Introduction to Computer and Programming Lecture 2

Yue Zhang Westlake University

August 1, 2023

WestlakeNLP

Chapter 2. Numbers and Expressions

э

▶ < ∃ >

Yue Zhang

Westlake University

August 1, 2023

э

< E

Yue	7	har	۱ø
Tue	~	nai	ıв

э

► < ∃ ►</p>

×/	7		
rue		nai	nσ
	_		· •

Binary Numbers

Figure: The movie, The Matrix

Yue	Zhan	g

Westlake University

< □ ▶ < @ ▶ < 클 ▶ < 클 ▶ 클 August 1, 2023

- The most robust form for information storage and communicational processing.
- Natural materials binary state.
 - Voltage
 - Solid and liquid

Computers "think" in Binary Way

Base 10	Base 2
2	10
3	11
4	100
5	101
15	1111

Figure: Base-2 and Base-10

• We think in **base-10** systems.

- 100, 256, -55, 0
- Computers think in **base-2** systems.
 - 010, 10110, 1101, 0

- How large is 256?
 - $2 \times 100 + 5 \times 10 + 6$

- E

э

Yue	Z	ha	n	g
				-

• How large is 256?

•
$$2 \times 100 + 5 \times 10 + 6$$

•
$$2 \times 10^2 + 5 \times 10^1 + 6 \times 10^0$$

э

∃ ≥ >

- How large is 256?
 - $2 \times 100 + 5 \times 10 + 6$
 - $2\times10^2+5\times10^1+6\times10^0$
- The base decides the order of magnitude for each digit!

 $d = d_n d_{n-1} d_{n-2} \cdots d_2 d_1$ e.g., 18235 = 1 8 2 3 5 base = R e.g., R = 10 value = $d_n \times R^{n-1} + d_{n-1} \times R^{n-2} + \cdots + d_2 \times R^1 + d_1 \times R^0$ e.g., 18235 = 1 × 10⁴ + 8 × 10³ + 2 × 10² + 3 × 10¹ + 5 × 10⁰

• What is 256 in base 8?

N/	_		
VIIA		<u>h</u> h	na
I U C		i a	112

• What is 256 in base 8?

$$2 \times 8^2 + 5 \times 8^1 + 6 \times 8^0$$
$$= 2 \times 64 + 5 \times 8 + 6$$
$$= 174$$

Yue Zhang

Westlake University

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶
 August 1, 2023

≣ ৩৭ে 13/88 • What is 256 in base 16?

N/	_		
VIIA		<u>h</u> h	na
I U C		i a	112

A E
 A E
 A

< □ > < 同

≣ ৩৭ে 14/88 • What is 256 in base 16?

$$2 \times 16^{2} + 5 \times 16^{1} + 6 \times 16^{0}$$

= 2 × 256 + 5 × 16 + 6
= 588

э

15/88

► < ∃ ►</p>

The larger the base, the larger the value.

$$d = 256$$
 $R = 10$ value = 256
 $R = 8$ value = 174
 $R = 16$ value = 588

$$R = 2?$$

3

▶ < ∃ >

· ·			
VIIA		n n r	
1116			112
	_		

August 1, 2023

The larger the base, the larger the value.

$$R = 2?$$

Cannot hold 2, 5, 6! The digit must be smaller than the base.

WestlakeNLP

э

17 / 88

4 E

- Decimal numbers (base 10) have 10 digit symbols.
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Octal numbers (base 8) have 8 digit symbols.
 - 0, 1, 2, 3, 4, 5, 6, 7
- Binary numbers (base 2) have 2 digit symbols.
 - 0, 1

▶ < ∃ >

Can 257 be octal? binary?

Can 259 be octal? hexadecimal (base 16)?

э

× /	_			
YHE		ha	n	σ
	_			-

How are digits in bases higher than 10 represented?

- with distinct symbols for 10 and above.
- hexadecimal numbers (base 16) have 16 digits.
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- What is the value of **1B** in hexadecimal?

