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Abstract

We study discriminative approaches to statistical Chinese processing, including word segmentation,

pos-tagging and parsing with constituent and dependency grammars.

As the main approach of this thesis, we use a global linear model, trained by the generalized

perceptron algorithm, together with beam-search decoding, to build our statistical systems. The

combination of perceptron training and beam-search decoding leads to highly competitive accuracy

and efficiency for all the tasks we investigate.

For word segmentation, we propose a word-based approach that achieves competitive accuracy to

the best character-based systems, without mapping segmentation into a sequence labeling problem.

For pos-tagging, we built a joint system that performs word segmentation and tagging simulta-

neously, showing that it improves the accuracy over the traditional pipeline approach by enabling

information interaction and avoiding error propagation. For constituent parsing, we develop our

model based on a shift-reduce parsing algorithm, which currently provides state-of-the-art perfor-

mance for Chinese, using a global model and beam-search, showing that it achieves comparable

accuracy to the best scores in the literature. For dependency parsing, we combine the two predom-

inant statistical methods into a single system using a global linear model, and achieve the current

best accuracy for Chinese.

One main advantage of the discriminative approach to statistical nlp is the freedom to define

features that represent contextual information. For all the problems studied in this thesis, we achieve

state-of-the-art accuracies by utilizing a wide range of information in a discriminative model. We

conclude that the discriminative method is a competitive choice for the statistical processing of the

Chinese language.
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Chapter 1

Introduction

Natural language processing (nlp), or computational linguistics, is the study of artificial intelligence

concerning the processing of human languages. It facilitates communication not only between hu-

mans and computers, but also between humans (e.g. via automatic machine translation between

different languages). Typical nlp problems include grammatical analysis of natural languages, and

applications such as automatic question answering and machine translation.

nlp has been a challenging field in computer science. The earliest nlp systems were constructed

by using rules that encode linguistic knowledge. However, natural languages are so dynamic and

ambiguous that no set of linguistic rules is enough to cover their usage. With the advance of

computing power, statistical methods that use machine learning have gained increased attention, and

have become the dominant approach in the computational linguistics literature since the mid-1990s.

By collecting large amounts of statistical information from hand-crafted text corpora, statistical

methods have been shown to outperform rule-based systems in almost every nlp application.

Compared to rule-based systems, statistical models are often less dependent on a specific lan-

guage. In a recent CoNLL shared task (Buchholz and Marsi, 2006), for example, each participating

parser model is tested with 13 different languages. Until now, the majority of nlp literature has

been focused on the English language. Other natural languages are often processed by methods that

have been successfully applied to English.

Chinese is one of the languages that has gained the most attention in nlp. Many Chinese nlp

1
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problems are investigated by applying successful methods for English. For example, English pos-

tagging models and syntactic parsing algorithms have been applied to Chinese. Even for Chinese

word segmentation, which does not have a counterpart for English, the dominant approach has been

sequence labeling, which is also used by English pos-taggers.

There are structural similarities between Chinese and English, but the two languages are also

different in many aspects. Recent research has suggested that the most effective methods to process

Chinese are not necessarily the most effective for English. For example, though giving lower perfor-

mance for English, shift-reduce parsing techniques have given comparatively higher accuracies for

Chinese (Wang et al., 2006; Duan et al., 2007).

This thesis focuses on the automatic processing of the Chinese language. The problems studied

in this thesis include word segmentation, pos-tagging and parsing in constituent and dependency

formalisms. In particular, we show that instead of being mapped into a character labeling problem,

word segmentation can be performed using a direct word-based model. Moreover, we illustrate that

as a language-specific problem, word segmentation can be performed with pos-tagging as a single

task. By utilizing pos information to help segmentation, joint word segmentation and pos-tagging

achieves higher accuracy than the standard pipeline approach. Finally, we build both a constituent

and a dependency parser, which confirm that the shift-reduce approach is a competitive choice for

parsing Chinese.

We use discriminative machine learning models to build our statistical systems. An advantage of

these models is that they allow the use of arbitrary and overlapping features, trained in a consistent

process, to represent the statistics of syntactic structures. We apply beam-search to most of the

problems studied in this thesis, finding that it is a reasonable choice that gives linear running time

complexity and competitive output accuracy.

1.1 About the Chinese language

Chinese is one of the most ancient languages in the world. Among the earliest records of the

language are characters carved on ancient relics such as items of pottery, dating back to over four

thousand years ago. These characters are identified as stylized pictures of physical objects, and

are therefore called pictographs. Having gone through thousands of years of development, most
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Chinese characters are now considerably different from their ancient origins. However, the use of

characters as the basis of the Chinese writing system is preserved. Chinese is therefore recognized

as an ideographical language, in contrast to alphabetical languages.

Apart from the shapes of characters, syntactic rules – the rules by which characters are combined

to express meaning – have also evolved. An example is the appearance of words. In the ancient

scripts, each character alone carries a meaning. In time, however, two or more characters began to

be used together regularly to express a particular meaning. These character combinations can be

taken as words, because they form inseparable units in the sentences. Consequently, characters can

be seen as morphemes inside words (Sproat et al., 1996). Most words in Modern Chinese consist

of one or two characters, although there can be very long words such as numbers or proper names.

According to the experimental data of this thesis, the typical average word length is roughly 1.6.

Though words exist in Chinese sentences, there are no explicit delimiters for word boundaries.

Therefore, the identification of words is an important part of the understanding process of a Chinese

sentence. This process is so easy and natural to a human reader that no deliberate effort is needed

for it. However, for a computer it is found to be as difficult as many other problems in nlp, largely

because of the intrinsic ambiguities of natural languages. Table 1.1 gives a number of character

sequences. When put in different contexts, they may represent different words and meanings. Such

ambiguities can normally be resolved by looking at the neighboring characters or words in the

sentence, but sometimes it is necessary to refer to a larger context outside the sentence, or even some

domain and world knowledge. In short, correct word identification requires necessary understanding

of the context and the world.

Most linguistic theories of Chinese syntactic analysis are based on words. However, for a few

types of words, there is no universal agreement on the delimitation. For example, some functional

characters (like “们”) can be appended to nouns to give plural meaning. Such a character can be

taken as a suffix morpheme in a plural noun, or a stand-alone functional word.1 Neither choice

is clearly more correct than the other. For another example, people still hold different views on

whether the surname and given name should be separated or taken as a single word. Such delim-

itation ambiguity only occurs in a small proportion of the words, and it does not appear to be

1The two cases occur in the Hong Kong City University Corpus and the Peking University Corpus in the First
International Chinese Word Segmentation Bakeoff (Sproat and Emerson, 2003), respectively.
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Number Character sequence Possible interpretations
1 的 语言学(linguistics) 的(about) 书(book)

目的(goal) 明确(clear)

2 已经 已经(already) 检查(check) 过(done)
已(already) 经过(gone through) 检查(check)

3 这里面 这里(here) 面(flour) 和(and) 米(rice) 很(quite) 贵(expensive)
这(here) 里面(inside) 很(quite) 冷(cold)

4 以前天下 以前(before) 天下(the world) 太平(peaceful)
以(take) 前天(two days ago) 下雨(rain) 为例(for example)

5 中国外企业 中国(China) 外企(foreign company) 业务(business)
其中(among which) 国外(foreign) 企业(company)

6 洽淡会很成功 洽淡(discussion) 会(will) 很(very) 成功(successful)
洽淡会(discussion meeting) 很(very) 成功(successful)

Table 1.1: Examples of ambiguous character sequences

of much importance linguistically. However, it can add to the complexity of word identification

computationally.

The above facts showed some uniqueness and difficulties of Chinese nlp from the perspective of

word formation and boundaries. Once a Chinese sentence is turned into words, it can be analyzed

in the same way as the alphabetical languages. Many formal grammars and computational models

can be used to analyze word-segmented Chinese sentences, reflecting a degree of general similarity

between the syntax of Chinese and other languages. However, the Chinese grammar is also unique

in many ways. For example, below are some important differences between the syntax of Chinese

and English (and possibly other alphabetical languages):

1. The Chinese language has unique syntactic ambiguities. The most important example is

perhaps that the relationship between pos and grammatical roles is flexible. For example, a Chinese

adjective can be used as the predicate, attribute, adverbial modifier or even the subject and object

of a sentence, while a Chinese noun can also act as the predicate in a sentence. Besides pos, word

order is also a weaker indicator of grammatical roles. Here are four example sentences:

(a) “我 (I) 经常 (often) 吃 (eat) 面条 (noodles) ”;

(b) “我 (I) 经常 (often) 吃 (eat) 饭馆 (restaurant) ”;

(c) “他们 (they) 洗 (wash) 衣服 (clothes) 了 (past tense)”;

(d) “衣服 (clothes) 洗 (wash) 干净 (clean) 了 (past tense)”.

The word “面条 (noodle)” in sentence (a) and the word “饭馆 (restaurant)” in (b) are in the same
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position, but their roles are different. “面条 (noodle)” is the object of “吃 (eat)”, while “饭馆

(restaurant)” is the argument referring to the location (at restaurants). Similarly, the object “衣服

(clothes)” in sentence (c) and the adjunct “干净 (clean)” in sentence (d) are in parallel positions.

Moreover, the subject “他们 (they) ” in sentence (c) and the object “衣服 (clothes)” in sentence (d)

are also in parallel positions. Though Chinese sentences are usually in the “subject” + “predicate”

+ “object” order, the object can sometimes be moved to the front of the sentence. “衣服 (clothes)”

in sentence (d) is such a case, where it is highlighted as the topic. Another example of object

movement is the sentence “你 (you)我 (I)还 (auxiliary)不 (not)了解 (know) ? ”, where the object

“你 (you)” is put to the front.

