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Abstract. Recent solutions proposed for sentence- and phrase-level
sentiment analysis have reflected a variety of analytical and compu-
tational paradigms that include anything from naive keyword spot-
ting via machine learning to full-blown logical treatments, either in
pure or hybrid forms. As all appear to succeed and fail in different
aspects, it is far from evident which paradigm is the optimal one
for the task. In this paper, we describe a quasi-compositional senti-
ment learning and parsing framework that is well-suited for exhaus-
tive, uniform, and principled sentiment classification across words,
phrases, and sentences. Using a hybrid approach, we model one
fundamental logically defensible compositional sentiment process
directly and use supervised learning to account for more complex
forms of compositionality learnt from mere flat phrase- and sentence-
level sentiment annotations. The proposed framework operates on
quasi-compositional sentiment polarity sequences which succinctly
capture the sentiment in syntactic constituents across different struc-
tural levels without any conventional n-gram features. The results
obtained with the initial implementation are highly encouraging and
highlight a few surprising observations pertaining to role of syntactic
information and sense-level sentiment ambiguity.

1 INTRODUCTION

Language affords a wonderfully rich array of devices for express-
ing subjectivity, sentiments, affect, emotions, stances, opinions, argu-
ments, points of view, perspectives, slurs, and the many other forms
of non-factuality. From the viewpoint of a computational algorithm,
non-factual content is bound to appear noticeably fuzzier than what
is usually the case in traditional, more factual NLP tasks such as
sentence breaking, part-of-speech tagging, or topic categorisation, to
name a few. On the other hand, recent advances in computational
Sentiment Analysis, Opinion Mining, and Affect/Emotion Analysis
(and other related areas) have produced applications which, while
still leaving much to be desired, are already highly useful in practice
and can in some cases mimic human sentiment interpretation rela-
tively well.

All proposals made in the above areas ultimately face the same
fundamental challenge which is to determine what happens when
individual expressions with rich (non-)sentiment properties interact
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with each other. A wide range of different solutions can be found en-
compassing mere frequency-based keyword spotting with no or naive
analytical additions, various machine learning approaches that have
incorporated shallow-structural or -semantic features, and explicit di-
rect fully- or shallow-compositional sentiment logics (§5).

If the goal is to be able to fully understand and account for the
very behaviour of sentiment in language, then the task of explaining
a given expression is to be approached using some form of princi-
pled logical reasoning that tries to systematically analyse all differ-
ent parts of the expression in order to arrive at a logically defensible,
coherent, and interpretable explanation in each case. Logical reason-
ing gives rise to a number of fundamental compositional sentiment
processes many of which are simple enough to be modelled directly
(e.g. [18], [13]). The most basic process involves sentiment charge
which effectively involves inserting sentiment into an otherwise neu-
tral expression. For example, when the neutral sentence “[This re-
port will make you ___; for hours]™” is modulated by a positive
sentiment carrier (e.g. “laughi("') ), the non-neutral propagation
process causes the latter to propagate its non-neutral sentiment across
the entire sentence (vice versa for “weepi( “)). Another obvious pro-
cess is null composition which simply involves combining expres-
sions displaying the same polarity (e.g. “Tevil] ? fwars]l 77 = “[evil
wars]( 7). Somewhat less frequent is the direct reversal process
in which reversive expressions reverse other expressions’ polarities
(e.g. “[avoid] ™ [trouble] 77 = “[avoid trouble] ™). More chal-
lenging are the numerous cases where clashing non-neutral polari-
ties interact: in these cases, some form of conflict resolution is nec-
essary whereby the ensuing conflicts are resolved using either syn-
tactic or semantic means (e.g. “[beneﬁt](+)[fraud]( )= “[benefit
fraud]( 7 7).

Although it is still unclear which computational paradigm is opti-
mal for practical purposes, explicit sentiment logics that implement
the above kinds of fundamental sentiment processes have generally
been observed to be very precise. They however commonly require
manual rules which specify how individual expressions are to interact
in the analysis, and are not unlikely to suffer from limited recall lev-
els. Less focused machine learning approaches typically offer greater
coverage but risk becoming too domain-dependent. They have yet to
explain how the many contextual factors that ultimately govern the
interaction of individual expressions across different structural levels
are to be captured in a uniform and exhaustive manner.

In this paper, we seek to bridge these two paradigms and propose a
hybrid sentiment learning and parsing framework for (sub)sentential
sentiment analysis that implements only one of the above logical sen-
timent processes directly while leaving the rest to be learnt proba-



bilistically from annotated sentiment data. The justification for a hy-
brid strategy is that the most basic compositional processes are sim-
ple enough to be modelled directly while the more complex ones may
necessitate a more data-driven approach (cf. [4]). The framework is
conceptually simple yet surprisingly powerful, and lends itself nat-
urally to uniform sentiment parsing across words, phrases, and sen-
tences. It is abstract enough to reduce domain and structural depen-
dency effects but specific enough to capture one of the most impor-
tant behavioural properties of sentiment. The proposed framework
can be implemented easily without any complex linguistic processing
as it requires only flat phrase- and/or sentence-level sentiment anno-
tations, a sentiment lexicon, and, optionally, a part-of-speech tagger
and a syntactic parser.

2 POLARITY SEQUENCE MODEL

Consider the following sample sentence (Ex. 1) (non-neutral and re-
versive words underlined).