What is the **decimal** equivalent of the binary number **1101110**? $1 \times 2^{6} + 1 \times 2^{5} + 0 \times 2^{4} + 1 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$ $= 1 \times 64 + 1 \times 32 + 0 \times 16 + 1 \times 8 + 1 \times 4 + 1 \times 2 + 0 \times 1$ = 110

э.

Converting Decimal to Binary

Binary for 19?

$$19 = 16 + 2 + 1 = 2^4 + 2^1 + 2^0 = 10011$$

Yue Zhang

August 1, 2023

A E
 A E
 A

Image: 1 million of the second sec

≣ ৩৭ে 22/88 Binary for 19?

$$19 = 16 + 2 + 1 = 2^{4} + 2^{1} + 2^{0} = 10011$$

$$19 \div 2 = 9 \cdots 1$$

$$9 \div 2 = 4 \cdots 1$$

$$4 \div 2 = 2 \cdots 0$$

$$2 \div 2 = 1 \cdots 0$$

$$1 \div 2 = 0 \cdots 1$$
read

Can you prove this?

= 900

23 / 88

프 에 에 프 어

Addition
$$\begin{array}{l} 0+0=0\\ 0+1=1\\ 1+1=0 \end{array}$$
 with a carry

VIIA	hang

August 1, 2023

```
\begin{array}{rl} \mbox{Addition} & 0+0=0 \\ & 0+1=1 \\ & 1+1=0 \mbox{ with a carry} \\ & 1 \ 0 \ 1 \ 0 \ 1 \ 1 \ 1 \\ + & 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1 \end{array}
```


Yue Zhang

Westlake University

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶
 August 1, 2023

≣ ୬৭. 25 / 88

August 1, 2023

• • = • • = •

≣ ৩৭.৫ 26 / 88

WestlakeNLP

э.

Yue Zhang

Westlake University

August 1, 2023

• • = • • = •

WestlakeNLP

э.

Yue Zhang

Westlake University

August 1, 2023

A B A A B A

WestlakeNLP

э.

Yue Zhang

Westlake University

August 1, 2023

A B A A B A

WestlakeNLP

3

Yue Zhang

Westlake University

August 1, 2023

A B A A B A

WestlakeNLP

3

Yue Zhang

Westlake University

August 1, 2023

A B A A B A

WestlakeNLP

3

프 에 에 프 어

Yue Zhang

August 1, 2023

3

Yue Zhang

August 1, 2023

프 에 에 프 어

Subtraction

1 0 1 0 1 1 1 - 1 1 1 0 1 1

Yue Zhang

Westlake University

August 1, 2023

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Subtraction

1010111 - 111011 0

Yue Zhang

Westlake University

August 1, 2023

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ⊙

Subtraction

1010111 - 111011 00

Yue Zhang

Westlake University

August 1, 2023

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ⊙
Subtraction

1010111 - 111011 100

Yue Zhang

Westlake University

< □ ▶ < □ ▶ < □ ▶ < □ ▶
 August 1, 2023

≣ ୬৭. 37/88

Yue Zhang

Westlake University

< □ → < □ → < □ → < □ → < □ →
 August 1, 2023

≣ ୬৭. 38 / 88 Subtraction borrowing 1 - 1 +2 + 2 $1 \ 0 \ 1 \ 0 \ 1 \ 1 \ 1$ $- 1 \ 1 \ 1 \ 0 \ 1 \ 1$ $1 \ 1 \ 0 \ 0$

Yue Zhang

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶
 August 1, 2023

≣ ୬৭. 39 / 88 Subtraction borrowing $\begin{array}{r} -1 & -1 \\ +2 & +2 & +2 \\ 1 & 0 & 1 & 0 & 1 & 1 & 1 \\ - & 1 & 1 & 1 & 0 & 1 & 1 \\ \hline 0 & 1 & 1 & 1 & 0 & 0 \end{array}$

Yue Zhang

Westlake University

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶
 August 1, 2023

∃ つへで 40 / 88

Yue Zhang

Westlake University

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶
 August 1, 2023

≣ ৩৭ে 41/88

Information Theory

• Binary numbers are connected with information theory.

Information theory, a pillar of modern computing and communication, originated from the seminal work of Claude Shannon in the mid-20th century.