On the other hand, though very frequent for English and many other languages, attachment

ambiguities, such as the prepositional phrase attachment ambiguity between the sentences “He eats

Pizza with mushrooms.” and “He eats Pizza with a fork.”, are not common for Chinese.

2. Omissions are comparatively frequent. The subject or object of a sentence can often be

omitted, provided that there is no extra ambiguity. The omitted subjects or objects are also called

zero pronouns. Verbs can also be omitted. For example, in the sentence “他 (he) 高中 (middle

school)，我 (I) 本科 (college)”, the omitted predicate can be “has the education level of”. In the

sentence “他 (he)大卫 (David)，我 (I)马莉 (Mary)”, however, the omitted verb is “be”. Characters

in words can also be omitted, resulting in abbreviated words. Abbreviation is common in Chinese,

especially for proper names. For example, “中” can often be used for “中国 (China)” in a clear

context. Similarly, “港” is used conventionally for “香港 (Hong Kong)”, and “英” for “英国 (The

UK)”.

3. Chinese words do not have morphology. The plural meaning, and tense and the passive

voice, are all expressed by special words. On the other hand, characters as the components strongly

indicate the meaning of words. The meaning of an unknown Chinese word can often be guessed

by its characters. In comparison, the meaning of most English words cannot be decided by the

spelling.2 The only phenomenon that is related to morphology is reduplicated words. Reduplication

is quite common in Chinese; it applies to nouns, verbs, adjectives, adverbs, numbers, measure words

2In contrast, the pronunciation of English words can often be decided by their spelling, while that of Chinese words
cannot. This once led to an interesting phenomenon in a historical period: though written Chinese was understandable
in many countries across Asia, people from different areas were unable to communicate orally in the language.
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Figure 1.1: An illustration of the problems studied in this thesis

and other pos. There are various patterns of reduplication, including AA (“好好学习”, study hard),

ABB (“一次次”, time and time again), ABAB (“尝试尝试”, have a try) and so on. They are used

to express specific degrees of illocutionary force (e.g. highlight) or feelings (e.g. happiness).

In summary, Chinese sentences are written as character sequences, and a preliminary step for

the syntactic analysis is the recognition of words. After being turned into word sequences, Chinese

sentences share grammatical similarities with English, but also differ in morphological and syntactical

structures.

1.2 The scope of this thesis

In this thesis we study algorithms for the syntactic analysis of the Chinese language. Given a Chinese

sentence, such algorithms produce its syntactic structure automatically. Figure 1.1 gives a simple

illustration of the main problems addressed. The input sentence, which is a continuous sequence

of characters, is analyzed by three processes. In the first step, it is segmented into a sequence of

words. This process is called word segmentation, and is unique for Chinese and other character-based

languages such as Japanese and Thai. The second step is called pos-tagging, in which a pos-tag is

assigned to each word from the segmented sentence. The last step is called parsing, in which the

syntactic structure of the pos-tagged sentence is given according to a particular form of grammar.

Figure 1.1 shows the parsed structure according to dependency grammar. In this thesis, parsing with
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a context free grammar is also studied. Though focusing on Chinese, the statistical parsing models

that we studied are language-independent. We also applied our dependency parser to English.

1.3 The approach

We use the statistical approach for all the problems covered by this thesis. A statistical system

typically finds the output by search: given an input, different candidate outputs are generated and

scored, with the highest scored one chosen for output. The search process is also called the decoding

process. We use beam-search as the main algorithm for decoding.

During decoding, different candidate outputs are compared according to their scores, which are

given by a statistical model. The score of a candidate output is usually computed by extracting

features, which represent the occurrences of a particular pattern in the output. The feature values

are passed to the statistical model to calculate the score. We use a discriminative model for all

the problems studied in this thesis. In contrast to a generative model, which defines a stochastic

generation process for output structures and scores candidate outputs by the probability of them

being generated in the process, a discriminative model does not give a generative story, and scores

candidate outputs only for comparison. One of the main advantages of discriminative models is the

freedom of defining arbitrary features without making independence assumptions. Discriminative

methods have been shown to be competitive compared to generative models for most nlp problems.

Machine learning methods are used to define a statistical model, so that it gives a higher score

to a more correct candidate output. A supervised learning algorithm collects statistical data from

manually annotated text, setting parameters of the statistical model by using these data. We chose

the generalized perceptron algorithm as the main discriminative learning method for this thesis.

More details about the background of the statistical approaches used in this thesis are given in

Chapter 2.

1.4 Contributions

For word segmentation, we propose a word-based model that enables the use of arbitrary features,

including word-based features. Compared to the standard character-based approach, which works
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by mapping the segmentation problem into a sequence labeling problem, our word-based approach

is a direct solution to the segmentation problem. We construct a word segmentor using a word-

based discriminative model, trained by the generalized perceptron algorithm, together with beam-

search decoding, and show that it achieves competitive accuracy with the best recorded in the

literature. Our word-based segmentation model does not impose restrictions on the learning or

decoding algorithms. It can be seen as a superset of the character-based models. The details of the

word-based segmentation model are given in Chapter 3.

Word segmentation is the first step among the three in Figure 1.1, and pos-tagging is dependent

on segmented input. This is the traditional, pipelined approach for Chinese pos-tagging. However,

this approach has two disadvantages. First, pos-information, which is potentially useful for segmen-

tation, is not used in the word segmentation step. Second, segmentation errors will propagate to

the pos-tagging step. One solution is to treat segmentation and pos-tagging as a single task, where

the two steps are performed simultaneously, and pos information is used to improve segmentation.

We construct a joint segmentor and pos-tagger and a pipelined baseline using identical feature tem-

plates, and show that the joint system outperforms the baseline in both segmentation accuracy and

the overall segmentation and tagging accuracy. We use global discriminative models for both the

joint system and the pipelined baseline, trained by the averaged perceptron algorithm. The joint

word segmentation and pos-tagging system is described in detail in Chapter 4.

Parsing can be performed under different grammar formalisms, and in this thesis we study

constituent-based and dependency-based parsing. For constituent parsing, state-of-the-art accura-

cies have been achieved previously by a deterministic shift-reduce parsing model on parsing the

Chinese Treebank 2 data. We propose a global discriminative model based on the shift-reduce con-

stituent parsing process, combined with a beam-search decoder, obtaining competitive accuracies on

ctb2. We also report the performance of the parser on ctb5 data, obtaining the highest scores in

the literature for a dependency-based evaluation. The details of our constituent parser are given in

Chapter 5.

For dependency parsing, the two dominant approaches are graph-based and transition-based.

Given an input sentence, graph-based dependency parsers find the output by scoring each possible

parse graph for the input, scoring each of them and choosing the highest scored candidate as the
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output parse. Because the number of possible parse graphs for a particular sentence is exponential

in the sentence length, graph-based parsers often use dynamic programming to solve the search

problem in polynomial time. In contrast, transition-based dependency parsers build the output by

using a stack and set of transition actions, such as “shift” and “reduce”. Greedy local search is often

applied to transition-based parsers for fast deterministic decoding.

Beam-search lies between dynamic programming and greedy local search in terms of accuracy and

running speed. Compared to local search, it is global. But compared to dynamic programming, which

is exact inference, it is approximate. Unlike dynamic programming, it does not have the “overlapping

subproblems” and “optimal substructure” restrictions on the search problem, and therefore does not

impose limitations on the form of features. We use beam-search to construct a graph-based and a

transition-based parser, showing that beam-search is a competitive choice for both graph-based and

transition-based dependency parsing. Moreover, we show that by using beam-search, it is possible to

combine the graph-based and the transition-based methods into a single system, which outperforms

the graph-based and transition-based systems alone. While giving the highest reported dependency

parsing score for Chinese, our combined parser is also applied to English and shows competitive

accuracies. Chapter 6 describes our work on dependency parsers.



Chapter 2

Background

This chapter gives background on statistical models and machine learning algorithms used in the

thesis. Background on word-segmentation, pos-tagging, phrase-structure parsing and dependency

parsing is given in the corresponding chapters.

nlp problems can be divided into two types in general: classification problems and structural

prediction problems. In a classification problem, the output is a single discrete value. Examples

of classification problems in nlp include text classification, which maps an input document to a

class such as “news” or “science”; spam filtering, which maps an input document to one of the

two values “spam” or “non-spam”; and a type of sentiment analysis which maps an input (normally

sentence or document) to one of the three values “positive”, “negative” and “neutral”. In a structural

prediction problem, the output is a structure, which can consist of a number of inter-related labels,

or a more complex structure such as a parse tree. All the problems studied in this thesis (i.e. word

segmentation, pos-tagging and parsing) are structural prediction problems. For word segmentation,

the output is essentially a sequence of binary decisions on whether to separate two consecutive

characters in the input. With an input sentence of length n, the output contains n − 1 inter-

dependent decisions. For pos-tagging, a pos-tag is assigned to each word from the segmented input

sentence, and therefore the output is a sequence of inter-dependent labels. For parsing, the output

is usually a parse tree structure, with connected nodes that depend on each other. Another example

of structural prediction is machine translation, for which the output is a natural language sentence.

10
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An early statistical model for nlp is the generative probabilistic model, which regards the mapping

between the input and the output as a stochastic process, where different outputs can be generated

given an input. According to a generative probabilistic model, the output O for an arbitrary input

I should be the most probable output from the stochastic process, which can be written as O =

argmaxO′ P (O′, I) (the output is the one among all possibilities that has the highest joint probability

with the input). The probabilities are estimated according to statistical information collected over

a large amount of data, usually by the maximum likelihood principle.

