ICLR. 2017.

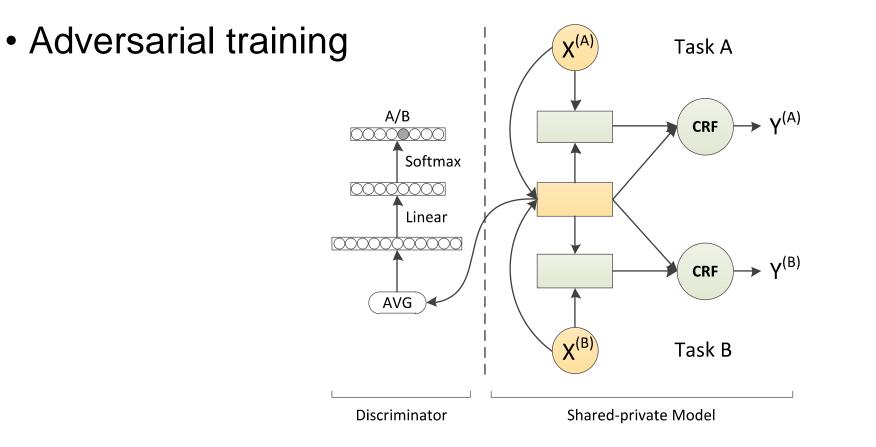
Sequence Tagging

Results

Source	Target	Model	Setting	Transfer	No Transfer	Delta
PTB	Twitter/0.1	T-A	dom	83.65	74.80	8.85
CoNLL03	Twitter/0.1	T-A	dom	43.24	34.65	8.59
PTB	CoNLL03/0.01	T-B	app	74.92	68.64	6.28
PTB	CoNLL00/0.01	T-B	app	86.73	83.49	3.24
CoNLL03	PTB/0.001	T-B	app	87.47	84.16	3.31
Spanish	CoNLL03/0.01	T-C	ling	72.61	68.64	3.97
CoNLL03	Spanish/0.01	T-C	ling	60.43	59.84	0.59
PTB	Genia/0.001	T-A	dom	92.62	83.26	9.36
CoNLL03	Genia/0.001	T-B	dom&app	87.47	83.26	4.21
Spanish	Genia/0.001	T-C	dom&app&ling	84.39	83.26	1.13
PTB	Genia/0.001	T-B	dom	89.77	83.26	6.51
PTB	Genia/0.001	T-C	dom	84.65	83.26	1.39

Yang, Zhilin, Ruslan Salakhutdinov, and William W. Cohen. "Transfer learning for sequence tagging with hierarchical recurrent networks." ICLR. 2017.

Chinese Word Segmentation



Xinchi Chen, Zhan Shi, Xipeng Qiu, Xuanjing Huang. Adversarial Multi-Criteria Learning for Chinese Word Segmentation, ACL, 2017.

Chinese Word Segmentation

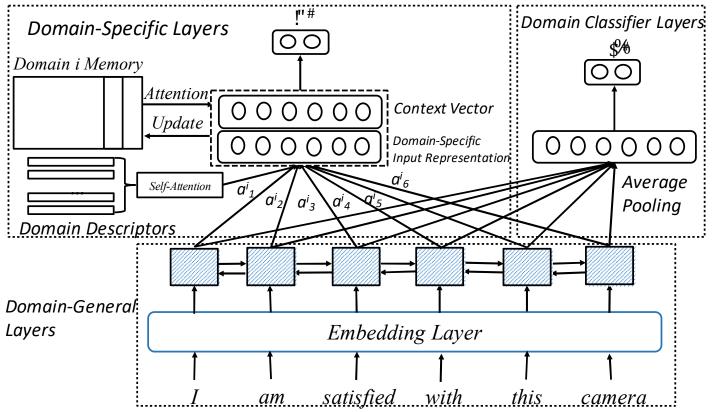
Results

Adversarial Multi-C	Adversarial Multi-Criteria Learning										
	P	95.95	94.17	94.86	96.02	93.82	95.39	92.46	96.07	94.84	
Madal LIADV	R	96.14	95.11	93.78	96.33	94.70	95.70	93.19	96.01	95.12	
Model-I+ADV	F	96.04	94.64	94.32	96.18	94.26	95.55	92.83	96.04	94.98	
	OOV	71.60	73.50	72.67	82.48	77.59	81.40	63.31	77.10	74.96	
	Р	96.02	94.52	94.65	96.09	93.80	95.37	92.42	95.85	94.84	
Model-II+ADV	R	95.86	94.98	93.61	95.90	94.69	95.63	93.20	96.07	94.99	
	F	95.94	94.75	94.13	96.00	94.24	95.50	92.81	95.96	94.92	
	OOV	72.76	75.37	73.13	82.19	77.71	81.05	62.16	76.88	75.16	
	Р	95.92	94.25	94.68	95.86	93.67	95.24	92.47	96.24	94.79	
Model-III+ADV	R	95.83	95.11	93.82	96.10	94.48	95.60	92.73	96.04	94.96	
	F	95.87	94.68	94.25	95.98	94.07	95.42	92.60	96.14	94.88	
	OOV	70.86	72.89	72.20	81.65	76.13	80.71	63.22	77.88	74.44	