Claude Elwood Shannon (April 30, 1916 – February 24, 2001)

• What is information?

- Amount of ambiguities resolved from a message.
- Measured in bits.
- Encoded in binary numbers.

WestlakeNLP

3

▶ < ∃ >

[exam / no exam] 2 choices knowing no exam \rightarrow 2 choices to 1 information: $log_2 2 - log_2 1 = 1$ bit encoding: 1 - exam 0 - no exam

WestlakeNLP

August 1, 2023

э

44 / 88

Yue Zhang

[a deck of cards] 4 suits, 52 cards $\blacklozenge \heartsuit \clubsuit \diamondsuit$

knowing the suit \rightarrow 4 choices to 1 information: $log_252 - log_213 = 2$ bits encoding: 00 - \blacklozenge 01 - \heartsuit 10 - \clubsuit 11 - \diamondsuit

WestlakeNLP

3

45 / 88

▶ < ∃ >

[a deck of cards] 4 suits, 52 cards knowing the card $\bigstar 3 \rightarrow 52$ choices to 1 information: $log_252 < 6$ bits encoding: 00 - \bigstar 0011 - 3 \therefore 000011 - $\bigstar 3$

3

46 / 88

▶ < ∃ >

[a deck of cards] 4 suits, 52 cards knowing the card $\bigstar 3 \rightarrow 52$ choices to 1 information: $log_252 < 6$ bits encoding: 00 - **(** 0011 - 3 · 000011 - **(**3 similarly, 01 - ♡ 1010 - 10 \cdot 011010 - \heartsuit 10

WestlakeNLP

э.

47 / 88

▶ < ∃ >

August 1, 2023

[a deck of cards] 4 suits, 52 cards knowing the card $\bigstar 3 \rightarrow 52$ choices to 1 information: $log_252 < 6$ bits encoding: 00 - **(** 0011 - 3 .: 000011 - ♠3 similarly, 01 - ♡ 1010 - 10 \cdot 011010 - \heartsuit 10 $\Diamond K$? 11 - \Diamond 1101 - 13 = K

WestlakeNLP

= 900

48 / 88

► < Ξ ►</p>

[a deck of cards] 4 suits, 52 cards knowing the number $5 \rightarrow 52$ choices to 1 information: $log_252 - log_24 = log_213 < 4$ bits encoding: A - 0001, 2 - 0010, 3 - 0011, 4 - 0100, 5 - 0101, 6 - 0110, 7 - 0111, 8 - 1000, 9 - 1001, 10 - 1010, 11 - 1011, 12 - 1100, 13 - 1101

WestlakeNLP

э.

	_		
YUE		han	a
1 u C	-	n an i	÷

> < 三 > < 三 >

• calculate mathematical functions

э

4 E

Tue Zhang

- calculate mathematical functions
- step by step

3

► < ∃ ►</p>

- calculate mathematical functions
- step by step
- in underlying binary format

э

▶ ∢ ⊒

- calculate mathematical functions
- step by step
- in underlying binary format

Thus a simple way of learning Programming is to start with math calculator.

>>>	3+5
8	
>>>	8 – 7
1	
>>>	6*9
54	
>>>	24/6
4.0	

э

∃ ⇒

	>>>	3+5
ĺ	8	
ĺ	>>>	8-7
	1	
	>>>	6*9
	54	
	>>>	24/6
	4.0	
1		

Literals 3, 5, 8, 7, 6, 9, 24, 40 Operators $+, -, *(\times), /(\div)$ Expressions 3 + 5, 8 - 7, 6 * 9, 24/6

э

Yue	Z	ha	n	g
				-

>>> 3+5 8 >>> 8-7 1 >>> 6*9 54 >>> 24/6 4.0 Literals 3, 5, 8, 7, 6, 9, 24, 40 Operators $+, -, *(\times), /(\div)$ Expressions 3 + 5, 8 - 7, 6 * 9, 24/6

- Expressions have **values** wherever you type one expression in IDLE, the value is shown.
- Evaluation of expressions: find the values according to operands and operators.