For the structural prediction problem, the output O can contain many inter-dependent elements,

which make the estimation of P (O, I) difficult due to data sparseness (i.e. lack of statistical infor-

mation for complex data). A typical solution to this problem by a generative model is to define

a series of independent steps to generate different elements in the complex output, and then make

possible simplifications to each generation step using independence assumptions. For example, de-

noting the elements in O as o1, o2, .., on, P (O, I) can be written as P (o1, o2, .., on, I). Suppose that

the input I is simple; according to the probabilistic chain rule, a generation process can be de-

fined as: P (o1, o2, .., on, I) = P (I)P (o1|I)P (o2|o1, I)..P (on|o1, .., on−1, I). The factor probabilities

P (ok|o1, .., ok−1, I) can then be simplified by making independence assumptions. For example, as-

suming that ok is dependent only on ok−1 (k > 1), we have P (ok|o1, .., ok−1, I) = P (ok|ok−1), and

P (o1, o2, .., on, I) = P (I)P (o1|I)P (o2|o1)..P (on|on−1), where each factor is much easier to estimate.

A typical generative model is the hidden Markov model. Generative models have also been used in

seminal work in statistical parsing (Collins, 1997).

A potential disadvantage of generative models is the need for independence assumptions, which

can lead to over-simplification of nlp tasks. Moreover, generative stories are not always obvious to

find. It is more straightforward to model statistical information that influences the probability of a

complex output directly. Discriminative probabilistic models address this problem by computing the

conditional probability of the output O given the input I directly, often using the maximum entropy

principle. Here the prediction problem can be written as O = argmaxO′ P (O′|I) (the output has the

highest conditional probability among all possibilities given the input). Defining important statistical

information as features, a discriminative model estimates the probability P (O|I) directly according

to the feature restrictions. The advantage of this method is the freedom to define arbitrary features
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without making independence assumptions. An important example of a probabilistic discriminative

model is the conditional random field (Lafferty et al., 2001), which has been shown to be more

effective than the generative hidden Markov model for various nlp problems. A disadvantage of the

conditional random field is the comparatively high time complexity for training.

While probabilistic models are still widely used, non-probabilistic models have been applied to

nlp recently. All non-probabilistic models studied in this thesis are discriminative models, which

maximize the score difference between correct structures and possible incorrect structures. The

difference between discriminative models, regardless of their being probabilistic or non-probabilistic,

include the output accuracy on particular problems and datasets, and the time complexity for

training. We chose a global linear model trained by the generalized perceptron (Collins, 2002) as

the main discriminative approach for this thesis. Although a comparatively simple and fast learning

algorithm, the generalized perceptron often gives comparable accuracy to more complex and slower

learning algorithms.

Besides the statistical model and the learning algorithm, the decoding search algorithm also

plays an important role in an nlp system for structural prediction. The choice of decoder not only

affects the output accuracy, but is also important for the system’s efficiency. It is common for an

nlp problem to have an exponentially large search space, making decoding efficiency an important

issue. A common solution with no accuracy loss and reasonable efficiency is dynamic programming,

which enables exact decoding with an exponential search space in polynomial time. However, the

requirement that the search problem exhibits the properties of overlapping subproblems and optimal

substructure, which is necessary for dynamic programming, also limits the features that can be used

in the model. Moreover, because the generalized perceptron learning algorithm that we use is

based on decoding, the speed of the decoder also influences the learning efficiency. In this thesis,

we chose beam-search, which is an approximate search typically with linear time complexity, as

the main decoding algorithm. For our word segmentation system in Chapter 3, beam-search gives

competitive accuracy compared to dynamic programming approaches. For the joint segmentation

and tagging problem in Chapter 4, and the combined dependency parser in Chapter 6, where dynamic

programming cannot achieve practical running speed, beam-search gives reasonable running speed

and output accuracy.
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2.1 A review of statistical models for NLP

In this section we review important statistical models and learning methods for nlp, placing the

perceptron algorithm into the category of discriminative, non-probabilistic approaches.

2.1.1 Probabilistic models

The earliest statistical models for nlp, probabilistic models compare candidate outputs by their

probabilities, and take the most probable candidate as the predicted output.

The probability of an output given an input is estimated by statistical information collected

from training data. Because of the sparseness of natural language data, the probability of a complex

output must be broken into components that are easier to estimate. All probabilistic models can be

seen as methods to reduce data sparseness. Generative models compute the probability of complex

structures by using the probability chain rule and independence assumptions, and estimate the

probability of simple structures by using the maximum likelihood principle, while discriminative

models define a set of features as constraints and derive the conditional output probability by

constrained maximization, using the maximum entropy principle. A typical generative model used

in nlp is the hidden Markov model (hmm), while the most important probabilistic discriminative

model is the conditional random field (crf).

The input I of an nlp problem is typically a complex structure, and Bayes rule is often used to

transform the computation of the conditional probability P (O|I) into the estimation of P (I|O) or

P (O, I), for which the data sparseness of I can be addressed.1

Two important machine learning principles for probabilistic statistical models

Maximum likelihood estimation (mle) is a general probability estimation principle, which is used by

many probabilistic models for nlp. The underlying principle for mle is to find the distribution P

1Another common technique to address data sparseness is smoothing, which is often used with other techiques
such as the generative approach or the Bayes method. For example, smoothing can be used to further reduce the
sparseness of the probability of simple structures in generative models. However, because our main approach is a
non-probabilistic model, we are concerned only with the model’s aspect for the probabilistic methods, and therefore
do not study smoothing methods in this thesis.
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that maximizes the likelihood, or probability of training examples:

P = arg max
P ′

P (training|P ′)

For a binomial distribution, where each training example is an independent binary value, mle has

a very intuitive conclusion: the probability of a random example being 0/1 is equal to the relative

frequency of 0/1 in the training data. For example, given a set of training data with S examples,

from which the number of examples having the value b (b ∈ {0, 1}) being Count(b), the probability

of a random example having the value b can be estimated by:

P (b) =
Count(b)

S
(2.1)

Now we give a derivation for Equation 2.1. Because the values of training examples are indepen-

dent of each other, the probability of the training data under the distribution P (b) is:

P (training|P (b)) = P (b)Count(b)(1− P (b))S−Count(b)

Finding the P (b) that maximizes P (training|P (b)) is equivalent to finding the P (b) that maxi-

mizes the logarithm of P (training|P (b)), which is:

log P (training|P (b)) = log (P (b)Count(b)(1− P (b))S−Count(b))

= Count(b) log P (b) + (S − Count(b)) log (1− P (b))

The maximum point for the function log P (training|P (b)) can be found by solving the equation

d
dP (b) (log P (training|P (b))) = 0:

d

dP (b)
(log P (training|P (b))) = 0

Count(b)

P (b)
−

(S − Count(b))

(1− P (b))
= 0

P (b) =
Count(b)

S
,
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and this is the maximum likelihood estimate as expressed by Equation 2.1.

Equation 2.1 can be generalized to multiple classes, where the set of class values is not restricted

to {0, 1}. Collins (1999) gave a proof of the generalization. mle has been used in the hidden Markov

model for pos-tagging, and generative models for parsing (Collins, 1997).

Another important method for the estimation of a probability distribution is the maximum

entropy (me) principle (Berger et al., 1996). According to the me principle, given some partial

knowledge about a distribution, the best estimation of the whole distribution function should be the

one with the maximum entropy among all functions that are consistent with the partial knowledge,

or, by the definition of entropy, the most uniform distribution among those consistent with the given

partial knowledge.

Take the classification problem for example, where an input x ∈ X is mapped to a class c ∈ C.

The predicted class cout(x) for an arbitrary input x is the one with the highest conditional probability:

cout(x) = arg max
c′∈C

P (c′|x).

According to the me principle, the probability distribution P (c|x) is estimated using statistical

information from training examples represented by a set of features f1(x, c), f2(x, c), .., fn(x, c). Here

a feature indicates the occurrence of a pattern in x and c. For example, in the spam filtering problem,

where the input is a document and the output is from {spam, nonspam}, a feature value can be

“the document contains the word FREE”, or “the document does not have capital letters”. The set

of features represents the partial knowledge of the distribution to estimate.

In me estimation, it is assumed that the expected value of each feature according to the distribu-

tion is the same as the actual value of the feature according to the relative frequency in the training

data:
∑

c,x

Count(x)

T
P (c|x)fj(x, c) =

∑

c,x

Count(x, c)

T
fj(x, c), j ∈ 1..n,

where x represents any possible input value and c represents any possible class from the set C;

Count(x) represents the count of the input value x from the training data, Count(x, c) represents

the number of occurrences of the pair (x, c) in the training data, and T represents the total number



CHAPTER 2. BACKGROUND 16

of training examples.

The above equations provide the basic constraints under which me estimation searches for the

probability distribution P (c|x) with the highest entropy. Besides these, there are also implicit

constraints including P (c|x) > 0, and
∑

c P (c|x) = 1. The target function of the constraint maxi-

mization tasks, the entropy of the distribution P (c|x), is:

H(c|x) = −
∑

x,c

Count(x)

T
P (c|x) log P (c|x)

The solution Pλ(c|x) to the above constraint maximization problem has the form2:

Pλ(c|x) =
1

Zλ(x)
exp



(
∑

j

λjfj(x, c))



 , (2.2)

which is the equation of the me model. In the above equation, Zλ(x) =
∑

c exp (
∑

j λjfj(x, c)) is

the normalizing constant that guarantees
∑

c Pλ(c|x) = 1.

Equation 2.2 is parameterized and easy to compute on the basis of features. The parameters in

the me model are the λ values. There is no closed form solution to compute them. Instead, several

numerical methods can be used to find the λ values, including the improved iterative scaling (iis)

method (Berger et al., 1996; Della Pietra et al., 1997) and the generalized iterative scaling (gis)

method (Darroch and Ratcliff, 1972; Curran and Clark, 2003). In addition, more general numerical

optimization methods have become popular (Malouf, 2002).

Besides the classification problem, me is also used in the memm and crf models.

