Introduction to Computer and Programming Lecture 10

Yue Zhang Westlake University

August 1, 2023

WestlakeNLP

Yue Zhang

Chapter 10.

Gates and Circuits

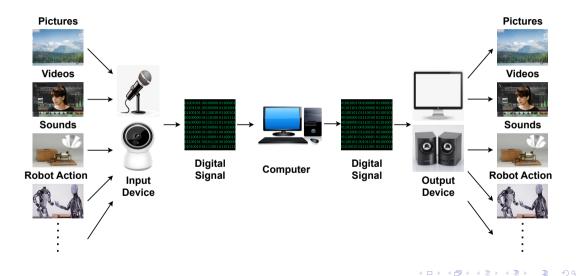
▶ < ∃ ▶</p>

Yue Zhang

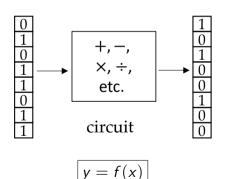
Westlake University

August 1, 2023

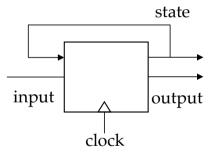
The Digitization



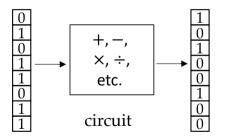
August 1, 2023



Sequential Circuits



$$y_t = s_t = f(x_t, s_{t-1})$$

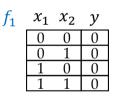


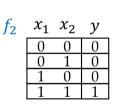
$$y = f(x)$$

Define f

f is a mapping between all possible inputs and all possible outputs.

• Use 2-bit input, 1-bit output for example.





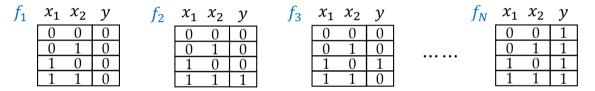


ъ

э

.

• How many 2-bit \rightarrow 1-bit functions are there in total?



2-bit input \rightarrow 4 combinations 1-bit output \rightarrow 2 cases $\therefore 2^4 = 16$ functions.

WestlakeNLP

• How many N-bit \rightarrow 1-bit functions are there in total?

3

∃ ⇒

• How many N-bit \rightarrow 1-bit functions are there in total?

N-bit input $\rightarrow 2^N$ combinations 1-bit output $\rightarrow 2$ cases $\therefore 2^{2^N}$ functions.

• How many N-bit \rightarrow 1-bit functions are there in total?

N-bit input $\rightarrow 2^{N}$ combinations 1-bit output $\rightarrow 2$ cases $\therefore 2^{2^{N}}$ functions.

• How many N-bit \rightarrow M-bit functions are there in total?

• How many N-bit \rightarrow 1-bit functions are there in total?

N-bit input $\rightarrow 2^N$ combinations 1-bit output $\rightarrow 2$ cases $\therefore 2^{2^N}$ functions.

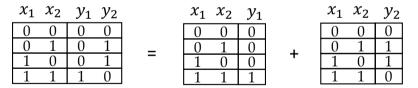
• How many N-bit \rightarrow M-bit functions are there in total?

N-bit input $\rightarrow 2^N$ combinations M-bit output $\rightarrow 2^M$ cases $\therefore (2^M)^{2^N}$ functions.

WestlakeNLP

- How can we implement arbitrary N-bit \rightarrow M-bit functions?
 - Break the M bit \rightarrow 1 bit independent circuits.

$$y = x_1 + x_2$$



• Further break the circuits into the combinations of smaller units - gates.

WestlakeNLP

Vina	Zhang	
Tue	Znang	

• Combinational circuits are also called combinational logic. Gates are also called logical gates.

