
Introduction to Computer and Programming
Lecture 14

Yue Zhang
Westlake University

August 1, 2023

Yue Zhang Westlake University August 1, 2023 1 / 46

Chapter 14.

Operating System

Yue Zhang Westlake University August 1, 2023 2 / 46

Motivation

- We have a bytecode program, written directly, assembled, or
compiled from C code.

- We load it to a machine, start it, and wait for it to halt.
- We manage devices (harddrive, keyboard, monitor, · · ·) directly!

Yue Zhang Westlake University August 1, 2023 3 / 46

Motivation

- We want to
- Do not need to restart when launching a program.
- Run a lot of different program simultaneously. (e.g., doing

homework while listening to music)
- No need to manage device code in every program.

Yue Zhang Westlake University August 1, 2023 4 / 46

Operating System

Basic idea

hardware

OS

Program 1 Program 2 Program N⋯

Load OS as machine starts.
Load other programs via OS.
OS manages each program, providing
it access to the hardware as if it
occupies the hardware alone (Virtual
Machine).

Yue Zhang Westlake University August 1, 2023 5 / 46

Operating System

Basic idea

OS

Program 1 Program 2 Program N⋯

CPU

MEM Dev

What to virtualize?
- CPU
- Memory
- Devices

Yue Zhang Westlake University August 1, 2023 6 / 46

Virtualizing CPU

In OS terminology, the runtime of a bytecode is a process.
Bytecode is static; Process is dynamic.
The concept of process is unnecessary if there is only one program
being executed in a computer, but useful when multiple programs
run simultaneously.

Yue Zhang Westlake University August 1, 2023 7 / 46

Virtualizing CPU

How can we allow multiple processes to run simultaneously in a
single CPU?

time-shared mechanism

time

execution

proc2

proc1

OS

Yue Zhang Westlake University August 1, 2023 8 / 46

Virtualizing CPU

time-shared mechanism

time

execution

proc2

proc1

OS

Two issues to address
How to schedule processes?
How to make each process feel a) non-interrupted and b) owning the
machine alone？

Yue Zhang Westlake University August 1, 2023 9 / 46

Virtualizing CPU

The Process Schedule

time

execution

proc2

proc1

OS

1. periodically executed by OS.
2. stops the current process P1.
3. save the current machine state into a

memory record for P1.

4. decide a next process P2 to resume.
5. load its memory record for P2.
6. JMP to the code to resume P2.

Yue Zhang Westlake University August 1, 2023 10 / 46

Virtualizing CPU

The Process Schedule

time

execution

proc2

proc1

OS

How can the OS periodically kick in?
- Need hardware support.
- Special PC control called interrupt.

Yue Zhang Westlake University August 1, 2023 11 / 46

Virtualizing CPU

Interrupts

time

execution

interrupt
handler

program

interrupt call interrupt call returns

Interrupts are a built-in mechanism for our computer.
They are special function calls triggered by various devices, such as:

- timer (periodical), keyboard press, mouse click

Yue Zhang Westlake University August 1, 2023 12 / 46

Virtualizing CPU
Interrupts

time

execution

interrupt
handler

program

interrupt call interrupt call returns

The hardware part:
1) The device sends a signal IRQ (interrupt request) to the CPU,

together with its type.
2) The CPU saves the current PC + 4 to a special register XP, and

JMP to a designated address.
Yue Zhang Westlake University August 1, 2023 13 / 46

Virtualizing CPU

PC + 4 CU

instruction

IRQ

PCCLK
next PC+4

PC Control
registers

CLK

CPU

Registers

CU

PC

ALU

- IRQ has higher priority.

Ø The PC part of the CPU
Ø The CU (control unit) decides

the value of the PC (program
control) at the next step.

next PC =

1. sequential execution
PC + 4

2. JMP instruction
JMP address

3. interrupt request
interrupt handler address

4. illegal instruction
illegal instruction handler

Yue Zhang Westlake University August 1, 2023 14 / 46

Virtualizing CPU

PC + 4 CU

instruction

IRQ

PCCLK
next PC+4

PC Control
registers

next PC =

1. sequential execution
PC + 4

2. JMP instruction
JMP address

3. interrupt request
interrupt handler address

4. illegal instruction
illegal instruction handler

Ø What is illegal instruction?