The naive Bayes classifier

The naive Bayes classifier is one of the simplest probabilistic models for the classification task, where

the output is a discrete value from a set of classes C. For example, in the document classification

problem, the input is a document and the set of output classes can be {fiction, scientific report,

news article, others}. Denoting the set of inputs with X , the conditional probability of the specific

input x ∈ X belonging to the class c ∈ C can be written as P (c|x). The goal of the classification

2More details about the mathematical deduction for Equation 2.2 are expressed by Berger et al. (1996).
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task is to find the output cout(x) that satisfies:

cout(x) = argmax
c′∈C

P (c′|x)

The probability P (c|x) can not be estimated directly from training data, since documents are

statistically very sparse. On the other hand, the probability chain rule can not be applied here, be-

cause x is the condition in the conditional probability equation. The naive Bayes classifier addresses

this problem by removing x from the condition position, using Bayes rule:

cout(x) = arg max
c′

P (c′|x)

= arg max
c′

P (c′)P (x|c′)

P (x)

= arg max
c′

P (c′)P (x|c′)

Now the conditional probability P (x|c′) can be estimated using the probability chain rule and

independence assumptions. For example, the “bag of words” approach treats the document as a

collection of independent individual words w1, w2, .., wn given the document class. According to this

approach, the prediction problem can be simplified as:

cout(x) = arg max
c′

P (c′)P (x|c′)

= arg max
c′

P (c′)P (w1, w2, .., wn|c
′)

= arg max
c′

P (c′)P (w1|c
′)P (w2|c

′)..P (wn|c
′)

In the above equation, the output probability consists of two types components: the prior prob-

ability P (c) and the conditional probabilities P (wi|c), i ∈ 1..n. These two types of probabilities are

comparatively easy to estimate, and both can be estimated by supervised learning using maximum

likelihood estimation, and normally a smoothing method for unseen data.
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Figure 2.1: Probabilistic dependencies in an hmm

The hidden Markov model

The hidden Markov model (hmm) has been used for many years as a generative model for nlp

(Rabiner, 1989). It is commonly used for the sequence labeling problem. Figure 2.1 gives an

illustration of the stochastic generation process according to the first-order hmm. In this model, a

sequence of states y is generated according to the Markov process – each state being dependent only

on its predecessor (the first order assumption). The whole state sequence is hidden, and the value of

each state y can only be inferred from a corresponding observation x, which is generated as a result

of y.

A typical problem solved by the hmm is finding the most likely state sequence given the corre-

sponding observation sequence. Unlike classification problems, where the output is a single discrete

value, the output of this problem is a sequence of inter-related states. In the most probable state

sequence, each individual state is not necessarily the most probable if considered in isolation. There-

fore, finding the best state sequence in an hmm is a structural prediction problem.

Denoting the observations with Xn
1 = x1, x2, ..., xn, the most probable state sequence can be

written as (Y n
1 )out(X

n
1 ) = argmaxy′

1
,..,y′

n

P (y′

1, .., y
′

n|x1, .., xn), where y′

1, .., y
′

n can be any possible

state value sequence. Direct estimation of this probability is difficult due to data-sparseness. Because

the input is also complex, we can first turn the conditional probability into a joint probability, so that

the probability chain rule and independence assumptions can be used to break the joint probability
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into less sparse components:

(Y n
1 )out(X

n
1 ) = arg max

y′

1
,..,y′

n

P (y′

1, .., y
′

n|x1, .., xn)

= arg max
y′

1
,..,y′

n

P (y′

1, .., y
′

n, x1, .., xn)

P (x1, .., xn)
(def. of conditional probabilities)

= arg max
y′

1
,..,y′

n

P (y′

1, .., y
′

n, x1, .., xn) (denominator fixed)

It can be seen that the state sequence with the highest conditional probability also has the highest

joint probability. The joint probability P (y′

1, .., y
′

n, x1, .., xn) can be reduced to less sparse compo-

nents according to the probability chain rule and first-order Markov assumption in the following

way:

P (y′

1, .., y
′

n, x1, .., xn) = P (y′

1, .., y
′

n−1, x1, .., xn−1, y
′

n, xn)

= P (y′

1, .., y
′

n−1, x1, .., xn−1)P (y′

n, xn|y
′

1, .., y
′

n−1, x1, .., xn−1)

= P (y′

1, .., y
′

n−1, x1, .., xn−1)P (y′

n|y
′

1, .., y
′

n−1, x1, .., xn−1)

P (xn|y
′

1, .., y
′

n−1, x1, .., xn−1, y
′

n)

= P (y′

1, .., y
′

n−1, x1, .., xn−1)P (y′

n|y
′

n−1)P (xn|y
′

n) (cond. independence)

= P (y′

2|y
′

1)..P (y′

n|y
′

n−1)P (x1|y1)..P (xn|yn)

Now the computation of P (y′

1, .., y
′

n, x1, .., xn) is reduced to the product of two basic types of prob-

abilities P (y′

n|y
′

n−1) and P (xn|y
′

n), both of which are much less sparse than the full joint probability,

and can be estimated according to the maximum likelihood principle, resulting in simple relative

frequency estimates of the two probabilities. They are also called the transition probabilities and

the observation probabilities in a first-order hmm, respectively.

Finding the most probable class in a classification problem can be achieved by simple enumeration

of possible classes. However, finding the most probable state sequence for a given observation

sequence is not as straightforward, since the number of possible state sequences given an observation

sequence is exponential in the length of the sequence. A common solution is to use the Viterbi

algorithm (Rabiner, 1989), a dynamic programming algorithm that explores the exponential search
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Figure 2.2: Probabilistic dependencies in an memm

space in polynomial time by means of caching. Denoting the best state sequence ending with yn = y

as (Y n
1 )max(y, Xn

1 ), since the finding of (Y n
1 )max(y, Xn

1 ) depends only on (Y n−1
1 )max(y′, Xn−1

1 ),

(Y n−1
1 )max(y′, Xn−1

1 ) can be cached for all possible y′, and then reused in finding (Y n
1 )max(y, Xn

1 ).

Starting from the first state, the Viterbi algorithm incrementally builds a chart of (Y i
1 )max(y, Xn

1 )

for all y and i ∈ 1..n.

The maximum entropy Markov model

The maximum entropy Markov model (memm) (McCallum et al., 2000) is another model for a

sequence of states generated by the Markov process. As for an hmm, each state in an memm is

related to an observation, and a typical problem is finding the most probable state sequence given

the observation sequence. But unlike an hmm, an memm does not assume that each observation

is generated by its corresponding state. Instead, it regards the probability of each state item as

dependent on the probability of its predecessors and its observation. Therefore, the memm can be

viewed as designed particularly for the problem of predicting state sequences. An illustration of the

first-order memm is shown in Figure 2.2. It can be noticed that the direction of dependencies is

different from an hmm.

In contrast to an hmm, which computes the probability of a state sequence by two types of

basic probabilities, the transition probability and the observation probability, an memm breaks the

computation of state sequence probabilities into only one basic probability – the state transition

probability. Suppose that the state sequence is Y n
1 = y1, y2, .., yn and the observation sequence is

Xn
1 = x1, x2, .., xn. The state transition probability can be written as P (yi|xi, yi−1). Note that the

observation xi here is a condition, as compared to the observation probability P (xi|yi) in an hmm.
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To find the most probable state sequence given the observation sequence, an memm uses the prob-

ability chain rule and independence assumptions to turn the joint probability P (y1, .., yn, x1, .., xn)

into components:

P (y1, .., yn|x1, .., xn) = P (y1, .., yn−1|x1, .., xn)P (yn|y1, .., yn−1, x1..xn)

= P (y1, .., yn−1|x1, .., xn−1)P (yn|yn−1, xn) (cond. independence)

= P (y2|y1, x2)..P (yn|yn−1, xn)

The above equation consists of only one simple component, the state transition probability

P (yn|yn−1, xn). The values of P (yi|xi, yi−1) are estimated from training data using the me princi-

ple. However, instead of being estimated directly, the distribution P (yi|xi, yi−1) is separated into

independent sub distributions according to different values of yi−1, each being labeled as Pyi−1
(yi|xi)

and trained separately. Notice that the format of a particular sub distribution Pyi−1
(yi|xi) is similar

to that of the me classification problem introduced earlier, with yi being class c and xi being input

x. Therefore, by the same equation derivation as the me classification problem, the mathematical

form of Pyi−1
(yi|xi) is:

Pyi−1
(yi|xi) =

1

Z(xi, yi−1)
exp





m
∑

j=1

λjfj(xi, yi)



 .

In the above equation, f1, ..., fm represent features extracted from xi and yi. The normalizing

factor Z(xi, yi−1) ensures that
∑

yi
Pyi−1

(yi|xi) = 1. It has yi−1 as a parameter because Pyi−1
(yi|xi)

is a set of probabilities that are defined separately for each possible value of yi−1. The set of λ

values, which is also dependent on yi−1, can be trained by the generalized iterative scaling method

(McCallum et al., 2000).

Both memm and hmm are probabilistic models for Markov processes, and the difference between

them is mainly in the way the conditional probability of a sequence structure is turned into basic

components in order to simplify the estimation problem. While an hmm defines a generation story

for the observations, an memm uses the maximum entropy principle and simplifies the computation

of state transition probabilities by means of features. The main advantage of the memm is that
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Figure 2.3: Probabilistic dependencies in a crf

a much wider range of contextual information can be included. Besides, an memm computes the

conditional probability of a state sequence given an observation directly, without transforming it to

the computation of joint state and observation probabilities, as an hmm does.

Like the hmm, the Viterbi algorithm can be used to compute the most probable sequence from

all possible state sequences.