▶ < ∃ >

- Combinational circuits are also called combinational logic. Gates are also called logical gates.
- Why? Boolean Algebra.


```
"the mathematics of logic"
inputs are {0, 1}
representing {False, True}
```

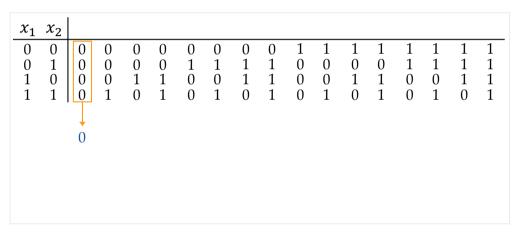
Figure: 1850s George Boole

- All N-bit ightarrow 1-bit functions can be viewed as boolean functions.
- including $+, -, \times, \div$ and more complicated functions.

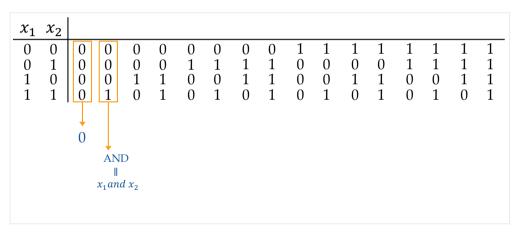
0 0 0 0 0 0 0 0 0 0 1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 1 0 1 0 1 0 1 0 1 0	1 0 1 0 1 0 1

< /□

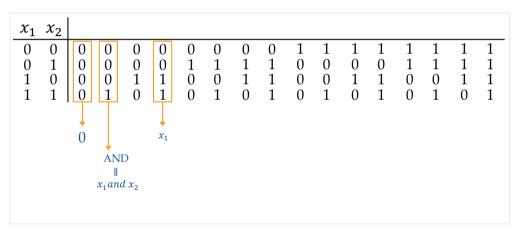
▲ 国 ト | ▲ 国 ト



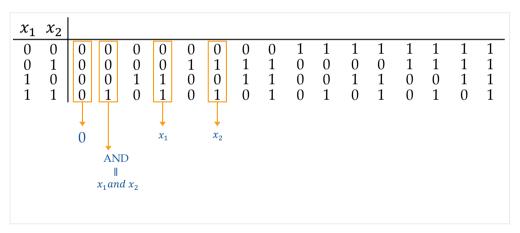
< ∃⇒



< ∃⇒



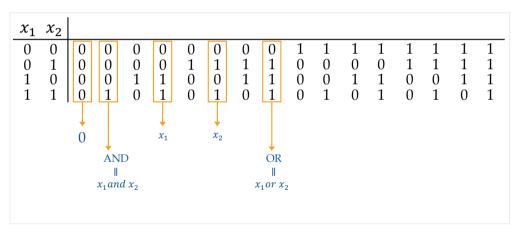
∃ ⇒



∃ ⇒

Boolean Algebra

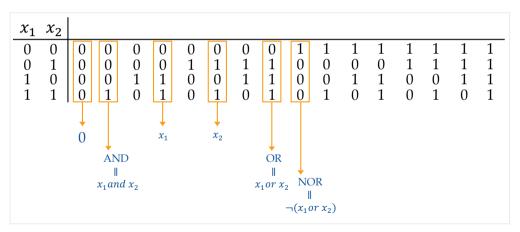
All 2-bit \rightarrow 1-bit functions.



∃ ≥ >

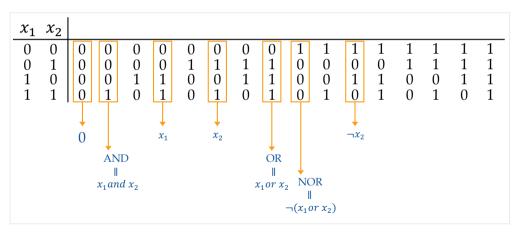
Boolean Algebra

All 2-bit \rightarrow 1-bit functions.



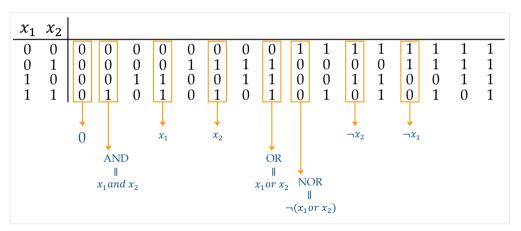
Vue	Zhang
Tue	Znang

∃ ⇒



► < Ξ ►</p>

Э



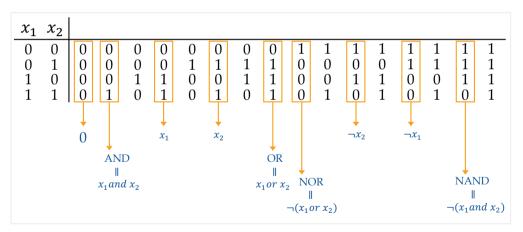
×/	71
rue	Zhang

∃ ⇒

Э

Boolean Algebra

All 2-bit \rightarrow 1-bit functions.