Using Python as a Calculator – Composite Expressions

>>> 3+2-5+1 1

• left-to-right evaluation

WestlakeNLP

э

`	_			
YHE	_ /	ha	n	œ
140		116		ъ

>>> 3+2-5+1

1

>>> 3+2*5-4 9

- Left-to-Right Evaluation
- Operator Precedence
 - (1) *, / higher
 - (2) +, lower

>>> 3+2*5-4 9

>>> (3+2)*(5-4) 5

- Left-to-Right Evaluation
- Operator Precedence (1) *, / higher
 - (2) +, lower
- Brackets specify order of evaluation.

WestlakeNLP

Using Python as a Calculator – More Operators

>>> 5**2

25

>>> 5%2 1

>>> -(5*1) -5 Power – Binary Operator takes two operands

- Modulus Binary Operator
- Negation Unary Operator takes one operand

There are unary, binary and ternary operators in python.

We will learn ternary operator later on.

𝕶 WestlakeNLP

Using Python as a Calculator – More Literals

>>> 0b1101011 107 >>> 0b11111111 255

• Binary Numbers

э

ъ

>>>	0b1101011
107	
>>>	0b11111111
255	

>>>	5e2
500.	0
>>>	6e-1
0.6	
>>>	3E5
3000	00.0

• Binary Numbers

• Scientific Notation

WestlakeNLP

Yue Zhang	Yue	۲I	۱aı	٦g
-----------	-----	----	-----	----

Using Python as a Calculator – Floating Point Numbers

```
>>> type(1)
<class 'int'>
>>> type(4.0)
<class 'float'>
>>> type(0b11111)
<class 'int'>
>>> type(3E2)
<class 'float'>
```

 Literals have types int - integer float - floating point numbers

• Similarly, expressions (their values) have types.

```
>>> 24/6
4.0
>>> type(24/6)
<class 'float'>
```


Using Python as a Calculator – Floating Point Numbers

• Floating Point Expressions

>>> 7.0/2 3.5 >>> 26/2.0 13.0 >>> 25**0.5 5.0 >>> 3.1+2.4 5.5

э

▶ < ∃ >

Yue Zhang

Using Python as a Calculator – Floating Point Numbers

• Floating Point Expressions

>>> 7.0/2 3.5 >>> 26/2.0 13.0 >>> 25**0.5 5.0 >>> 3.1+2.4 5.5

• Integer Division

>>>	26//4		
6			
>>>	26 <mark>%</mark> 4		
2			

WestlakeNLP

э

Image: A matrix

Yue Zhang

August 1, 2023

```
>>> type(5.0)
<class 'float'>
```

- What is type(5.0)?
 - type is a function
 - A function takes a set of arguments and yields a return value.
 - type(5.0) is a function call.
 - A function call is an expression.

More Function Calls

```
>>> int(3.0)
3
>>> int(3.1)
3
>>> int(3.9)
3
>>> round(3.1)
3
>>> round(3.5)
4
```

• float to int

WestlakeNLP

э

Using Python as a Calculator – Functions

More Function Calls

```
>>> int(3.0)
3
>>> int(3.1)
3
>>> int(3.9)
3
>>> round(3.1)
3
>>> round(3.5)
4
```

>>> float(3) 3.0 • float to int

• int to float

э

More Function Calls

```
>>> round(3.333,1)
3.3
>>> round(3.333,2)
3.33
```

 functions with more than one arguments

э

```
Yue Zhang
```

```
>>> round(10**0.5, 2)
3.16
```

• The order for evaluation composite expressions with functions.

 $\text{arguments} \rightarrow \text{function call}$

What is the type of functions?

>>> type(int)
<class 'type'>

• function objects

>>> type(round)
<class 'builtin_function_or_method'>

We will learn objects.

Yue Zhang
```
>>> a=1000
>>> w=a**0.5
>>> round(w,2)
31.62
```

- identifiers (v.s. literals)
 - a, w (v.s. 1000, 0.5, 0.2)
- Variables can change their values, and are represented by identifiers.
- **Constants** do not change their values, and are represented by literals.