Conditional random fields

One of the major contributions of the memm is the introduction of rich features by using the

maximum entropy state transition model. However, the transition model also brings disadvantages,

an important example being the label bias problem (Lafferty et al., 2001), where a label with few

sucessors can be preferred than one with many due to higher transition probabilities. The conditional

random field (crf) model has been proposed to address this issue.

crfs are defined on general graphs that obey the Markov property, of which the linear chain is

the simplest and most common example. An illustration of the first-order linear-chain crf is shown

in Figure 2.3. Unlike the hmm and memm, a crf does not break the conditional probability of a

state sequence into the production of basic probabilities, but computes it directly by using the me

principle.

Denoting the observation sequence by Xn
1 = x1, .., xn, and the state sequence by Y n

1 = y1, .., yn,

the crf model estimates the probability distribution P (Y n
1 |X

n
1 ) using the me principle. Here features

are defined globally over Y n
1 and Xn

1 , while according to the first-order Markov assumption, all

features are limited to the context of a state, its observation and its previous state. Because the

same pattern can occur multiple times with different states in the sequence, a crf feature represents

the count of occurrences of a particular pattern in the structure. This is different from an memm,
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where features are defined for each state transition separately, and are typically binary pattern

indicators. We use the terms global features and local features to differentiate global count features

F (Xn
1 , Y n

1 ) from local binary features f(yi, xi, yi−1). The relationship between global and local

features is:

Fj(X
n
1 , Y n

1 ) =

n
∑

i=1

fj(yi, xi, yi−1),

where j is a number that represents the identity of a particular feature value.

Using the me model to find P (Y n
1 |X

n
1 ), the distribution has the form:

P (Y n
1 |X

n
1 ) =

1

Z
exp





∑

j

λjFj(X
n
1 , Y n

1 )



 (2.3)

In this equation, Z is the normalizing constant that makes P (Y n
1 |X

n
1 ) sum to 1. Lafferty et al.

(2001) used iis to estimate the parameters λj . However, recent research has found more efficient

numerical methods to estimate these values (Wallach, 2002; Malouf, 2002).

Equation 2.3 for the crf is very similar to the me classifier (Equation 2.2). But it is different

in that the target is a state sequence Y n
1 rather than a single class c. Consequently, the computa-

tions for a crf are more complex than for the simple me classifier. For example, the normalizer

Z =
∑

Y n

1

exp (
∑

j λjFj(X
n
1 , Y n

1 )) requires summation over all possible state sequences Y n
1 , and is

computationally more challenging.

hmm, memm and crf solve the same structural prediction problem of finding the most probable

state sequence. While an hmm defines a generation process for the state and observation sequences,

estimating transition and observation probabilities, a crf treats the whole state sequence as a single

unit, estimating its conditional probability using the me principle. The difference between an hmm

and a crf reflects the difference between generative models and discriminative models. The main

advantage of a crf over a hmm is the freedom to define features without making independence

assumptions. crfs have been reported to outperform both hmms and memms in many nlp tasks

(Lafferty et al., 2001; Sha and Pereira, 2003; Peng et al., 2004).
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Inputs: training examples (xi, ci)
Initialization: set ~w = 0
Algorithm:

for t = 1..T , i = 1..N
calculate zi = sgn(Φ(xi) · ~w)
~w = ~w + η(ci − zi)Φ(xi)

Outputs: ~w

Figure 2.4: The traditional perceptron learning algorithm

2.1.2 Non-probabilistic models

The comparison between hmms and crfs above reflected the general difference between discrim-

inative probabilistic models and generative probabilistic models. An important advantage of dis-

criminative models is the use of features, which are able to capture a wide range of contextual

information.

The non-probabilistic models in this thesis are all discriminative: they collect statistical infor-

mation from the training data by using a set of global features, and score output candidates for a

given input according to them. A higher score from a non-probabilistic model represents a more

correct candidate according to the model. However, the score values are not probabilities. This is

the most important difference between non-probabilistic models and probabilistic models.

The generalized perceptron algorithm is a non-probabilistic discriminative model that achieved

competitive accuracies compared to a crf in a pos-tagging task (Collins, 2002). Compared to a crf,

the perceptron learning algorithm is conceptually more straightforward, and often more efficient

in time and space complexity, depending on the decoder. Moreover, the perceptron algorithm

does not make any assumptions about the structure, and therefore can be used in a much larger

range of structural prediction problems than a crf. Though other margin-based models sometimes

outperform the perceptron algorithm in certain tasks, they typically have worse time complexity.

The traditional, generalized and averaged perceptron algorithms

The traditional perceptron model (Rosenblatt, 1958) is a linear model for binary classification.

Given an input x, and a set of local features f1(x), f2(x), ..., fm(x) defined similarly to the previous
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sections, the output of a perceptron is

cout(x) =











1 if w0 + w1f1(x) + .. + wmfm(x) > 0

0 otherwise

wi represents the set of linear weights for the features; they are the parameters in the perceptron

model and are computed from training data. Adding a constant f0(x) = 1, the features can be

put into a vector Φ(x) = (f0(x), f1(x), .., fm(x)). Similarly, the corresponding weights for each

feature can be put into a vector ~w = (w0, w1, .., wm), thereby simplifying the perceptron function as

cout(x) = sgn(Φ(x) · ~w), where the function sgn is defined as:

sgn(m) =











1 if m > 0

0 otherwise

The perceptron learning algorithm is illustrated in Figure 2.4. It is an online learning algorithm

that uses the current weight vector to predict training examples. For a training example, if the

prediction is correct, ~w remains unchanged because ci = zi. Otherwise, the parameters are adjusted

in the opposite direction of the error. η is a positive factor called the learning rate; it controls the

scale by which ~w is modified each time. The same process can be performed over the N training

examples for T training iterations.

The generalized perceptron algorithm (Collins, 2002) extends the traditional perceptron algo-

rithm to solve structural prediction problems. For the generalized perceptron, both the input x

and the output y can be structured, and features are defined over both x and y. Denoting the set

of candidate outputs for the input x as GEN(x), the features vector as Φ(x, y), and the parameter

vector as ~w, the prediction output is:

yout(x) = argmax
y′∈GEN(x)

Score(y′)

= argmax
y′∈GEN(x)

Φ(x, y′) · ~w



CHAPTER 2. BACKGROUND 26

Inputs: training examples (xi, yi)
Initialization: set ~w = 0
Algorithm:

for t = 1..T , i = 1..N
calculate zi = argmaxy∈GEN(xi)

Φ(xi, y) · ~w
if zi 6= yi

~w = ~w + Φ(yi)− Φ(zi)
Outputs: ~w

Figure 2.5: The generalized perceptron learning algorithm

The training process for the generalized perceptron is illustrated in Figure 2.5. Similarly to

Figure 2.4, predictions are made for training examples using the current parameter vector. If the

prediction is correct, the trainer goes on to the next example without modifying the parameter

values; otherwise it adjusts the parameter vector according to the correct example and the incorrect

prediction, by adding the feature values from the correct example and subtracting the feature values

from the prediction. The effect of this procedure is that features from the correct example but not

from the prediction are given increased weight, while features from the prediction but not from the

correct example are given decreased weight, so that the model is forced to make correct predictions

for the training example. T training iterations can be performed over N examples.

The averaged perceptron algorithm (Collins, 2002) is a standard alternative to the generalized

perceptron algorithm to reduce overfitting on the training data. It was motivated by the voted-

perceptron algorithm (Freund and Schapire, 1999) and has been shown to give improved accuracy

over the non-averaged perceptron on a number of tasks. Let N be the number of training sentences, T

the number of training iterations, and ~wn,t the parameter vector immediately after the nth sentence

in the tth iteration. The averaged parameter vector ~γ ∈ Rd is defined as:

~γ =
1

NT

∑

n=1..N,t=1..T

~wn,t

The averaged perceptron uses ~γ instead of ~w as the parameter vector for the final model.

The generalized perceptron algorithm can be seen as a natural alternative to the crf method

in solving the state sequence problem (Collins, 2002). In both cases a feature vector consists of

the global sum of different features over the whole state sequence, and the weights w1, ..., wn in the
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perceptron correspond to the parameters λ1, .., λn in the crf. The two models were reported to

achieve comparable accuracy for many nlp problems. Compared to a crf, the advantage of the

perceptron algorithm is online learning, which is typically less demanding on memory. The training

of the perceptron is dependent on the decoding procedure, while the computation in parameter

updating is trivial. With an efficient decoding algorithm, the perceptron algorithm can achieve fast

learning speeds.

Margin infused relaxed algorithm (MIRA)

mira (Crammer and Singer, 2003; McDonald et al., 2005a) is a margin-based online learning algo-

rithm that shares similarities with the perceptron algorithm, but the parameter update for mira is

more complex.

Crammer and Singer (2003) studied the parameter update for online algorithms that make pre-

dictions for training examples and adjust parameters according to the predicted output and correct

output. For binary classification, algorithms that do not adjust parameters when the prediction is

correct are conservative. Conservativeness can be extended to the multi-class case. Suppose that

there are m classes c1, .., cm. For each input x, we want the score of the correct class c to be higher

than the rest of the classes, i.e. Score(x, c) > Score(x, c′), c′ 6= c. Now define the error set E to be

the set of classes {c′ 6= c : Score(x, c′) ≥ Score(x, c)}. An algorithm that updates its parameters

only when E is non-empty, and only using classes in E ∪ {c}, is called ultraconservative (Crammer

and Singer, 2003). The generalized perceptron algorithm is ultraconservative, because it adjusts the

parameters only using arg maxc′∈E Score(x, c′) and c.