[“Our lives™will never!"lbe the same again, having
(1) 1ostJour 1ovedMones and everything [we had] having
been dest royed( '),” Moussa told IRIN.]( -

In a baseline approach, a classifier could first consider the polar-
ity frequencies in the sentence (cf. [6]). It would however fail in this
case since a POS/NEG tie count of 2 would ensue. In a more popu-
lar approach, the classifier could instead consider the distribution of
various n-grams in the sentence: the unigram “lost” and the bigram
“and everything” might, for example, help the classifier to make a
decision if it has seen them amongst its negative polarity training ex-
amples (cf. [17]). Although they can reach moderate accuracy levels,
the major drawback in n-gram models is that they seldom generalise
well beyond the training data used, ignore all positional and temporal
aspects of the sentiment carriers, and also perform markedly worse
at lower (sub)sentential levels where evidence is always scarcer.

More complex features can then be harnessed to account for lim-
ited contexts around individual sentiment carriers by using crude,
fixed windows (e.g. £5 words) or by considering the sentiment
around and above the sentence. For example, the fact can be ex-
ploited that the reversive adverb “never! ™1 affects the positive noun
“lives(t)” (via the head verb “be”’). However, structural features still
struggle to cope with the fact that sentiment carriers and other expres-
sions modifying them can occur in any syntactic position, with many
nested long-distance dependencies involved (cf. [25]). When more
global structural features (e.g. checking if the sentence is surrounded
by negative sentences or if it is in a negative document) are used (cf.
[12]), evidence may erroneously be amassed from structures whose
sentiment properties have nothing at all to do with each other. If posi-
tional information (e.g. the verb “destroyed( )7 is the last sentiment
carrier in the sentence) is included (cf. [15]), the problem remains
that the most salient carrier can occur anywhere in the sentence. A
further complication arises from the fact that many sentiment carriers
suffer from context-dependent polarity ambiguity which confounds
the problem even further.

2.1 Quasi-Compositional Sentiment Sequencing

On the basis of these kinds of complications that have hampered
learning-based approaches, we instead investigate the possibility of
an alternative, much simpler, route around the problem by dropping
all but one of the conventional assumptions: specifically, we focus
solely on the linear order in which atomic sentiment polarities occur

in a sentence. If we represent the above sentence (Ex. 1) based on
the prior out-of-context sentiment polarities of the words in it, the
following raw polarity sequence representation emerges (Ex. 2):

1:NTR 2:POS 3:NTR 4:REV 5:NTR 6:NTR 7:NTR
8:NTR 9:NTR 10:NEG 11:NTR 12:POS 13:NTR
14:NTR 15:NTR 16:NTR 17:NTR 18:NTR 19:NTR
20:NEG 21:NTR 22:NTR 23:NTR

(@)

Note that in addition to the three sentiment polarities proper (POS,
NTR, NEG), the sentiment reversal potential (REV) of a word is used
here as a fourth ‘polarity’ (cf. [4]). Raw polarity sequences such as
this can then be turned into learning features by treating each step
(i.e. slice) in the polarity sequence as a separate feature. However, be-
cause sentences and phrases vary a great deal in terms of their length
(i.e. the number of raw feature slices that they yield), raw polarity
sequences risk generating too sparse feature vectors and do as such
necessitate very large amounts of training data to cover the proba-
bility of each of the four polarities occurring in each of the slices.
Hence, we seek to employ some form of feature reduction instead.

The fundamental compositional sentiment process of null compo-
sition described in §1 offers a simple, yet logically defensible, means
to shrink the feature space. If it is the case that two expressions which
display the same polarity (e.g. “[evil 107 fwars] ) cannot but re-
sult in a compositional expression with the very same polarity (e.g.
“[evil wars]( -) ”), then the same holds for three, four, and, by ex-
tension, n expressions. Hence, all subsequences in a raw polarity se-
quence that display the same consecutive polarity can axiomatically
be collapsed into a single feature slice. We accordingly observe that
the present sentence reduces into the following compressed quasi-
compositional polarity sequence (Ex. 3) (with old and new slice
IDs):

=

:NTR 2:POS 3:NTR 4:REV 5:NTR 6:NEG
7:NTR 8:POS 9:NTR 10:NEG 11:NTR

Polarity (sub)sequence
Raw [ [ Compressed
1:NTR > 1:NTR
2:POS > | 2:POS
3:NTR > | 3:NTR
(3) | 4:REV > | 4:REV
5:NTR 6:NTR 7:NTR 8:NTR 9:NTR > 5:NTR
10:NEG > | 6:NEG
11:NTR > 7:NTR
12:POS > | 8:POS
13:NTR 14:NTR 15:NTR 16:NTR > 9:NTR
17:NTR 18:NTR 19:NTR
20:NEG > | 10:NEG
21:NTR 22:NTR 23:NTR > 11:NTR

From the raw polarity sequence that originally had 23 fea-
ture slices, a compressed quasi-compositional polarity sequence (
i.e. “Oury livess wills nevery bes ... losts ourr loveds omesg ...
destroyedio Moussay1”) with only 11 feature slices (compression
rate 52.17%) can therefore be derived. By ‘quasi-compositional” we
mean that the framework is aware of the fact that each compressed
slice is composed of n sub-slices but does not attempt to analyse the
composition: in other words, we jump directly from atomic prior sen-
timent (stemming from individual words) to more global sentiment
without explaining the mapping(s) in between. The main assump-
tion behind the quasi-compositional model is that, because of the




null composition process, the compressed slices can still be expected
to represent the very same sentiment information as their raw source
slices: in the present example, although nearly half of the words were
discarded, the sentiment information in the compressed 11 slices can
be equated with that in the raw 23 slices.