000001 00000 00001 00010 00000000000

e.g., ADD R0 R1 R2

The first 6 bits of bytecode instruction must correspond to the CPU
instruction set, if not, (e.g., 000000), the instruction is illegal.

Yue Zhang Westlake University August 1, 2023 15 / 46

Virtualizing CPU
Interrupts

time

execution

interrupt
handler

program

interrupt call interrupt call returns

Ø The hardware

Ø Why store PC + 4 to XP ?
For returning to process.

Ø The interrupt handler address are hardcoded.
(e.g., 8 for timer, 12 for keyboard)

IRQ (device type)
PC + 4 → XP

interrupt handler → PC

Yue Zhang Westlake University August 1, 2023 16 / 46

Virtualizing CPU
Interrupts

time

execution

interrupt
handler

program

interrupt call interrupt call returns

Ø The software (operating system code)

JMP start
JMP illegal
JMP timer
JMP keyboard
JMP mouse

⋮

0
4
8
12
16
⋮

The address of a function for the start of OS code.
The address of illegal instruction handler.
The address of timer handler.
The address of keyboard interrupt handler.
The address of mouse interrupt handler.

Yue Zhang Westlake University August 1, 2023 17 / 46

Virtualizing CPU
Interrupts

time

execution

interrupt
handler

program

interrupt call interrupt call returns

Ø The software (operating system code)

save all registers used

⋯
restore all registers used

JMP XP

timer
timer + 4
timer + 8

⋮
⋮

address of the
last instruction

handler code
(does not allow other interrupts)

Yue Zhang Westlake University August 1, 2023 18 / 46

Virtualizing CPU

Interrupts

time

execution

interrupt
handler

program

interrupt call interrupt call returns

Ø The software (operating system code)
• The timer keeps track of system time.
• It is triggered periodically.
• Inside the timer, the OS can call the scheduler periodically.
• The scheduler cannot be called too frequent because it will

introduce overhead.

Yue Zhang Westlake University August 1, 2023 19 / 46

Virtualizing CPU
The Process Scheduler

Ø The scheduler makes a record for each process, saving the
content state of the machine.
• The PC
• The registers (all)
• The memory (we will discuss this later.)
• The virtual devices (some devices are shared)

Ø The record is saved to memory when a process is stopped, and
reloaded when it resumes.

time

execution

proc2

proc1

OS

Yue Zhang Westlake University August 1, 2023 20 / 46

Virtualizing CPU

time-shared mechanism

time

execution

proc2

proc1

OS

Two issues to address
How to schedule processes?
How to make each process feel a) non-interrupted and b) owning the
machine alone？

Yue Zhang Westlake University August 1, 2023 21 / 46

Virtualizing CPU

The Process Scheduler

Ø When loading the next process, the OS can select process by
considering priorities. e.g., the music being played should not
be broken, while the document being edited can tolerate more
delay without being noticed.

time

execution

proc2

proc1

OS

Yue Zhang Westlake University August 1, 2023 22 / 46

Virtualizing Memory

Ø Memory has two categories.
l ROM —— read only memory
l RAM —— read access memory

OS

Program 1 Program 2 Program N⋯

CPU

MEM Dev

Ø RAM is the most commonly used.
Ø Different materials can be used for RAM.

access speed

cost

ps

registers —— in CPU

ns

SRAM —— static, transistors

10 ns

DRAM ——dynamic, capacitors

disk
10 ms

Yue Zhang Westlake University August 1, 2023 23 / 46

Virtualizing Memory
Ø How to combine different materials?

access speed

cost

ps

registers —— in CPU

ns

SRAM —— static, transistors

10 ns

DRAM ——dynamic, capacitors

disk
10 ms

Ø Cache
l small amount of SRAM in CPU.
l store frequently accessed data.
l allow overall memory speed ≈ SRAM
l because of local access (e.g., loops)

CLK

CPU

Registers

CU

PC

ALU

SRAM
cache

DRAM
main memory

Yue Zhang Westlake University August 1, 2023 24 / 46

Virtualizing Memory

Ø Goal —— allow each process to see maximum allowed memory,
starting from 0 and continuous.