The generalized perceptron algorithm adjusts the parameters by adding the feature vector of the

correct output and subtracting the feature vector of the predicted output:

~wt+1 = ~wt + Φ(x, c) − Φ(x, arg max
c′∈E

Score(c′))

This formula can also be written as:

~wt+1 = ~wt + τc × Φ(x, c) + τc′ × Φ(x, c′), c′ = argmax
c′′∈E

Score(c′′)
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where τc = 1 is the weight for the correct vector and τc′ = −1 is the weight for the decoder

output. Crammer and Singer (2003) gave a generalization of the formula and showed that a family of

ultraconservative algorithms have the same mistake bound as the generalized perceptron algorithm,

if they update the weights in the following way:

~wt+1 = ~wt + τc × Φ(x, c) +
∑

c′∈E

τc′ × Φ(x, c′)

where τc = 1 and
∑

c′∈E τc′ = −1. For example, the following online algorithm is a member of this

family:

~wt+1 = ~wt + Φ(x, c)−
1

‖E‖

∑

c′∈E

Φ(x, c′)

For each c′ in the above algorithm, τc′ = 1/‖E‖, where ‖E‖ is the size of E.

mira is the ultraconservative learning algorithm that makes the smallest adjustment for the

parameters in each update in order to give a correct prediction for the current training example. In

equation form, mira finds:

~wt+1 = arg min
~w

‖~w − ~wt‖
2

under the constraints that:

~wt+1 · Φ(x, c)− ~wt+1 · Φ(x, c′) ≥ 0, ∀c′ ∈ E

mira has been shown to outperform the generalized perceptron by a small amount in a number of

nlp problems. However, because the updating of parameters is a constraint minimization problem,

it is much more expensive than the perceptron algorithm.

Online passive aggressive algorithms

The passive-aggressive algorithms (Crammer et al., 2006) are simplifications to the mira algorithm.

While the updating of parameters in mira is a constraint minimization problem, which requires

expensive numerical calculations, the online passive-aggressive algorithms have closed form update

functions, which are much simpler to compute.

The passive-aggressive algorithm is the same as mira for binary classification problems. The
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constraint minimization problem can be stated as below:

~wt+1 = arg min
~w

1

2
‖~w − ~wt‖

2 s.t. loss(~w; (xt, ct)) = 0,

where the loss function loss(~w; (xt, ct)) is:

loss(~w; (x, c)) =











0 if c(~w · x) ≥ 1

1− c(~w · x) otherwise

The solution to this constraint minimization problem is a closed-form equation:

~wt+1 = ~wt + τtctxt where τt =
loss(~w; (x, c))

‖xt‖2

In the case of multi-class classification, however, mira does not have a closed form solution,

largely because there are multiple constraints. In comparison, the passive-aggressive algorithms

ignore all but the most violated constraint. Suppose that the correct output for the input xt is ct,

while the wrong output with the highest score is c′; then the update method can be written as:

~wt+1 = arg min
~w

1

2
‖~w − ~wt‖

2 s.t. loss(~w; (xt, ct)) = 0.

The loss function is the hinge loss for the margin between the correct output and the highest-ranked

wrong output only:

loss(~w; (xt, ct)) =











0 if ~w ·Φ(x, ct)− ~w ·Φ(x, c′) ≥ 1

1− (~w ·Φ(x, ct)− ~w ·Φ(x, c′)) otherwise

Now this equation has a closed form solution:

~wt+1 = ~wt + τtctxt where τt =
lt

‖Φ(x, ct)− Φ(x, c′)‖2
,

which is much simpler to compute than the learning problem in mira.

Passive-aggressive algorithms can be extended with two additional features. Firstly, the slack
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variable ξ (see the sub section on svm for more details of this variable) can be applied to the update

equations, so that the learning algorithms become more resistant to noise in the training data:

~wt+1 = argmin
~w

1

2
‖~w − ~wt‖

2 + Cξ s.t. loss(~w; (xt, ct)) ≤ ξ and ξ ≥ 0.

The closed form solution for this equation is:

~wt+1 = ~wt + τtctxt where τt = min (C,
loss(~w, (xt, ct))

‖Φ(x, ct)− Φ(x, c′)‖2
)

The slack variable can be introduced in another way:

~wt+1 = arg min
~w

1

2
‖~w − ~wt‖

2 + Cξ2 s.t. loss(~w; (xt, ct)) ≤ ξ and ξ ≥ 0.

The closed form solution for the above equation is:

~wt+1 = ~wt + τtctxt where τt =
loss(~w, (xt, ct))

‖Φ(x, ct)− Φ(x, c′)‖2 + 1
2C

The passive-aggressive algorithms with slack variables introduced in the above two ways are called

PA-I and PA-II, respectively. The algorithm without slack variables is called PA.

Secondly, a real-valued loss function ρ(ct, c
′) can be used to measure the difference between the

incorrect and correct outputs. It is a sensible choice when the error of an output is measurable.

For example, in the pos-tagging problem, ρ may represent the number of words that are tagged

incorrectly. The loss with ρ(ct, c
′) introduced is:

loss(~w; (xt, ct)) =











0 if ~w ·Φ(x, ct)− ~w ·Φ(x, c′) ≥ ρ(ct, c
′)

ρ(ct, c
′)− (~w ·Φ(x, ct)− ~w ·Φ(x, c′)) otherwise

And the rest of the computation can be done in the same way as the previously introduced methods.

The above passive-aggressive algorithms can also be applied to structural prediction problems.

Crammer et al. (2006) showed that for several tasks, the passive-aggressive algorithms gave slightly

lower performance than mira. The passive-aggressive algorithms have the same time complexity
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Figure 2.6: An illustration of svm

for parameter updating as the perceptron algorithm, performing only closed form calculations. We

implemented the passive-aggressive algorithm for the joint segmentor and tagger in Chapter 4, and

compared its accuracy with the perceptron algorithm. In our experiments, the passive-aggressive

algorithm gave lower accuracy than the perceptron algorithm.

Support vector machines

The standard support vector machine (svm) (Boser et al., 1992) is a binary classifier, with identical

score computation as all the non-probabilistic binary classifiers reviewed previously. Denoting the

input by x, the global feature vector by Φ(x) = (f1(x), ..., fn(x)), the output of an svm is cout(x) =

sgn(Φ(x) · ~w + w0), where ~w = (w1, ..., wn) is the parameter vector.

Unlike the perceptron algorithm, the standard svm is not an online learning algorithm. It

estimates the parameter values ~w by considering all training examples simultaneously. svm maps

the parameter estimation problem into a geometric problem, where each training example x is

mapped into a point (f1(x), ..., fn(x)) in an n dimensional vector space (Figure 2.6). The equation

Φ(x) · ~w = y, y ∈ R corresponds to a hyperplane in the space. Suppose that the training data

is linearly separable; then the equation Φ(x) · ~w + w0 = 0 represents a hyperplane that separates

the two classes of training data. Specifically, for all points x+ on one side, Φ(x) · ~w + w0 > 0,

and c(x+) = sgn(Φ(x) · ~w + w0) = 1, while for all points x− on the other side, c(x−) = −1. By

varying the values of ~w and w0, there can be many such hyperplanes that divide the two classes of

training data. svm learning finds the one that maximizes the distance between the hyperplane and
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the nearest point to it on either side, and uses the corresponding ~w values as its model parameters.

Intuitively, the chosen hyperplane maximizes the margin between the two classes of training points,

thereby allowing the most freedom to possible unseen points on either side. The points nearest to the

maximum-margin hyperplane are called the support vectors. Because they are the most important

determining factors for the model, the classifier is named after them.

Define the support vectors as Φ(x) · ~w + w0 = ±1 (Figure 2.6). By geometric reasoning, the

maximum margin for the hyperplane Φ(x) · ~w + w0 = 0 is equal to 2/‖~w‖. Hence the svm learning

problem can be formulated as:

find the ~w and w0 that minimizes
1

2
‖~w‖2

under the restriction that for any (xi, yi) in the training data, yi × cout(xi) ≥ 1

An important limitation of the above version of svm is the assumption that the training data

are separable, whilst the training data in real applications are often non-separable. This problem

is addressed by the soft-margin variation of svm (Cortes and Vapnik, 1995), which uses a slack

variable to reformulate the learning problem as:

find the ~w, w0 and ξ that minimizes
1

2
‖~w‖2 + C

∑

i

ξi

under the restriction that for any (xi, yi) in the training data, yi × cout(xi) ≥ 1− ξi

In the above equation, a slack variable ξi is introduced for each training example (xi, xy) to

represent its difference from the “ideal” situation, while C is the parameter that controls the balance

between maximizing the margin (i.e. minimizing ‖~w‖) and minimizing exceptional points (or training

error
∑

i ξi). Now the training data is no longer required to be completely separable. Nonetheless,

the trained model is still expected to separate most of the training examples. Therefore, the soft-

margin svm is tolerant of errors in the training data.

Both the original svm and the svm with slack variables are reduced to the constraint mini-

mization problem, which can be solved by various methods. The traditional solution is quadratic

programming, while recently other efficient methods have been proposed, such as the sequential
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minimal optimization (Platt, 1998) and the gradient based method (Ratliff et al., 2007).

Structural svm (Tsochantaridis et al., 2004) is an extension of the binary svm for structural

prediction problems. The relationship between structural svm and the standard svm resembles

that between the generalized and the traditional perceptron algorithms. Denote the set of possible

outputs for the input x with GEN(x); the prediction problem for the structural svm can be formulated

as:

yout(x) = argmax
y∈GEN(x)

Score(y)

= argmax
y∈GEN(x)

Φ(x, y) · ~w

where ~w is the vector of model parameters.

To extend svm learning to the structural case, two problems need to be considered. Firstly, when

mapping the training examples into the vector space, the concept of margin needs to be clarified,

so that the maximum-margin hyperplane can be defined. In the structural case, the margin is less

obvious to define than in the binary case, because there can be more than two classes of output

points. Secondly, with structured outputs, the difference between a wrong answer and the correct

answer can be measurable. In other words, some answers can be more wrong than others. For

example, in the parsing problem, an incorrect parse tree may be similar to the correct parse, while

another may be very different; or in the tagging problem, a tag sequence can contain 5 incorrect

tags, while another only 2.