Note that compressed polarity sequences can match a potentially
very large number of unseen expressions regardless of which or how
many words they contain because what is considered is the positions
of the individual relevant sentiment polarities - not the surface words
- in them. For example, a classifier trained on the present training ex-
ample ought to be able to reason that an unseen chunk of text - be it
a phrase with 11 words, a sentence with 25 words, or a document
with 58 words - that contains compressed polarity slices ordered
as NTR_POS_NTR_REV_NTR_.NEG_NTR_POS_NTR_NEG_NTR can be
negative. More importantly, if an unseen chunk of text fails to match
any known sequence fully (e.g. when it is longer or shorter than any
of the training examples), it is still likely to match many of the indi-
vidual slice positions in the training data which means that the frame-
work fails gracefully as the most optimal submatch can be expected
in each case.

The advantage of the proposed polarity sequence model over sim-
ple n-gram modelling is that more information can in fact be cap-
tured because all key evidence can be accessed pertaining to the
temporal (and hence positional) development of sentiment involv-
ing the smooth mixing, blending, figure/ground, and fading in/out
behaviour amongst the three polarities ([10], [11]). Moreover, its
advantage over more complex structural features is that polarity se-
quences may get rid of some unnecessary and untrue structural de-
pendencies amongst words and syntactic constituents.

2.2 Feature Representation

In order for the compressed sequences to be used in supervised learn-
ing, we generate from each slice four separate features reflecting the
polarity of the slice (i.e. POS, NTR, NEG, REV) represented with bi-
nary true/false values. The base polarity features can further be aug-
mented with other information pertaining to various other proper-
ties of the words to which the feature slices point such as their word
classes or grammatical roles. We consider further non-sentiment-
related features from non-neutral and reversive words encompass-
ing (i) word class tags (as output by a part-of-speech tagger) (§3.2),
(ii) grammatical role tags (as output by a dependency parser) (§3.2),
(iii) polarity word sense (WSD) ambiguity tags (as specified in a
sentiment lexicon) (§3.1), and (iv) various combinations thereof.
These additional non-sentiment-related features can be incorporated
in two distinct ways. If composite tags are used, then additional
non-sentiment-related evidence can be represented with more spe-
cific features. For example, the features from the above compressed
polarity sequence can be enriched to include information such as the
following (Ex. 4) (two sample slices shown):

Word class  2:POS:N|8:POS:ADJ]| ..
(4) Syntax 4:REV:ADV|6:NEG:MAIN-V| ...
WSD 2:POS:NTRPOS|10:NEG:NONE]| ...

The classifier could then consider whether the eighth slice points
to a positive adjective, whether the sixth one is a negative main verb,
or whether the second slice points to a positive word that can also be
neutral, for example. Another logical choice involves parallel tags
amongst which additional non-sentiment-related evidence is scat-
tered around multiple features. For example, parallel features such

as the following can be had from the above compressed polarity se-
quence (Ex. 5) (two sample slices shown):

Word class  2:P0S|2:N|8:POS|8:ADJ| ...
(5) Syntax 2:P0OS|2:SUBJ|6:NEG|6:MAIN-V] ...
WSD 2:POS|2 :NTRPOS|10:NEG|10 :NONE] ...

In this case, the classifier could consider whether the second slice
(i) is positive, (ii) points to a noun, (iii) functions as the subject in the
sentence, and (iv) can be neutral or positive, respectively.

2.3 Training Data and Classifier

The learning models that we explore in this study were trained
on two public domain data sets. The first ternary POS/NTR/NEG
source, the MPQA Opinion Corpus Version 2.0* ([24]) (henceforth
MPQA), yields 20822 (3993 (19.18%) POsS, 7493 (35.99%) NEG,
9336 (44.84%) NTR) hand-labelled flat phrase- and sentence-level
annotations from general news articles (inter-annotator agreement
72~.82). Of the many different annotation types offered by the
database, only expressive subjectivity and direct subjectivity an-
notations (intensity € {low, medium, high, extreme}; polarity €
{positive, negative, neutral}) were included. Most of the training ex-
amples are short, with an average token count of ca. 2.69 (min. 1,
max. 34, stdev. 2.29).

The second binary POS/NEG source, the Sentence Polarity Data
Set v1.0° ([16]) (henceforth P&L), offers 10662 (5331 (50%) POS,
5331 (50%) NEG) flat sentence- and snippet-level annotations from
(unverified) movie review star ratings mapped automatically onto bi-
nary sentiment polarities (inter-annotator agreement unknown). The
P&L training examples are much longer, with an average token count
of ca. 21.02 (min. 1, max. 59, stdev. 9.41).

In total, 18 models were trained from the two sources, in the con-
ditions given in Table 1. The feature group label pol refers to base
sentiment polarity features (§3.1), wsd to lexical polarity ambiguity
features (§3.1), pos to word class features (§3.2), and syn to gram-
matical role features (§3.2). It can be seen that both training data sets
could be captured with only a handful of slices (min. 20...27) which
in turn translated into a small number of features (min. 58...99). Note
that these figures are by a magnitude smaller than what would be the
case if typical n-gram features were used as default unigrams would
alone generate ca. 7800 (MPQA) vs. 18000 (P&L) features.

As a classifier of choice for the study, we used the Support Vec-
tor Machine implementation in the SVM.NET package with a linear
kernel and all default parameters®.