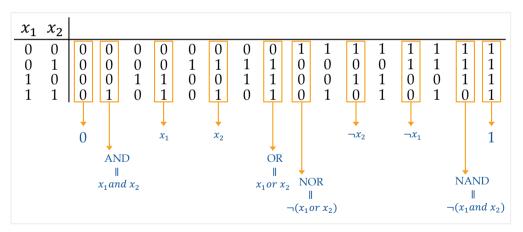
	Westlake University	August 1, 2023	24 / 64
--	---------------------	----------------	---------

イロト 不同下 イヨト イヨト

- 32

Boolean Algebra

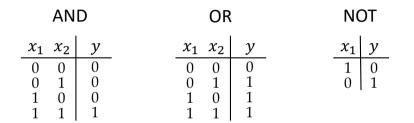
All 2-bit \rightarrow 1-bit functions.



Westlake University	August 1, 2023	25 / 64

イロト 不同下 イヨト イヨト

- 32



AND, OR and NOT are **universal**.

All N-bit ightarrow 1-bit functions can be denoted as their combinations.

Boolean Algebra

- Using AND, OR and NOT to denote all functions.
- $x_3 x_4$ ν $x_1 \ x_2$

- 1) Read out all the 1 values in y.
- 2) Represent them as compositions of x.
- 3) Use or to join them.

$$y = \overline{x_1}x_2x_3x_4 + x_1x_2\overline{x_3}x_4 + x_1x_2x_3x_4$$

where $\overline{x_1} = \text{NOT } x_1$
 $x_1x_2 = x_1 \text{ AND } x_2$
 $x_1 + x_2 = x_1 \text{ OR } x_2$

WestlakeNLP

- Using AND, OR and NOT to denote all functions.
 - You can use boolean algebra to simplify functions.

$$y = \overline{x_1} x_2 x_3 x_4 + x_1 x_2 \overline{x_3} x_4 + x_1 x_2 x_3 x_4 = (\overline{x_1} x_3 + x_1 \overline{x_3} + x_1 x_3) x_2 x_4 = (x_1 + x_3) x_2 x_4$$

- You can learn boolean algebra by further reading relevant books and courses.
- Simplified equations simplify circuits.

PROPERTY	AND	OR
Commutativity	AB = BA	$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$
Associativity	(AB)C = A(BC)	(A + B) + C = A + (B + C)
Distributivity	A(B + C) = (AB) + (AC)	$\mathbf{A} + (\mathbf{B}\mathbf{C}) = (\mathbf{A} + \mathbf{B})(\mathbf{A} + \mathbf{C})$
Identity	A1 = A	A + 0 = A
Complement	$A(\overline{A}) = 0$	A + $\overline{\mathrm{A}}=1$
De Morgan's law	$\overline{\mathrm{AB}} = \overline{\mathrm{A}} + \overline{B}$	$\overline{\mathbf{A} + \mathbf{B}} = \overline{\mathbf{A}} \ \overline{B}$

WestlakeNLP

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• How can we build AND, OR and NOT gates?

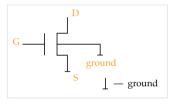
Figure: Transistors

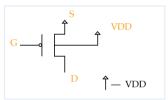
- Transistors are patented 20 years ago before they are invented.