Xinchi Chen, Zhan Shi, Xipeng Qiu, Xuanjing Huang. Adversarial Multi-Criteria Learning for Chinese Word Segmentation, ACL, 2017.

Multi-domain Sentiment Classification

- Adversarial training
- Domain Embeddings
- Memory Network



Qi Liu, Yue Zhang, Jiangming Liu, 2018. Learning Domain Representation for Multi-domain Sentiment Classification. In Proceedings of 16th Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL), New Orleans, Louisiana, June.

Multi-domain Sentiment Classification

• Results

	In domain							Cross domain									
Dataset	MTRL	Mix	Multi	DSR	DSR-sa	DSR-ctx	DSR-at	MTRL	Mix	MDA	Multi	FEMA	NDA	DSR	DSR-sa	DSR-ctx	DSR-at
Apparel	0.883	0.912	0.921	0.927	0.928	0.92	0.938*	0.828	0.843	0.863	0.854	0.865	0.873	0.882	0.899	0.896	0.909*
Electronics	0.853	0.881	0.899	0.884	0.879	0.883	0.891	0.804	0.826	0.836	0.849	0.845	0.834	0.857	0.859	0.861	0.875*
Office	0.863	0.88	0.89	0.903	0.914	0.925	0.933*	0.824	0.825	0.818	0.824	0.843	0.839	0.854	0.876	0.883	0.894*
Automotive	0.842	0.864	0.873	0.886	0.891	0.902	0.917*	0.791	0.786	0.791	0.797	0.816	0.826	0.835	0.847	0.857	0.867*
Gourmet	0.814	0.838	0.84	0.852	0.856	0.858	0.863*	0.777	0.775	0.764	0.784	0.796	0.803	0.814	0.826	0.832	0.828
Outdoor	0.853	0.889	0.899	0.903	0.907	0.915	0.927*	0.785	0.796	0.805	0.815	0.836	0.829	0.856	0.861	0.867	0.887*
Baby	0.816	0.853	0.86	0.875	0.877	0.892	0.91*	0.803	0.816	0.814	0.821	0.834	0.84	0.845	0.878	0.873	0.895*
Grocery	0.862	0.886	0.898	0.907	0.911	0.917	0.933*	0.806	0.817	0.826	0.846	0.846	0.862	0.88	0.873	0.865	0.886*
Software	0.851	0.876	0.88	0.893	0.898	0.904	0.92*	0.795	0.811	0.816	0.836	0.845	0.836	0.85	0.862	0.884	0.897 *
Beauty	0.816	0.843	0.8567	0.862	0.867	0.864	0.889*	0.756	0.768	0.775	0.785	0.795	0.804	0.812	0.812	0.838	0.851*
Health	0.871	0.901	0.904	0.896	0.897	0.896	0.907	0.785	0.807	0.819	0.832	0.845	0.848	0.843	0.834	0.857	0.871*
Sports	0.851	0.883	0.899	0.889	0.882	0.895	0.9	0.759	0.768	0.775	0.784	0.816	0.819	0.821	0.836	0.848	0.864*
Book	0.743	0.803	0.79	0.804	0.809	0.815	0.822*	0.694	0.705	0.716	0.723	0.745	0.743	0.751	0.758	0.779	0.798 *
Jewelry	0.816	0.891	0.881	0.893	0.891	0.894	0.909*	0.762	0.769	0.774	0.785	0.795	0.808	0.815	0.835	0.857	0.874*
Camera	0.912	0.937	0.968	0.966	0.959	0.968	0.989*	0.869	0.878	0.886	0.896	0.894	0.908	0.917	0.925	0.942	0.963*
Kitchen	0.815	0.858	0.863	0.875	0.887	0.894	0.913*	0.759	0.768	0.775	0.776	0.794	0.818	0.826	0.856	0.865	0.884 *
Toy	0.823	0.863	0.875	0.881	0.884	0.88	0.892*	0.814	0.824	0.815	0.803	0.813	0.832	0.826	0.843	0.845	0.857*
Phone	0.879	0.936	0.94	0.943	0.949*	0.941	0.933	0.805	0.813	0.808	0.818	0.821	0.833	0.836	0.856	0.874	0.894*
Magazine	0.835	0.874	0.872	0.883	0.895	0.917	0.937*	0.805	0.819	0.817	0.816	0.83	0.841	0.845	0.857	0.871	0.896*
Video	0.851	0.873	0.882	0.891	0.896	0.912	0.925*	0.754	0.774	0.794	0.795	0.815	0.822	0.834	0.845	0.855	0.875*
Games	0.867	0.886	0.89	0.883	0.886	0.887	0.9*	0.681	0.684	0.708	0.718	0.723	0.734	0.746	0.765	0.781	0.778
Music	0.752	0.782	0.8	0.798	0.8	0.798	0.81*	0.775	0.769	0.779	0.784	0.795	0.824	0.815	0.823	0.842	0.858*
Dvd	0.795	0.826	0.834	0.847	0.854	0.867	0.889*	0.801	0.794	0.804	0.794	0.814	0.827	0.835	0.845	0.851	0.875*
Instrument	0.873	0.943	0.957*	0.896	0.906	0.898	0.9	0.814	0.805	0.813	0.815	0.825	0.836	0.833	0.835	0.845	0.865*
Tools	0.887	0.915	0.931	0.928	0.93	0.932	0.94*	0.805	0.814	0.828	0.835	0.846	0.857	0.864	0.866	0.873	0.897*
Average	0.841	0.875	0.884	0.887	0.89	0.895	0.907*	0.786	0.794	0.801	0.807	0.82	0.827	0.835	0.847	0.858	0.873*