3 SENTIMENT PARSING

The previous sections illustrated the proposed framework that rep-
resents sentiment as compressed polarity sequences. The framework
enables uniform sentiment parsing across words, phrases, and sen-
tences without having to develop separate classifiers for different
structural levels (e.g. running a sentence-level classifier to classify
very short phrases). We combine the framework with a syntactic
dependency parser to classify each individual syntactic constituent

4http://www.cs.pitt.edu/mpga/

5 http://www.cs.cornell.edu/People/pabo/
movie-review-data/rt-polaritydata.tar.gz

6 Johnson, M. (2008). SVM.NET 1.4. (www.matthewajohnson.org/
software/svm.html). Based on Chang, C. & Lin, C. (2001). LIB-
SVM. (www.csie.ntu.edu.tw/~cjlin/libsvm/).



Table 1. Summary of learning models
Feature Groups Feature Type Features Slices
MPQAT] P&L | MPQA P&L

pol composite 58 99 20 27
pol.wsd composite 183 394 22 33
pol.pos composite 157 347 21 28
pol.syn composite 380 977 26 32
pol.wsd parallel 270 975 24 34
pol.pos parallel 303 1048 | 33 47
pol.syn parallel 501 1842 | 38 50
pol.wsd.pos.syn | composite 1031 3449 | 28 36
pol.wsd.pos.syn | parallel 1331 5507 | 55 78

in a piecemeal fashion, one sentence at a time. Fully compositional
sentiment parsing can be achieved by allowing the sentiment polar-
ity sequence model to base its decisions on its own previous deci-
sions amongst constituents and their subconstituents in an incremen-
tal and recursive manner. We however focus in this initial study on
the general properties of sentiment polarity sequencing at various
non-interacting structural levels and leave the investigation of full
composition for future work.

3.1 Sentiment Lexicon

The underlying sentiment knowledge that our framework draws on
comes in the form of an extensive sentiment lexicon which con-
tains 57103 manually classified entries tagged with various prop-
erties relevant to compositional sentiment interpretation across ad-
jectives (22402, 39.2%), adverbs (6487, 11.4%), nouns (19004,
33.3%), and verbs (9210, 16.1%). Included are positive (21341,
37.4%), neutral (7036, 12.3%), and negative (28726, 50.3%) en-
tries as well as reversive operators (1700, 3.0%) which are words
and phrases that can directly reverse the polarity of a non-neutral
expression (e.g. “reducel ™! 7, “nol ™! 7 “prevention[ ) ). The lex-
icon also contains for each entry sentiment word sense ambiguity
(WSD) tags that specify whether a given entry (i) unambiguously dis-
plays only one polarity across its senses (NONE) (e.g. “woefully( )y,
is binary-ambiguous within the binary choice space (ii) positive or
neutral (POSNTR) (e.g. “brilliant TN ”), (iii) negative or neutral
(NEGNTR) (e.g. “rat™(7”), (iv) positive or negative (POSNEG)
(e.g. “proud( I or (v) is fully ternary-ambiguous (ANY) (e.g.
“high(N) (+)(-)) The proposed framework is not tied to our current
lexicon as any sentiment lexica can be used instead.

3.2 Grammatical Analysis

Each sentence is input into an initial grammatical analysis which in-
volves part-of-speech tagging and syntactic dependency parsing. The
chosen dependency parser’ (i) tokenises the sentence into individ-
ual tokens, (ii) lemmatises them, (iii) assigns word class and other
morphological features to them, (iv) creates syntactic links between
them, and (v) labels the links according to their syntactic and de-
pendency functions and types. The resultant raw dependency links
between individual words in the sentence are converted into a flat,
non-binary constituent tree in which each word in the sentence is
treated as a head of a syntactic constituent for which sets of optional
immediate (non-recursive) pre-head and post-head dependents are
constructed. The proposed framework is not dependent in any way
on this parser as any component that offers part-of-speech tags and
marks syntactic constituent boundaries can be plugged in.

7 Connexor Machinese Syntax 3.8.1. http://www.connexor.com/

3.3 Recursive Sentiment Analysis

1°% Pass. For each parsed sentence, we then assign prior sentiment
polarities and polarity reversal values to all tokens based on the sen-
timent lexica (§3.1). All unknown words are asserted as neutral by
default. Sentiment parsing involves first identifying plausible entry
points into the dependency tree of the sentence which typically en-
compass (i) the main lexical head verb of the root clause, (ii) the
head noun of a main clausal verbless NP, or (iii) a stranded word not
linked to any other word in the sentence. The parser first descends re-
cursively down to the lowermost atomic child leaf constituent under
an entry constituent, and then climbs the tree upwards recursively to
calculate a sentiment polarity for each intermediate constituent until
all constituents - and hence the whole sentence - have been analysed.

When parsing a constituent, the parser follows a fixed head-
dependents combination schema in combining the constituent head
(H;) with k pre- (L;—x . —1) and j post-head (R; 1 . +4+;) dependents
in a specific sequence, namely 1) first combining post-heads ([R])
with the head in a rightward direction (starting with the post-head
nearest to the head), and 2) then combining the pre-heads ([L]) with
the head-post-heads set ([HR]) in a leftward direction (starting with
the pre-head nearest to the head). Each time a head is combined
with a dependent, a chunk of text which reflects the surface words
subsumed by the head-dependent pair is input into the sentiment se-
quence classifier. The resultant predicted polarity class label is then
considered as the current global polarity in the analysis so far.