- MOSFET Metal-oxside field-effect transistor

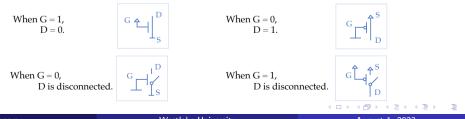
Transistors

Transistors can be seen as gates.
PULL-DOWN GATE
PULL-UP GATE

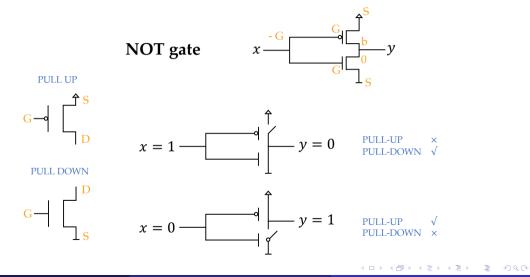




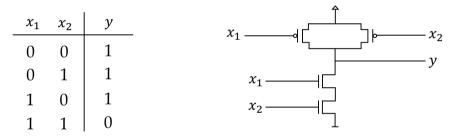
Gates are like switches.



Gates



NAND gate

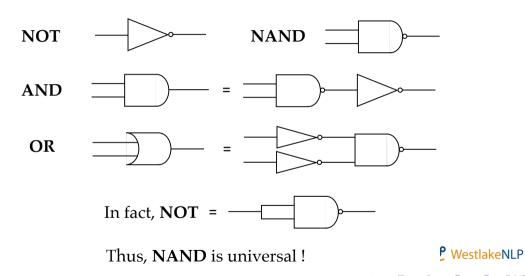


- (y=1) PULL-UP when x_1 or x_2 is 0.
- (y=0) PULL-DOWN when x_1 and x_2 is 1.

Yue Zhang

WestlakeNLP

Gates



		《曰》《卽》《言》《言》	E SAG
Yue Zhang	Westlake University	August 1, 2023	34 / 64

Combinational Logic

- The final step in circuit design.
- $x_1 \ x_2$ $x_3 \, x_4$ y $\begin{array}{c} 1 \\ 0 \end{array}$ 1

$$y = \overline{x_1} x_2 x_3 x_4 + x_1 x_2 \overline{x_3} x_4 + x_1 x_2 x_3 x_4$$

= $(\overline{x_1} x_3 + x_1 \overline{x_3} + x_1 x_3) x_2 x_4$
= $(x_1 + x_3) x_2 x_4$

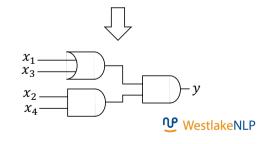
э

Combinational Logic

- The final step in circuit design.
- $x_1 \, x_2$ $x_3 \, x_4$ y $\begin{array}{c} 0 \\ 1 \end{array}$

$$y = \overline{x_1} x_2 x_3 x_4 + x_1 x_2 \overline{x_3} x_4 + x_1 x_2 x_3 x_4$$

= $(\overline{x_1} x_3 + x_1 \overline{x_3} + x_1 x_3) x_2 x_4$
= $(x_1 + x_3) x_2 x_4$



Yue Zhang

4 E

36 / 64

- Boolean logic can also represent algebraic functions, of course.
- Adder (1-bit)

_	А	В	Sum Carry
	0	0	
	0	1	
	1	0	
	1	1	

э.

- Boolean logic can also represent algebraic functions, of course.
- Adder (1-bit)

Α	В	Sum	Carry
0	0	0	0
0	1		
1	0		
1	1		

3

- Boolean logic can also represent algebraic functions, of course.
- Adder (1-bit)

А	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0		
1	1		

WestlakeNLP

- Boolean logic can also represent algebraic functions, of course.
- Adder (1-bit)

А	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1		

э.

- Boolean logic can also represent algebraic functions, of course.
- Adder (1-bit)

А	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

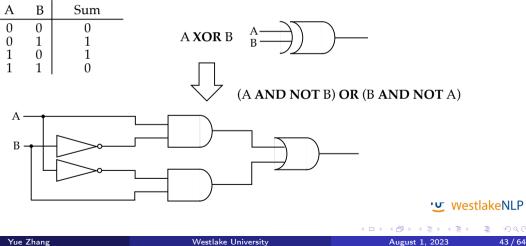
41/64

• Consider sum and carry separately.