To address the first issue, structural svm defines the margin as the score difference between the

correct output and the highest-scored incorrect output. In other words, the margin is the smallest

score difference between the correct output and any incorrect output. According to this margin, the

mathematical equation for structural svm learning can be formulated as:

find the ~w that minimizes
1

2
‖~w‖2

s. t. for any (y 6= yi) in the training data, ~w · Φ(yi, x)− ~w ·Φ(y, x) ≥ 1
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Similar to the binary case, the slack variable can be introduced to structural svm, so that

inconsistency in the training data can be tolerated. There are many ways to incorporate the slack

variable into the mathematical equation. The structural svm adds one slack variable to each linear

constraint:

find the ~w, ξ that minimizes
1

2
‖~w‖2 −

C

n

n
∑

i=1

ξi, s.t. ξi ≥ 0

s. t. for any (y 6= yi) in the training data, ~w ·Φ(yi, x)− ~w ·Φ(y, x) ≥ 1− ξi

To address the second issue, a specific loss function ρ that reflects the actual difference between

two structured outputs can be put into the constraint functions. One way to introduce ρ is using

it to replace the fixed margin 1 in the constraint functions, so that the score difference between the

correct output and a wrong output is scaled by the actual difference between the two structures.

Using this method, the learning equation with slack variables is:

find the ~w, ξ that minimizes
1

2
‖~w‖2 −

C

n

n
∑

i=1

ξi, s.t. ξi ≥ 0

s. t. for any (y 6= yi) in the training data, ~w · Φ(yi, x)− ~w · Φ(y, x) ≥ ρ(yi, y)− ξi

The above method for structural svm learning is also called maximum margin Markov networks

(Taskar et al., 2003). Alternatively, the loss function ρ can also be used to scale the slack variable

(Tsochantaridis et al., 2004):

find the ~w, ξ that minimizes
1

2
‖~w‖2 −

C

n

n
∑

i=1

ξi, s.t. ξi ≥ 0

s. t. for any (y 6= yi) in the training data, ~wΦ(yi, x)− ~wΦ(y, x) ≥ 1−
ξi

ρ(yi, y)

Compared to the perceptron algorithm, svm learning solves a constrained minimization problem,

and typically has much higher complexity.
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2.2 Choice of methods for this thesis

The model, the learning algorithm and the decoding algorithm are the most important aspects of a

statistical nlp system. The choices are often dependent on each other. For example, a probabilistic

model is usually trained with the mle or me principles, while a global linear discriminative model

can be trained with a crf, perceptron and other algorithms. Statistical information used by the

model often influences the decoder. For example, the independence assumptions for generative

models or the definition of feature context for discriminative models determines the time complexity

of a dynamic programming algorithm. On the other hand, the speed and accuracy of the decoding

algorithm influences the speed and accuracy of learning algorithms such as the perceptron.

We chose the discriminative statistical approach for structural prediction problems. The main

theoretical advantage of the discriminative approach over the alternative, generative approach is

the freedom to define features that represent important statistical patterns from structural data,

without specifying a particular probabilistic generation process based on independence assumptions.

Empirically, discriminative models have shown superior performance compared to generative models

in most nlp problems.

We chose the generalized perceptron algorithm as the main learning approach. While giving

comparable performance to alternative algorithms for discriminative learning such as crf and svm,

the perceptron typically has less time and space complexity. Being an online learning approach, the

perceptron has a simple parameter updating process, and is much faster than its margin-oriented

alternatives such as mira, which require complex numerical calculations. The difference in time

complexity has a practical influence on the training of large linear models. For example, for our

joint word segmentation and pos-tagging system, the perceptron algorithm converged in practical

running times while the structural svm algorithm failed to do so.

Perceptron learning is based on the decoding process, and we chose beam-search as the search

algorithm for all problems in this thesis. Compared to dynamic programming, which is a common

choice for structural prediction problems, beam-search has two important advantages. First, beam-

search runs faster: for the decoding problems in this theis, beam-search typically works in linear

time in the length of the sentence. Second, there is no limitation to the range of features that can be

used with beam-search. Dynamic programming requires the overlapping subproblems and optimal
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substructure properties, which limits the range of features that can be used by a discriminative

method. For example, in our dependency parsing research, beam-search allowed us to combine two

completely different sets of features in a single system. This is difficult to achieve with an efficient

dynamic programming decoder. Even with simpler problems such as pos-tagging, a larger range

of features leads to slower dynamic programming decoders by increasing the power in a polynomial

complexity. The main disadvantage of beam-search is it being approximate, which potentially leads

to inferior learning quality than exact inference, and reduced accuracies at test time due to search

errors. However, our experiments on word segmentation showed that decoding with beam-search

gave no less accuracy than decoding with dynamic programming, with accuracy being increased on

some datasets. This can possibly be explained by the self-adjustment of the perceptron, which tunes

its parameters according to mistakes made by the decoder.

In summary, the main approach of this thesis is a global discriminative model, trained by the

generalized perceptron algorithm and decoded using beam-search. Alternative learning and decoding

algorithms were occasionally used, for the purpose of comparison only.



Chapter 3

Word Segmentation

Standard approaches to Chinese word segmentation treat the problem as a tagging task, assigning

labels to the characters in the sequence indicating whether the character marks a word boundary.

Discriminatively trained models based on local character features are used to make the tagging

decisions, with Viterbi decoding finding the highest scoring segmentation. We propose an alternative,

word-based segmentor, which uses features based on complete words and word sequences. The

generalized perceptron algorithm is used for discriminative training, and we use a beam-search

decoder. Closed tests on the first and second sighan bakeoffs show that our system is competitive

with the best in the literature, achieving the highest reported F-scores for a number of corpora.

Based on the word-based segmentor, we describe further experiments and discuss various aspects of

word-based segmentation.

3.1 Introduction and background

Chinese word segmentation (cws) is the problem of transforming a Chinese sentence from a character

sequence to a word sequence. It is an important first step for many nlp tasks including pos-tagging

and parsing.

cws is a process of ambiguity resolution. An important source of ambiguity is out-of-vocabulary

(oov) words. Suppose that the two-character word “清华 (Tsinghua University)” is oov, while

37



CHAPTER 3. WORD SEGMENTATION 38

both “清 (clean water)” and “华 (China)” are in vocabulary as single-character words. Here the

segmentor, if it is overly-reliant on knowledge of in-vocabulary words, may incorrectly split “清华”

into two words. Typical examples of oov words include Chinese names, translated foreign names

and idioms.

In-vocabulary (iv) words can also be ambiguous. For example, the three characters “这里面” can

be segmented as the two words “这里 (here) 面 (flour)” or the two words “这 (here) 里面 (inside)”.

The ambiguity can be resolved only by using more contextual information. Table 1.1 in Chapter 1

gave more examples of such ambiguities.

Another challenge of cws is the lack of a fixed standard. It has been shown that there is

only about 75% agreement among native speakers about correct segmentation (Sproat et al., 1996).

Also, specific nlp tasks may require different segmentation criteria. For example, “北京银行” could

be treated as a single word (Bank of Beijing) for machine translation, while it is more naturally

segmented into “北京 (Beijing) 银行 (bank)” for tasks such as text-to-speech synthesis.

Many of the first word segmentors were rule-based; they work with a word dictionary and a set

of manual rules. A classical example is the forward maximum matching (fmm) algorithm, which

scans through the input sentence and, starting from the first character, repeatedly matches character

sequences to its word dictionary. Once the longest match from the current position is found, it is

taken as a word, and matching starts again from the next character. This process is repeated until

the last character is considered. As an influential rule-based approach, fmm has several alternatives,

such as backward maximum matching and joint forward and backward maximum matching. All are

described in Sproat et al. (1996). Other typical rule-based segmentors include Teahan et al. (2000).

The major drawback of rule-based word segmentors is the difficulty in finding enough rules

to make effective use of contextual information. Take the forward maximum matching algorithm

for example; oov words tend to be over segmented, simply because there are no matches in the

dictionary for oov words.

The statistical approach to cws has now become the dominant approach in the literature. These

methods work by creating a statistical model from text corpora, and then applying search to find the

best segmentations according to the model. The statistical methods can be classified as supervised or

unsupervised. While supervised methods build statistical models from manually annotated corpora,
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unsupervised methods gather statistical information from raw text. Supervised learning has been

shown to be more effective in standard tests, and we focus on it in this thesis. Typical unsupervised

models include automatic clustering, and calculating mutual information between characters. They

are normally used on top of a supervised learning model to further improve the accuracy (Liang,

2005).

Following Xue (2003), the standard approach for building a supervised-learning cws model is to

treat cws as a sequence labeling task. A tag is assigned to each character in the input sentence,

indicating whether the character is a single-character word or the start, middle or end of a multi-

character word. The context for disambiguation is normally a five-character window with the current

character in the middle. In this thesis, we call these methods character-based segmentation. The

advantage of character-based segmentation is that well-known tagging approaches can be applied

directly to the cws problem.

There are various character-based models in the literature. They differ mainly in the learning

algorithm and the features used. Several discriminative learning algorithms have been applied to the

character-based systems. Examples include Xue (2003), Peng et al. (2004) and Wang et al. (2006),

which use maximum entropy and conditional random field models, and Jiang et al. (2008), which

uses the perceptron model. The standard feature set is that defined by Ng and Low (2004), though

other feature sets are reported to improve the accuracy (Zhao et al., 2006). Zhao et al. (2006) also

showed that the best accuracy for crf models is given by using a set of six character segmentation

tags, which is different from the standard set {beginning, middle, end, single} shown previously.

Standard search algorithms for sequence tagging have been applied for the decoding process, such

as the Viterbi algorithm and beam search.