We accept the probabilistic predictions in all but one situation: in
cases where a constituent head lacks any dependents (i.e. is made of
just a singular word), we bypass the classifier and instead resort to
the polarity assigned to the word in the lexicon. The reason for this
simple exception is that there is no guarantee that the probabilistic
classifier does not (i) override the prior polarity assigned to a word
in the lexicon or (ii) render a neutral word non-neutral (e.g. inputting
a NTR word into a binary POS/NEG model) in which case the frame-
work would cease to be grounded on lexical knowledge. Note that
our goal is to classify combinations of words, not individual words.

274 Pass. The above 1°¢ pass in the sentiment parsing process
assigns sentiment to all syntactic constituents in a given sentence
which ultimately results in all individual surface words displaying
the final top-level compositional sentiment polarity/ies. In real-world
use scenarios, the success (or the failure) of a sentiment algorithm
will be judged based on whether or not the sentential polarities that
individual surface words display make sense and ‘read well’. It is
unfortunately possible that some surface words end up displaying
a polarity that appears incongruous with respect to the rest of the
sentence. Such anomalies can stem from fragmentary grammatical
analyses or arise when the classifier suggests a neutral polarity for
a sentence even though it contains words which bear a known non-
neutral polarity in the lexicon.

A further 2"¢ pass is therefore required to hide any traces of
fragmentary or inconsistent analyses at the top sentence level. On
the basis of the general tendency towards a coherent polarity flow
within/across sentences (cf. [10], [11]), we accordingly account for
1) neutral polarity gaps (i.e. stranded neutral words amidst non-
neutral words), and for 2) non-neutral islands (i.e. stranded non-
neutral words that clearly disagree with the global majority sentiment
of the sentence). For both gaps and islands, we simply execute a bidi-
rectional lookup method around each incongruous surface word, and
use the polarity evidence from their neutral/non-neutral neighbours
as a heuristic masking polarity.



4 EXPERIMENTS

Evaluating the performance of the proposed framework is not as
straightforward as it seems. Firstly, because the sentiment sequence
model is applied across all structural levels as part of exhaustive sen-
timent parsing, the targeted classification task is ultimately a ternary
POS/NTR/NEG one for not all constituents are non-neutral: however,
most public-domain gold standards come with binary POS/NEG an-
notations only. Accordingly, if a ternary classifier’s output is evalu-
ated against a binary gold standard (or vice versa), any conclusions
that may be drawn are partial in the strictest sense. Secondly, since
our framework assigns sentiment labels to all constituents in sen-
tences, it is by no means clear which constituents ought to be eval-
uated. For example, if a gold standard contains expressions with ar-
bitrarily chosen boundaries, there is no guarantee that the classifier’s
syntactic constituents map fully onto them (in fact they rarely do). As
we are not aware of any manually-annotated and verified multi-level
sentiment treebanks for English at the time of writing, we instead re-
sort to three different gold standards which collectively shed light on
the strengths and weaknesses of the framework at different structural
levels. Due to these complications, we focus mainly on strictly binary
evaluation conditions (whereby neither NTR predictions by the clas-
sifier nor NTR cases in the gold standard (if present) are considered)
as they are much more indicative of core sentiment judgements.

4.1 Gold Standard Data Sets

Headlines [SEMEVAL]. The first data set comprises 1000 news
headlines from the SemEval-2007 Task #14 annotated for polar-
ity along the scale [-100...-1|0]1...100] (46.80% POS), 0.60% NTR,
52.60% NEG) (six annotators, inter-annotator agreement r .78)
([23])8. We included only the POS ([+1...+100]) and NEG ([-100...-
1]) entries in the evaluation, and compare the classifier’s sentential
polarity against each headline. Ex. 6 illustrates sample headlines
from the data set.

©) [+32] Test to predict breast cancer relapse is approved
[-481 Two Hussein allies are hanged, Iraqi official says
Phrases [MPQA]. Evaluation targeting phrase-level expressions
is based on the MPQA data set (§2.3) which we utilise for both
ternary POS/NTR/NEG and binary POS/NEG evaluation. Ex. 7 illus-
trates a sample expression annotation in a sentence (annotation un-
derlined).

[LOW] [POS] Private organizations
(7)  are also being encouraged to help fight sandstorms, ac-
cording to the administration’s vice-director Li Yucai.

The MPQA expressions are considered in isolation without any
contextual evidence from their hosting sentences in the MPQA
database in order to avoid any subjective mappings or overlapping
measures between the MPQA expression boundaries and our parser’s
constituents. In this condition, we compare the top-level polarity out-
put by the classifier against each expression.

Snippets [P&L]. Further sentence- and snippet-level evaluation
data come from the P&L data set (§2.3). Because a given snippet may
consist of multiple sentences, we evaluate the majority ‘document-
level’ polarity output by the classifier against each snippet in this
condition. Ex. 8 illustrates a sample sentence from the data set.

8 http://www.cs.unt.edu/~rada/affectivetext

[NEG] it wouldn’t be my preferred way of spending 100 min-

® utes or $7.00.

4.2 Evaluation Measures and Baselines

A large number of different evaluation measures can be used to
characterise the performance of the models, each of which high-
lights a different evaluative aspect. We hence evaluate the models
using multiple complementary measures. The first measure family
targets the conventional notion of ‘accuracy’ used in traditional fac-
tual classification tasks encompassing Accuracy, Precision, and Re-
call measures. For these, individual pairwise polarity decisions (POS
vs. NOT-POS, NTR vs. NOT-NTR, NEG vs. NOT-NEG) were used.
The second measure family focuses on different levels of agree-
ment and correlation between human sentiment judgements and
our models by calculating chance-corrected rates based on the stan-
dard Kappa k, Pearson’s r product moment correlation coefficient,
and Krippendorff’s « reliability coefficient measures. In ternary
POS/NTR/NEG classification, not all classification errors are equal
because classifying a POS case as NTR is more tolerable than clas-
sifying it as NEG, for example. We lastly characterise three distinct
error types between human H and algorithm A, namely 1) FATAL
errors (H(®A(®) qe{+-}), 2) GREEDY errors (H(N) A(®) qe{+-}),
and 3) LAZY errors (H(OADM) ae{+-}).