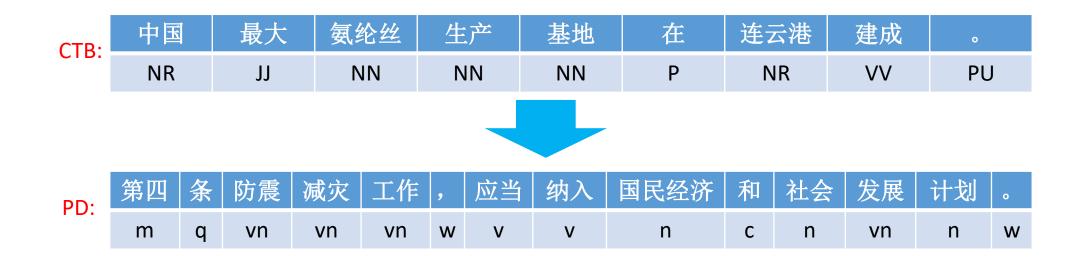
Qi Liu, Yue Zhang, Jiangming Liu, 2018. Learning Domain Representation for Multi-domain Sentiment Classification. In Proceedings of 16th Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL), New Orleans, Louisiana, June.

Neural Graph-based Models (Multi-task Learning)

- Cross Task
- Cross Lingual
- Cross Domain
- Cross Standard

POS tagging

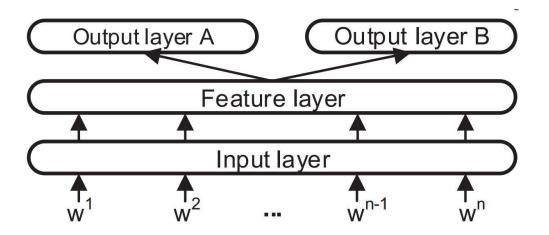
• Same language, different standard



Chen, Hongshen, Yue Zhang, and Qun Liu. "Neural Network for Heterogeneous Annotations." EMNLP. 2016.

POS tagging

Standard neural multi-view model



Chen, Hongshen, Yue Zhang, and Qun Liu. "Neural Network for Heterogeneous Annotations." EMNLP. 2016.

POS tagging

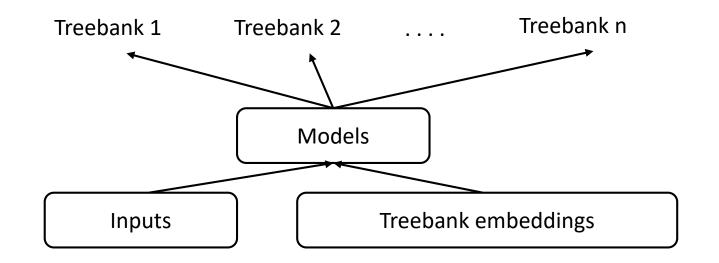
Results

System	Accuracy
CRF Baseline (Li et al., 2015)	94.10
CRF Stacking (Li et al., 2015)	94.81
CRF Multi-view (Li et al., 2015)	95.00
NN Baseline	94.24
NN Stacking	94.74
NN Feature Stacking	95.01
NN Feature Stacking & Fine-tuning	95.32
NN Multi-view	95.40
Integrated NN Multi-view & Stacking	95.53

Chen, Hongshen, Yue Zhang, and Qun Liu. "Neural Network for Heterogeneous Annotations." EMNLP. 2016.