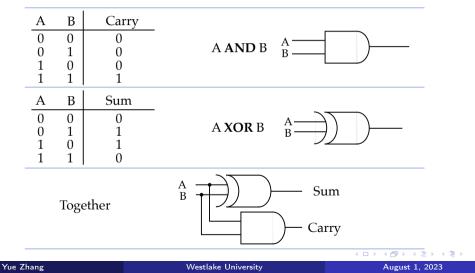
А	В	Sum		
0	0	0		
0	1	1	A XOR B	\overrightarrow{B}))
1	0	1		
1	1	0		

▶ ★ 国 ▶ …

Consider sum and carry separately. •



• Consider sum and carry separately.



44 / 64

А	В	Carry-in	Sum	Carry-out
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

А	В	Carry-in	Sum	Carry-out
0	0	0	0	0
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

А	В	Carry-in	Sum	Carry-out
0	0	0	0	0
0	0	1	1	0
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

А	В	Carry-in	Sum	Carry-out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Α	В	Carry-in	Sum	Carry-out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0		
1	0	1		
1	1	0		
1	1	1		

> < 国 > < 国 >

≣ ৩৭.ে 49/64

А	В	Carry-in	Sum	Carry-out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1		
1	1	0		
1	1	1		

А	В	Carry-in	Sum	Carry-out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0		
1	1	1		

А	В	Carry-in	Sum	Carry-out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1		

52 / 64

Α	В	Carry-in	Sum	Carry-out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

프 🖌 🔺 프 🛌

А	В	Carry-in	Sum	Carry-out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

 $\mathsf{sum} = \overline{AB}I + \overline{A}B\overline{I} + A\overline{BI} + ABI$

э

ъ

•	Also	considering	carry-in.
---	------	-------------	-----------

А	В	Carry-in	Sum	Carry-out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$sum = \overline{AB}I + \overline{A}B\overline{I} + A\overline{B}\overline{I} + ABI$$
$$= (\overline{A}B + A\overline{B})\overline{I} + (\overline{AB} + AB)I$$

• Also considering carry-in.

Α	В	Carry-in	Sum	Carry-out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

sum =
$$\overline{AB}I + \overline{A}B\overline{I} + A\overline{B}\overline{I} + ABI$$

= $(\overline{A}B + A\overline{B})\overline{I} + (\overline{AB} + AB)I$
= $(A \text{ XOR } B)\overline{I} + (\overline{A} \text{ XOR } B)I$

▶ < ∃ ▶</p>

Э

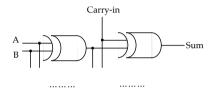
	A I		
•	Also	considering	carry-in.

А	В	Carry-in	Sum	Carry-out		
0	0	0	0	0		
0	0	1	1	0		
0	1	0	1	0		
0	1	1	0	1		
1	0	0	1	0		
1	0	1	0	1		
1	1	0	0	1		
1	1	1	1	1		
$sum = \overline{AB}I + \overline{A}B\overline{I} + A\overline{B}\overline{I} + ABI$						
	$= (\overline{A}B + A\overline{B})\overline{I} + (\overline{A}\overline{B} + AB)\overline{I}$					

$$um = ABI + ABI + ABI + ABI = (\overline{A}B + A\overline{B})\overline{I} + (\overline{AB} + AB)I = (A XOR B)\overline{I} + (\overline{A} XOR B)I = (A XOR B) XOR I$$

	A I		
•	Also	considering	carry-in.

А	В	Carry-in	Sum	Carry-out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1



$$sum = \overline{AB}I + \overline{A}B\overline{I} + A\overline{B}\overline{I} + ABI$$

= $(\overline{A}B + A\overline{B})\overline{I} + (\overline{AB} + AB)I$
= $(A \text{ XOR } B)\overline{I} + (\overline{A} \text{ XOR } B)I$
= $(A \text{ XOR } B) \text{ XOR } I$