The models are further compared against three baselines, namely
positive (POS_BASE), negative (NEG_BASE), and majority senti-
ment using raw polarity frequency counting (FREQ_BASE).

4.3 Results

[SEMEVAL]. Starting with the short headlines, Table 2 highlights
the performance of the models in the 2-way POS/NEG condition.
In overall, the results are highly encouraging on both training data
sets and are comparable with sample levels reported in other stud-
ies ([23])°. MPQA training data yielded clearly better scores than
P&L data because (i) the former contains much more training data,
and (ii) the MPQA expressions and the SEMEVAL headlines are
of similar lengths. Both training data sets surpassed the POS_BASE
(47.08) and NEG_BASE (52.92) baselines while the P&L models
struggled to outperform the very high FREQ_BASE level at 71.53.
Binary accuracy levels range from 71.03 to 77.94 while preci-
sion varies interestingly between the two polarities in that positive
sentiment (72.47~84.14) is more precise than negative sentiment
(71.45~76.94). Recall in turn displays a reverse pattern as positive
sentiment has a considerably lower recall (62.80~66.88) than nega-
tive sentiment (84.41~92.41). Agreement levels point towards mod-
erate levels at around 52.47~54.49.

[MPQA]. Models trained on the P&L training data reached even
more promising rates on the MPQA data set which is shown in Ta-
ble 3 (2-way POS/NEG condition). All models surpassed the accuracy
baselines (POS_BASE (34.76), NEG_BASE (65.24), FREQ_BASE
(70.32)). The scores are especially significant because the slices
from the MPQA and P&L training data differ considerably in length.
Again, the models perform well against reported levels reached in
other studies'®. While binary accuracy rose to 84.73, agreement

9 Cf. the highest reported 3-way figures in [23] are ~55.10 (accuracy),
~61.42 (precision), and ~66.38 (recall). Note, however, that their eval-
uation conditions are not strictly identical with ours.

10 Cf. the highest reported 2-way figures in [25]: 421 are ~74.5 (POS pre-
cision), ~87.8 (NEG precision), ~77.8 (POS recall), and ~98.3 (NEG
recall). [4] report ~88.5...90.7 2-way accuracies. Note, however, that their
evaluation conditions are not strictly identical with ours.



Table 2. Experimental results on the SEMEVAL data set, 2-way POS/NEG condition (= boost over pol features)

Trained on 3-way MPQA [20882], tested on 3-way Semeval headlines [784...841]
Feature Groups | pol H polwsd polpos polsyn | polwsd polpos polsyn | pol wsd possyn | pol wsd pos syn
Feature Types composite parallel composite parallel
Acc POS/NEG | 77.94 || 74.88 76.74 77.30 76.68 76.96 77.38 73.20 74.79
Prec POS 84.14 || 82.09 80.50 79.46 76.17 82.13 81.74 76.29 76.75
Prec NEG 75.52 || 72.47 75.17 76.437 | 76.947 74.87 75.537 | 71.99 73.86
Rec POS 57.36 || 49.85 57577 57427 | 62.807 56.93 58.637 | 51.75 58.267
Rec NEG 9241 || 92.39 90.21 90.30 86.34 91.19 90.70 88.52 86.98
Kappa 52.24 || 44.88 49.89 50.12 50.48 50.36 51.43 4221 46.72
Pearson 5449 || 48.01 51.57 51.64 51.08 52.38 53.15 44.09 47.85
Krippendorff 51.43 || 47.57 51.14 50.35 52.767 51.12 51.877 | 48.11 51.28
Trained on 2-way P&L [10662], tested on 3-way Semeval headlines [994]

Feature Groups | pol H pol wsd polpos polsyn | pol wsd polpos polsyn | pol wsd possyn | pol wsd pos syn
Feature Types composite parallel composite parallel
Acc POS/NEG | 70.52 || 71.037 65.90 69.11 67.40 70.627  70.827 | 62.47 64.29
Prec POS 69.40 || 72.067 72.01T  70.187 | 68.95 70.667 72477 | 68.06 63.75
Prec NEG 7145 || 70.31 63.34 68.40 66.45 70.60 69.73 60.47 64.67
Rec POS 66.88 || 62.82 45.09 59.83 55.98 64.32 61.32 38.25 55.98
Rec NEG 73.76 || 78.337 84417 77.387 | 77.577 76.247  79.287 | 84.037 71.67
Kappa 40.73 || 41.447 30.12 37.51 33.90 40.75T7  40.957 | 22.83 27.84
Pearson 40.75 || 41.757 32.29 37.89 34.46 40907  41.407 | 25.21 28.03
Krippendorff 5247 || 52.21 45.30 50.61 48.94 52.21 51.84 41.61 47.21

with human sentiment annotations is closer to substantial levels
(57.84~67.20). A clear asymmetry towards negative sentiment can
be attested as both negative precision (90.60) and negative recall
(89.20) are higher than positive precision (78.10) and recall (83.06)
(cf. similar observations in [25]: 421).