Dependency parsing

- Same language with multiple treebanks
- Treebank embeddings



Stymne, Sara, et al. "Parser Training with Heterogeneous Treebanks." arXiv preprint arXiv:1805.05089 (2018).

Dependency parsing

Results

				Same treeba	nk test se	et	PUD test set				
Language	Treebank	Size	SINGLE	CONCAT	C+FT	TB-EMB	SINGLE	CONCAT	C+FT	ТВ-ЕМВ	
	PDT	68495	86.7	87.5^{+}	88.3 *	87.2^{+}	81.7		81.6	81.2	
Czech	CAC	23478	86.0	87.8^{+}	88.1^{+}	88.5 ⁺	75.0	81.7	81.3	81.1	
Czeen	FicTree	10160	84.3	89.3^{+}	89.5 ⁺	89.2^{+}	66.1	01.7	79.8	80.3	
Czech English Finnish French Italian Portuguese	CLTT	860	72.5	86.2^{+}	86.9 ⁺	86.0^{+}	42.1		80.8	80.9	
	EWT	12543	82.2	82.1	82.5	83.0	80.7		81.7^{*}	81.9 *	
English	LinES	2738	72.1	76.7^{+}	77.3 ⁺	77.3 ⁺	62.6	80.0	75.9	74.5	
Czech English Finnish French Italian Portuguese Russian Spanish Swedish	ParTUT	1781	80.5	83.5^{+}	85.4^{+}	85.7 ⁺	68.0		78.1	76.9	
Finnich	FTB	14981	76.4×	74.4	80.1*	80.6*	46.7	73.0	54.6	53.1	
riiiiisii	TDT	12217	78.1^{\times}	70.6	80.6 *	80.3*	78.6^{\times}	73.0	81.3 *	80.9^{*}	
	FTB	14759	83.2	83.2	83.9*	84.1 *	72.0	79.4	76.7	74.1	
French	GSD	14554	84.5	84.1	85.3	85.6×	79.1		80.2^{*}	80.3 *	
	Sequoia	2231	84.0	86.0^{+}	89.8 *	89.1*	69.5		78.1	77.6	
	ParTUT	803	79.8	80.5	89.1*	90.3 *	63.4		78.8	77.5	
	ISDT	12838	87.7	87.9	87.7	87.6	85.4		85.7	86.0	
Italian	PoSTWITA	2808	71.4	76.7^{+}	76.8^{+}	77.0 +	68.5	86.0	85.7	85.3	
Finnish French Italian Portuguese Russian	ParTUT	1781	83.4	89.2^{+}	89.3 ⁺	88.8^{+}	77.4		85.8^{+}	86.1 ⁺	
Portuguese	GSD	9664	88.3	87.3	89.0*	89.1 *	74.0	76.8^{+}	75.2	74.9	
Tonuguese	Bosque	8331	84.7	84.2	86.2^{\times}	86.3 *	75.2	70.8	77.5^{+}	77.6 ⁺	
Russian	SynTagRus	48814	90.2×	89.4	90.4×	90.4×	66.0	68.7	66.3	66.4	
Russian	GSD	3850	74.7×	73.4	79.8^{*}	80.8 *	70.1×	08.7	77.6^{*}	78.0 *	
Spanish	AnCora	14305	87.2×	86.2	87.5×	87.6 ×	75.2	79.9	77.7	76.4	
Spanish	GSD	14187	84.7	83.0	85.8^{\times}	86.2 *	79.8	19.9	80.8^{+}	80.9 *	
Swadish	Talbanken	4303	79.6	79.1	80.2	80.6 ×	70.3	72.0^{+}	73.2*	73.6 *	
French Italian Portuguese Russian Spanish Swedish	LinES	2738	74.3	76.8	77.3 ⁺	77.1^{+}	64.0	72.0	70.0	69.0	
Average			81.4	82.7+	84.9 *	84.9*	77.9	77.5	80.0^{*}	80.1*	

Stymne, Sara, et al. "Parser Training with Heterogeneous Treebanks." arXiv preprint arXiv:1805.05089 (2018).

Thanks!