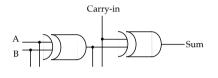
Yue Zhang

٠	Also	considering	carry-in.
---	------	-------------	-----------

А	В	Carry-in	Sum	Carry-out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

sum =
$$\overline{AB}I + \overline{A}B\overline{I} + A\overline{BI} + ABI$$

= $(\overline{A}B + A\overline{B})\overline{I} + (\overline{AB} + AB)I$
= $(A \text{ XOR } B)\overline{I} + (\overline{A} \text{ XOR } B)I$
= $(A \text{ XOR } B) \text{ XOR } I$



$$Carry-out = \overline{A}BI + A\overline{B}I + AB\overline{I} + ABI$$

(日)((同))(日)((日))(日) August 1, 2023

ΛΙ

	 Also 	consid	lering carry-ir	۱.
В	Carry-in	Sum	Carry-out	

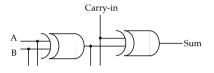
· · ·

.

А	В	Carry-in	Sum	Carry-out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

sum =
$$\overline{AB}I + \overline{A}B\overline{I} + A\overline{B}\overline{I} + ABI$$

= $(\overline{A}B + A\overline{B})\overline{I} + (\overline{AB} + AB)I$
= $(A \text{ XOR } B)\overline{I} + (\overline{A} \text{ XOR } B)I$
= $(A \text{ XOR } B) \text{ XOR } I$



 $Carry-out = \overline{A}BI + A\overline{B}I + AB\overline{I} + ABI$ $= (\overline{A}B + A\overline{B})I + AB(\overline{I} + I)$

August 1, 2023

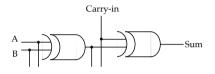
• • = • • = •

	~ 1		
•	Also	considering	carry-in.
			<i>ca,</i>

А	В	Carry-in	Sum	Carry-out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

sum =
$$\overline{AB}I + \overline{A}B\overline{I} + A\overline{BI} + ABI$$

= $(\overline{A}B + A\overline{B})\overline{I} + (\overline{AB} + AB)I$
= $(A \text{ XOR } B)\overline{I} + (\overline{A} \text{ XOR } B)I$
= $(A \text{ XOR } B) \text{ XOR } I$



(

Carry-out =
$$\overline{A}BI + A\overline{B}I + AB\overline{I} + AB\overline{I}$$

= $(\overline{A}B + A\overline{B})I + AB(\overline{I} + I)$
= $(A \text{ XOR } B)I + AB(\overline{I} + I)$

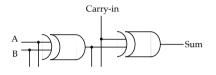
< □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ □ ` □ ` □ ` □ ` □ `

	A I		
•	Also	considering	carry-in.

А	В	Carry-in	Sum	Carry-out
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

sum =
$$\overline{AB}I + \overline{A}B\overline{I} + A\overline{BI} + ABI$$

= $(\overline{A}B + A\overline{B})\overline{I} + (\overline{AB} + AB)I$
= $(A \text{ XOR } B)\overline{I} + (\overline{A} \text{ XOR } B)I$
= $(A \text{ XOR } B) \text{ XOR } I$



(

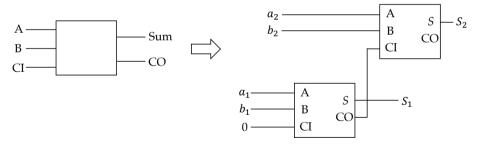
Carry-out =
$$\overline{A}BI + A\overline{B}I + AB\overline{I} + AB\overline{I}$$

= $(\overline{A}B + A\overline{B})I + AB(\overline{I} + I)$
= $(A \text{ XOR } B)I + AB(\overline{I} + I)$
= $(A \text{ XOR } B)I + AB$

< □ ▶ < □ ▶ < □ ▶ < □ ▶
 August 1, 2023

Combinational Circuits

- Putting adders together.
- 1-bit Adder 2-bit Adders



WestlakeNLP

э

63 / 64

• Chips – A piece of silicon on which multiple gates are made.

Abbreviation	Name	Number of Gates
SSI	Small-scale integration	1 to 10
MSI	Medium-scale integration	10 to 100
LSI	Large-scale integration	100 to 100,000
VLSI	Very-large-scale integration	more than 100,000

3

▶ < ∃ ▶</p>