[P&L]. The P&L data set interestingly appears more challenging
for models trained on the MPQA training data as can be seen in the
markedly lower levels shown in Table 4 (2-way POS/NEG condition).
Binary accuracy decreased to 61.65 while agreement rates dropped
to the level of only fair agreement (23.20~43.50). Although they
surpassed the POS_BASE and NEG_BASE baselines (50), the models
are just below the FREQ_BASE baseline (61.57). A polarity asym-
metry can once again be observed between higher positive precision
(72.76 vs. 58.23 (NEG)) vs. higher negative recall (87.40 vs. 42.79
(P0S)). The unexpectedly lower performance stems from the dispar-
ity in the number of slices in the (3-way) MPQA and (2-way) P&L
data sets. An alternative conclusion drawable from the cross-training
and -testing between the MPQA and P&L data sets is that the polar-
ity sequence model may work better when the training data (P&L)
contains more slices than the test data (MPQA). Note however that
the P&L data set is replete with sarcasm, irony, and unknown words
not found in our lexica.

Neutral Polarity. Since our goal was to maximise the amount of
training data for the models, we employed the MPQA data set in
its entirety. We moreover aimed at emulating real-world conditions
by using strictly separate data sets for training and testing instead of
cross-validation conditions of any kind (e.g. [4], [25]). Unfortunately,
no unseen testing data with neutral polarity instances were then avail-
able for our experiments as only the MPQA data set contains ternary
annotations. In order to estimate the neutral polarity performance of
the models, we examined the relative performance of neutral polar-
ity against non-neutral polarities using the base polarity pol model
on the MPQA data set itself. Note that because we train and test on
the same data set, the figures are understandably higher that what can
be expected from unseen neutral annotations in the future. Neverthe-
less, many useful observations can be made based on the figures in

Table 5. The inclusion of neutral polarity is likely to have an adverse
effect on overall performance - an observation which concurs with
the general trend in the area (e.g. [13], [25]). In our experiments,
neutral recall was somewhat low (62.11) but its accuracy (72.03) and
precision (71.72) were still high relative to the non-neutral levels. If
we consider the error types in the ternary condition, only 14.14%
of the errors were FATAL: the high level of GREEDY errors (52.15)
indicates that the models may display oversensitivity towards non-
neutral sentiment. For reference, we also report the corresponding
ternary rates offered by the same model trained on binary P&L data.
Note however that all neutral predictions in this condition come from
singular words that bypassed the classifier altogether (see §3.3). The
general pattern is the same, albeit somewhat more pronounced.
Features. We lastly consider the relative merits of individual fea-
ture groups across all data sets. The first clearly evident pattern is that
mere polarity features (pol) are generally highly effective - especially
considering that no n-gram evidence was used in any form. It is in
fact surprising that so few features (58 (MPQA), 99 (P&L)) can even
reach such high rates with highest accuracies touching on 84.73, pre-
cision levels up to 90.60, and recall levels up to 92.41 in some cases.
More intriguing is the evidence pertaining to the expected utility of
the extra non-sentiment-related feature groups. On the one hand, sen-
timent WSD, word class, and syntactic information do facilitate the
analysis in many cases. On the other hand, they also hurt the perfor-
mance of the base features in a number of cases. Although all of the
extra features help in some condition, none of them can be said to
help categorically. The single most useful supporting role is played
by word-level sentiment WSD features which gave a boost most of-
ten in 24 conditions (13 composite, 11 parallel), indicating that the
WSD tags can crudely mask the sentiment ambiguity amongst the
slices. The support given by word class and syntactic information
was not as high as expected since both boosted the base features in
19 conditions (word class: 10 composite, 9 parallel; syntax: 6 com-
posite, 13 parallel). This in turn seems to suggest that either more
training data are required or that morphosyntactic information is sub-
servient to mere linear polarity sequences. Against the conventional



Table 3. Experimental results on the MPQA data set, 2-way POS/NEG condition (= boost over pol features)

Trained on 2-way P&L [10662], tested on 3-way MPQA [10709]

Feature Groups | pol [ polwsd polpos polsyn [ polwsd polpos polsyn [ pol wsd possyn | pol wsd pos syn
Feature Types composite parallel composite parallel
Acc POS/NEG | 84.21 || 84.737  83.89 83.31 83.79 83.95 80.53 77.82 81.04
Prec POS 7428 || 75.177  76.647 73.13 78107  74.12 70.19 68.93 72.93
Prec NEG 90.38 || 90.607  87.68 89.63 86.51 89.98 86.59 82.06 85.16
Rec POS 82.76 || 83.067  76.49 81.41 73.48 81.95 75.43 64.69 71.39
Rec NEG 84.97 || 85.61T  87.777 8431 89.207  85.007  83.20 84.71 86.117
Kappa 6594 || 67.007  64.29 64.00 63.57 65.31 57.61 50.13 57.79
Pearson 66.18 || 67.207  64.29 64.22 63.64 65.51 57.70 50.19 57.80
Krippendorff 57.58 || 57.847  55.59 56.89 54.56 57.26 54.25 50.04 53.14

Table 4. Experimental results on the P&L data set, 2-way POS/NEG condition (= boost over pol features)

Trained on 3-way MPQA [20882], tested on 2-way P&L [9743...10313]

Feature Groups | pol H polwsd polpos polsyn | polwsd polpos polsyn | pol wsd possyn | pol wsd pos syn
Feature Types composite parallel composite parallel