0
4
8

⋮
⋮

2!" − 1

process (virtual)

(the address is stored by a word)

Yue Zhang Westlake University August 1, 2023 25 / 46

Virtualizing Memory

Ø Goal —— allow each process to see maximum allowed memory,
starting from 0 and continuous.

0
4
8

⋮
⋮

2!" − 1

process (virtual)

(the address is stored by a word)

However, physical memory
Ø can be smaller than 2!" − 1
Ø can contain content for multiple processes

Yue Zhang Westlake University August 1, 2023 26 / 46

Virtualizing Memory

Solutions

block

block
(not resident)

⋮

block

0
4
⋮

2!" − 1

unused

used

used

used

process (virtual)

block

block

⋮

block

0
4
⋮

MAX
↓

(Can be small than 2!" − 1)

block

block

⋮

block

0
4
⋮

2!" − 1

unused

used

unused

unused

computer (physical) process (virtual)

x

Ø Organize memory in blocks (called pages).
Ø Use a page table, page index to map between process and physical page index.

Yue Zhang Westlake University August 1, 2023 27 / 46

Virtualizing Memory
Solutions

block

block

0
4
⋮

2!" − 1

unused

used

used

used

process (virtual)

block

block

⋮

block

0
4
⋮

MAX
↓

(Can be small than 2!" − 1)

block

block

⋮

block

0
4
⋮

2!" − 1

unused

used

unused

unused

computer (physical) process (virtual)

Ø Why not map word by word?
l Page table occupies memory.
l Data/code structure is continuous.

Ø How large can each page be?
l Typically 4k(4096) bytes, or 1k(1024) words.
l Thus page index has 32 − 𝑙𝑜𝑔2"#$% = 20 bits.

block
(not resident)

x

⋮

Yue Zhang Westlake University August 1, 2023 28 / 46

Virtualizing Memory
Solutions

block

block
(not resident)

⋮

block

0
4
⋮

2!" − 1

unused

used

used

used

process (virtual)

block

block

⋮

block

0
4
⋮

MAX
↓

(Can be small than 2!" − 1)

block

block

⋮

block

0
4
⋮

2!" − 1

unused

used

unused

unused

computer (physical) process (virtual)

x

Ø What if the physical memory cannot hold used virtual memory by all processes?
• Save less accessed pages to the disk.
• In Linux, this file is called swapfile.
• Without swapfile, a process will halt with “bad allocation” when out of memory.

Yue Zhang Westlake University August 1, 2023 29 / 46

Virtualizing Memory

Solutions

block

block
(not resident)

⋮

block

0
4
⋮

2!" − 1

unused

used

used

used

process (virtual)

block

block

⋮

block

0
4
⋮

MAX
↓

(Can be small than 2!" − 1)

block

block

⋮

block

0
4
⋮

2!" − 1

unused

used

unused

unused

computer (physical) process (virtual)

x

Ø What if the actually used memory is much more than the physical memory?
• Frequently swapping between physical memory and disk.
• The computer becomes slow.

Yue Zhang Westlake University August 1, 2023 30 / 46

Virtualizing Memory
Solutions

block

block
(not resident)

⋮

block

0
4
⋮

2!" − 1

unused

used

used

used

process (virtual)

block

block

⋮

block

0
4
⋮

MAX
↓

(Can be small than 2!" − 1)

block

block

⋮

block

0
4
⋮

2!" − 1

unused

used

unused

unused

computer (physical) process (virtual)

x

Ø How can we implement a page table?
• It corresponds to the arrows in the figure.
• One page for each process.
• Roughly like this.
• When mapping a 32-bit address, the first 20-bits are translated, and the last 12-bits are copied.

Virtual address Physical address resident

00000⋯00000 01010⋯10101 1

20 bits
⋮

20 bits
⋮

⋮
⋮

Yue Zhang Westlake University August 1, 2023 31 / 46

Virtualizing Memory
Solutions

block

block
(not resident)

⋮

block

0
4
⋮

2!" − 1

unused

used

used

used

process (virtual)

block

block

⋮

block

0
4
⋮

MAX
↓

(Can be small than 2!" − 1)

block

block

⋮

block

0
4
⋮

2!" − 1

unused

used

unused

unused

computer (physical) process (virtual)

x

Ø How can we implement a page table?
• Hardware: add a memory management unit (MMU) to CPU, which takes a page map

address and 1) executes page mapping, 2) triggers OS when accessed memory is not resident.
• Software: OS maintains a page table for each process, and interrupts swap.