WestlakeNLP

```
>>> a=1000
>>> w=a**0.5
>>> round(w,2)
31.62
```

 assignment a=1000 w=a**0.5

- Assignment of values to variables.
- Assignments are **statements**, which are the basic commands of a programming language.
- A statement does not have a value.

Yue Zhang

№ WestlakeNLP

• If a ball is thrown upwards with an initial velocity v0 = 5m/s from an initial altitude of 0m, what is its altitude after 0.1s? ($h = v_0t + \frac{1}{2}gt^2$)

```
>>> v0=5
>>> g=9.81
>>> t1=0.1
>>> h1=v0*t1-0.5*g*t1**2
>>> round(h1,2)
0.45
```


Using Python as a Calculator – One Problem-solving Example

• If a ball is thrown upwards with an initial velocity v0 = 5m/s from an initial altitude of 0m, what is its altitude after 0.1s? ($h = v_0t + \frac{1}{2}gt^2$)

```
>>> v0=5
>>> g=9.81
>>> t1=0.1
>>> h1=v0*t1-0.5*g*t1**2
>>> round(h1,2)
0.45
```

• what is its altitude after 1s?

```
>>> t2=1
>>> h2=v0*t2-0.5*g*t2**2
>>> round(h2,2)
0.09
```

WestlakeNLP

Using Python as a Calculator – Valid Identifiers

- start with letter or underscore
- contain letters, numbers and underscore
- valid invalid a, a0, _a, area 0a, area! • cannot be keywords

Using Python as a Calculator – Keywords

and	as	assert	async	await	break	class	continue	def
del	elif	else	except	False	finally	for	from	global
if	import	in	is	lambda	None	nonlocal	not	or
pass	raise	return	True	try	while	with	yield	peg_parser

► < ∃ ►</p>

э

Using Python as a Calculator – Variable Reassignments

>>>	x=1
>>>	x
1	
>>>	x=2
>>>	x
2	

• initial assignments

 reassignment variable value changes

×/	7		
rue		nai	nσ
	_		· •

>>> >>>	x=1 x
1 >>>	x=2
>>> 2	x

>>> x=x+1 >>> x 3

- initial assignments
- reassignment variable value changes

WestlakeNLP

Yue	Zhan	p
		-

>>>	x = 1
>>>	x
1	
>>>	x=2
>>>	x
2	

>>> x=x+1 >>> x 3

- initial assignments
- reassignment variable value changes
- How can x=x+1?
 - right hand side evaluated first
 - value assigned to x

WestlakeNLP

Using Python as a Calculator – Assignment

Shortcut

>>>	x=1
>>>	x+=1
>>>	x
2	

$\times +=1$	x=x+1
x-=2	x = x - 2
x*=3	x=x*3
x/=4	x = x/4

3

Yue	Z	na	ne
	_		

Using Python as a Calculator – One More Case

• Width and Area of a Square

w=2
a=w*w
a
8 = W
a=w*w
a

э

Using Python as a Calculator – One More Case

• Width and Area of a Square

>>>	w=2
>>>	a=w*w
>>>	a
4	
>>>	8 = W
>>>	a=w*w
>>>	a
9	

• Can this a=w*w be omitted?

Using Python as a Calculator – Math Module

The math module has more math utilities.

```
>>> import math
>>> math.pi
3.141592653589793
>>> math e
2.718281828459045
>>> math.factorial(10)
3628800
>>> math.log(100)
4.605170185988092
>>> math.sin(3)
0.1411200080598672
>>> math.cos(7)
0.7539022543433046
```

- keyword import is a second statement
- identifier math is a module name
- math is an object
- Content
 - math.pi
 - math.log
 - ...

Checkout math, cmath and random modules from Python Documentation!

Using Python as a Calculator – Math Module

Python Documentation (https://docs.python.org/3/)

installing from the Python Package Index & other

э

Yue Zhang

Westlake University

イロト イポト イヨト イヨト August 1, 2023

Using Python as a Calculator – Math Module

module object

• Types we learned: int, float, type, function, module

Yue	Zhan	g

This week check-off: Solving Mathematical Problems

3

∃ ≥ >

Yue Zhang

Westlake University

August 1, 2023