Acc POS/NEG | 60.37 || 60.13 61.01T  59.86 61.557 60.12 60.427 | 59.00 60.677

Prec POS 72.76 || 72.48 69.08 69.91 68.93 68.46 68.22 67.76 67.00

Prec NEG 56.65 || 56.41 57707  56.717 | 58.237 56.887  57.207 | 56.03 57.687

Rec POS 3349 | 3341 40.13T7  33.587 | 42.577 38.147  39.637 | 34.357 42.797

Rec NEG 87.40 || 87.17 81.97 85.76 80.67 82.28 81.38 83.65 78.72

Kappa 20.85 || 20.51 22.08T 1941 23.207 20.38 20.977 | 18.01 21.487

Pearson 24.78 || 24.38 24.33 22.69 25.127 22.75 23.11 20.70 23.04
Krippendorff 39.89 || 39.82 42517 39.62 43.507 41.527  42.127 | 39.70 43.167

principle of crude force, wielding all of the features did not help as
only 9 conditions benefited from them (2 composite, 7 parallel): in
many cases, they too proved counterproductive. We hypothesise that
this is due to the sparser feature spaces involved. Regarding which
feature representation option - composite vs. parallel - is optimal, no
firm conclusions can be drawn.

In overall, the boost given by the extra non-sentiment-related fea-
tures over the base polarity features can range between only 1.02
(Pearson) and as much as 10.65 (negative recall) (cf. +1.18 (agree-
ment), +1.58 (negative precision), +2.35 (Kappa), +3.61 (Krippen-
dorff), +3.83 (positive precision), +9.31 (positive recall)). However,
their adverse effects are much more pronounced, potentially ranging
from as much as -5.76 (positive precision) to -28.63 (positive recall)
(cf. -8.05 (agreement), -8.68 (negative recall), -10.86 (Krippendorff),
-10.99 (negative precision), -15.99 (Pearson), -17.90 (Kappa)).

5 RELATED WORK

Sentence and Phrase-level Sentiment Analysis. A wide range of
different approaches have been attempted. At the base level, mere
frequency counting ([6]) with naive analytical or learning additions
([3], [6], [10]) can offer moderate accuracies in some tasks. Various
more complex machine learning approaches have incorporated shal-
low structural features ([1], [3], [25]), or joint classification mod-
els that target the structural co-dependency between individual sen-
tences and documents using constrained inference ([12]). At the
other end of the spectrum, a number of explicit direct fully- or
shallow-compositional sentiment logics have been developed most of
which rely on hand-written combinatory rules and lexical sentiment
seeds in conjunction with semantic scope-driven valence shifters
([18]); fully compositional syntax-driven parsing ([13], [21]); struc-
tured inference-based learning with lexical, negator, and voting fea-
tures ([4]); cascaded pattern matching with shallow phrasal chunking
([8]); learning-based topic classifiers with shallow phrasal chunking
([14]); verb-centric event frames with scored knowledge bases ([20]);

or other heuristic linking and ranking patterns ([15]).

Positional Features. Even though they appear intuitively useful,
positional features have so far been somewhat underrepresented in
the area. Past attempts have focused on simple positional informa-
tion within sentences ([9]), documents ([17]), or discourse ([22]).
The solution closest to our sequence model is the sequential approach
in [11] who model global document-level sentiment using a tempo-
ral trajectory function from local sentential polarities calculated by
an Isotonic Conditional Random Field-based classifier. None of the
above are driven by any compositional sentiment processes.

Feature Reduction and Compression. Various feature reduction
techniques have been used in conjunction with sentiment learning.
Typically, they operate on n-gram features and remove redundant
or weak features through subsumption ([19]), abstraction ([7]), log
likelihood ratio filters ([5]), or more sophisticated search criteria
([2]) amongst others. The guiding force behind our proposed feature
reduction mechanism is in contrast the fundamental, linguistically
justified, null composition principle. A conceptually analogous ap-
proach to sentiment compression is mentioned in [26] who, in mea-
suring controversy in social media, construct polarity ‘micro-state
vectors’ from words’ polarity intensities and then similarly try to
compress them. However, they leave all feature reduction decisions
to standard compression algorithms agnostic of any compositional
sentiment processes.

6 CONCLUSION

We have described a simple, yet effective, hybrid sentiment learning
and parsing framework which is grounded on one basic logically de-
fensible compositional sentiment process and which uses additional
supervised learning to deal with more complex sentiment processes.
The proposed framework, which offers a natural, yet principled basis
for sentiment reasoning, operates on quasi-compositional sentiment
polarity sequences which succinctly capture the sentiment in syntac-
tic constituents across different structural levels without any conven-



Table 5. Experimental results on the MPQA data set, 3-way POS/NTR/NEG condition

Tested on 3-way MPQA [20882]
Accuracy Precision Recall Error Severity
Trained on POS NTR NEG | POS NTR NEG | POS NTR NEG | FATAL GREEDY LAZY
3-way MPQA [20882] | 79.97 72.03 82.85 | 48.48 71.72 7855 | 71.25 62.11 72.00 | 14.14 52.15 33.72
2-way P&L [10662] 7737 6551 71.89 | 4473 79.05 5796 | 76.36 31.39 79.66 | 19.06 72.19 8.76
tional n-gram features. It can be used for uniform sentiment classifi- [12] Ryan McDonald, Kerry Hannan, Tyler Neylon, Mike Wells, and Jeff

cation across words, phrases, and sentences, and requires only simple
flat phrase- or sentence-level sentiment annotations, a sentiment lex-
icon, and, optionally, a part-of-speech tagger and a syntactic parser.
The results obtained with the initial implementation are highly en-
couraging and suggest that simple linear polarity sequence features
alone operate effectively.
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