Yue Zhang Westlake University August 1, 2023 32 / 46

Virtualizing Memory

time

execution

proc2

proc1

OS

Ø The process record again
l Current PC
l All the registers
l Page table address
l State of relevant devices

Yue Zhang Westlake University August 1, 2023 33 / 46

Devices

OS

Program 1 Program 2 Program N⋯

CPU

MEM Dev

OS manage devices through driver
programs.
Device can call OS through CPU via
interrupts, can be called by OS.
Devices send data and receive data
from processes by writing them to
memory.

Yue Zhang Westlake University August 1, 2023 34 / 46

Devices

The data communication channel.

process devicesMEM

OS

via via

Yue Zhang Westlake University August 1, 2023 35 / 46

Devices
The data communication channel.

process devicesMEM

OS

via via

Ø Process can
l send data to device. (e.g., print())
l receive data from device. (e.g., input())

Ø Through supervisor calls.
Yue Zhang Westlake University August 1, 2023 36 / 46

Devices

The data communication channel.

process devicesMEM

OS

via via

Ø How can a process call the OS?
l Must be in bytecode.
l Must be recognized by the OS.

Yue Zhang Westlake University August 1, 2023 37 / 46

Devices

Ø How can a process call the OS?
l Hardware supports for supervisor calls.

JMP start

JMP timer
JMP keyboard
JMP mouse

⋮

0
4
8
12
16
⋮

l All instructions with the first 6 bits not in the
instruction set trigger this.

l The illegal function is part of the OS.

JMP illegal

Yue Zhang Westlake University August 1, 2023 38 / 46

Devices

Ø How can a process call the OS?
l Software supports for supervisor calls.

l From the CPU perspective, supervisor call (SVC) can be
illegal instructions, go to memory address 4.

l From the OS perspective, it can tell the program to
encode further information into a special instruction, and
handle such calls at the illegal instruction handler.

000000 00001 000000000000000000000
6 bits 5 bits 21 bits

SVC SVC type arguments, etc.
e.g., read key,
read mouse, ⋯

Yue Zhang Westlake University August 1, 2023 39 / 46

Devices

Ø How can a process call the OS?
l Software supports for supervisor calls.

OS pseudo code for ILLEGAL.
if instruction[0:5] == 0:

read SVC type from instruction[6:10]
read arguments from instruction[11:31]
call SVC type with arguments

else:
handle illegal instruction

Yue Zhang Westlake University August 1, 2023 40 / 46

Devices
Supervisor Call Examples

SVC display
print(“Hi.”)

OS calls display function

“Hi.” being moved to console buffer (designated memory)

Monitor display

return to process
Yue Zhang Westlake University August 1, 2023 41 / 46

Devices

Supervisor Call Examples

SVC call display “a=”
input(“a=”)

SVC call keyboard

sleeps the process until keystroke.

read designated keyboard memory (designated memory).

sleep : a state that
lets the OS know
not to reschedule
the process.

Yue Zhang Westlake University August 1, 2023 42 / 46

Devices

The data communication channel.

process devicesMEM

OS

via via

Ø Devices can
l send data to memory. (e.g., key press)
l receive data from memory via the bus.

Yue Zhang Westlake University August 1, 2023 43 / 46

Devices
Example of device request

Device send IRQ to CPU

Key Press

CPU executes address = 12

OS code at address = 12 (JMP keyboard)

OS code at KEYBOARD copy the pressed key
from device buffer to designated memory.

Yue Zhang Westlake University August 1, 2023 44 / 46

Devices

Pictures

Videos

Sounds

Robot Action Input
Device

Pictures

Videos

Sounds

Robot Action
Digital
Signal

Digital
SignalComputer

Output
Device

Yue Zhang Westlake University August 1, 2023 45 / 46

OS Summary

JMP start
JMP illegal
JMP timer
JMP keyboard
JMP mouse

⋮

0
4
8
12
16
⋮

The scheduler

⋮
Supervisor call functions

⋮
Interrupt handlers

scheduler

⋮

⋮

display

keypress

Illegal instruction handler

Yue Zhang Westlake University August 1, 2023 46 / 46