A disadvantage of character-based models is the use of limited contextual information. For

these methods, context is confined to the neighboring characters. Other contextual information, in

particular the surrounding words, are not included. Consider the sentence “中国外企业” in Table 1.1

back in Chapter 1, which can be from “其中 (among which) 国外 (foreign) 企业 (companies)”, or

“中国 (in China) 外企 (foreign companies) 业务 (business)”. Note that the five-character window

surrounding “外” is the same in both cases, making the tagging decision for that character difficult

given the local window. However, the correct decision can be made by comparison of the two
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three-word windows containing this character.

In order to explore the potential of explicit word information for cws, we propose an alternative

model that does not map segmentation into a tagging problem. It allows direct use of word infor-

mation, and therefore we call it word-based segmentation. The advantage of this method is that

no limitation of information is imposed by the model.1 We build a word-based segmentor using a

global linear model, trained by the generalized perceptron, and use a beam-search decoder. Our

segmentor gave competitive accuracies compared to the best systems in the literature on standard

sighan data.

We argue that the word-based approach is more flexible compared to the character-based ap-

proach. In fact, word-based segmentors can be seen as a superset of character-based segmentors,

because of their capability to include character-based features.

In the following sections, we give a description of a word-based segmentation model that has been

published in Zhang and Clark (2007), and then present more discussions and experiments concerning

various aspects of the word-based segmentor.

3.2 A word-based segmentation algorithm

We build a word-based segmentor using a global linear model, trained by the generalized perceptron

algorithm, and a beam-search decoder. In contrast to character-based methods, our word-based

model does not map the segmentation problem to a tag sequence learning problem, but defines

features on segmented sentences directly. We study several factors that influence the performance

of the perceptron word segmentor, including the averaged perceptron method, the size of the beam

and the importance of word-based features. We compare the accuracy of our final system to the

state-of-the-art cws systems in the literature using the first and second sighan bakeoff data. Our

system is competitive with the best systems, obtaining the highest reported F-scores on a number

of the bakeoff corpora. These results demonstrate the importance of word-based features for cws.

1In theory no limitation of information is imposed, but the choice of features should be considered together with
the decoder. For example, if dynamic programming is used, the range of features directly affects the efficiency of the
decoding algorithm.
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3.2.1 The model and the training algorithm

We formulate the cws problem as finding a mapping from an input sentence x ∈ X to an output

sentence y ∈ Y , where X is the set of possible raw sentences and Y is the set of possible segmented

sentences. Given an input sentence x, the predicted output segmentation yout(x) satisfies:

yout(x) = argmax
y∈GEN(x)

Score(y)

where, following Collins (2002), GEN(x) denotes the set of possible outputs for an input sentence

x.2

The score for a segmented sentence is computed by first mapping it into a set of features. Here a

feature is an indicator of the occurrence of a certain pattern in a segmented sentence. For example,

a feature can be the occurrence of “读书” as a single word, or the occurrence of “读” separated from

“书” in two adjacent words. By defining features, a segmented sentence is mapped into a global

feature vector, in which each dimension represents the count of a particular feature in the sentence.

If a feature does not occur in a sentence, the corresponding dimension in the global feature vector

is zero.

Denote the global feature vector for segmented sentence y by Φ(y) ∈ Zd, where d is the total

number of features in the model; then Score(y) is computed by the dot product of vector Φ(y) and

a parameter vector ~w ∈ Zd, where wi is the weight for the ith feature:

Score(y) = Φ(y) · ~w

The perceptron training algorithm is used to determine the weight values ~w.

The training algorithm initializes the parameter vector as all zeros, and updates the vector by

decoding the training examples. Each training sentence is turned into the raw input form, and then

decoded with the current parameter vector. The output segmented sentence is compared with the

original training example. If the output is correct, no change is made to the parameter vector. Hence

2Because of the use of beam-search, the actual output is not guaranteed to be exactly the highest scored output
in practice. This is also true for the global linear models in Chapters 4, 5 and 6, since we apply beam-search to all
the problems studied in this thesis. Other examples in the literature using beam-search as an approximate decoder
for a global linear model include Collins and Roark (2004).
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Inputs: training examples (xi, yi)
Initialization: set ~w = 0
Algorithm:

for t = 1..T , i = 1..N
calculate zi = segment(xi)
if zi 6= yi

~w = ~w + Φ(yi)− Φ(zi)
Outputs: ~w

Figure 3.1: The perceptron learning algorithm for the segmentor

it is a passive training algorithm. If the output is incorrect, the parameter vector is updated by

adding the global feature vector of the training example and subtracting the global feature vector

of the decoder output. The algorithm can perform multiple passes over the same training sentences.

Figure 3.1 gives the algorithm, where N is the number of training sentences and T is the number of

passes over the data.

Figure 3.1 is almost identical to the generalized perceptron algorithm shown in Figure 2.5 in

Chapter 2. However, because the output sequence y (the segmented sentence) contains all the

information from the input sequence x (the raw sentence), the global feature vector Φ(x, y) in

Figure 2.5 is replaced with Φ(y), which is extracted from the candidate segmented sentences directly.

Another difference between the perceptron training algorithm for the segmentor in Figure 3.1

and the original perceptron training algorithm in Figure 2.5 is that zi = arg maxy∈GEN(xi)
Φ(y)· ~w is

replaced with zi = segment(xi), which represents the output from the decoder. Because the decoder

can be approximate, zi = segment(xi) is not necessarily zi = argmaxy∈GEN(xi)
Φ(y) · ~w since the

highest scoring output may get pruned in the search process.

The averaged perceptron

The perceptron algorithm updates the parameters in order to make correct predictions on the train-

ing examples. However, it can overfit the training examples and give less accuracy on unseen data.

As introduced in Section 2.1.2, the averaged perceptron is a means to reduce overfitting. It uses the

averaged value of the parameter vectors after each training example as the final model.

To compute the averaged parameters ~γ, the training algorithm in Figure 3.1 can be modified by

keeping a total parameter vector ~σ. After the nth training sentence is processed in the tth training
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iteration, ~σn,t =
∑n

n′=1

∑t
t′=1 ~wn′,t′ . ~σ is updated together with ~w after each training example.

After the final iteration, ~γ is computed as ~σn,t/NT .

With a large number of features, however, calculating the total parameter vector ~σn,t after

each training example is expensive. Since the number of changed dimensions in the parameter

vector ~w after each training example is a small proportion of the total vector, we use a lazy update

optimization for the training process.3 Define an update vector ~τ to record the number of the

training sentence n and iteration t when each dimension of the averaged parameter vector was last

updated. Then after each training sentence is processed, only update the dimensions of the total

parameter vector corresponding to the features in the sentence. (Except for the last example in the

last iteration, when each dimension of ~τ is updated, no matter whether the decoder output is correct

or not).

Denote the sth dimension in each vector before processing the nth example in the tth iteration

as wn−1,t
s , σn−1,t

s and τn−1,t
s = (nτ,s, tτ,s). Suppose that the decoder output zn,t is different from

the training example yn. Now wn,t
s , σn,t

s and τn,t
s can be updated in the following way:

σn,t
s = σn−1,t

s + wn−1,t
s × (tN +n−tτ,sN− nτ,s)

wn,t
s = wn−1,t

s + Φ(yn)− Φ(zn,t)

σn,t
s = σn,t

s + Φ(yn)− Φ(zn,t)

τn,t
s = (n, t)

We found that this lazy update method was significantly faster than the naive method.

3.2.2 The beam-search decoder

The decoder reads characters from the input sentence one at a time, and generates candidate seg-

mentations incrementally. At each stage, the next incoming character is combined with an existing

candidate in two different ways to generate new candidates: it is either appended to the last word in

the candidate, or taken as the start of a new word. This method guarantees exhaustive generation

of possible segmentations for any input sentence.

3Daume III (2006) describes a similar algorithm.
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Input: raw sentence sent – a list of characters
Initialization: set agendas src = [[]], tgt = []
Variables: candidate sentence item – a list of words
Algorithm:

for index = 0..sent.length−1:
var char = sent[index]
foreach item in src:

// append as a new word to the candidate
var item1 = item
item1.append(char.toWord())
tgt.insert(item1)
// append the character to the last word
if item.length > 1:

var item2 = item
item2[item2.length−1].append(char)
tgt.insert(item2)

tgt.keepFirstB()
src = tgt
tgt = []

Outputs: src.best item

Figure 3.2: The decoding algorithm for the agenda based word segmentor

Two agendas are used: the source agenda and the target agenda. Initially the source agenda

contains an empty sentence and the target agenda is empty. At each processing stage, the decoder

reads in a character from the input sentence, combines it with each candidate in the source agenda

and puts the generated candidates onto the target agenda. After each character is processed, the

items in the target agenda are copied to the source agenda, and then the target agenda is cleared, so

that the newly generated candidates can be combined with the next incoming character to generate

new candidates. After the last character is processed, the decoder returns the candidate with the

best score in the source agenda. Figure 3.2 gives the decoding algorithm.

For a sentence with length l, there are 2l−1 different possible segmentations. To guarantee

reasonable running speed, the size of the target agenda is limited, keeping only the B best candidates.

3.2.3 Feature templates

The feature templates are shown in Table 3.1. Features 1 and 2 contain only word information, 3

to 5 contain character and length information, 6 and 7 contain only character information, 8 to 12

contain word and character information, while 13 and 14 contain word and length information. To
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1 word w
2 word bigram w1w2

3 single-character word w
4 a word starting with character c and having length l
5 a word ending with character c and having length l
6 space-separated characters c1 and c2

7 character bigram c1c2 in any word
8 the first and last characters c1 and c2 of any word
9 word w immediately before character c
10 character c immediately before word w
11 the starting characters c1 and c2 of two consecutive words
12 the ending characters c1 and c2 of two consecutive words
13 a word of length l and the previous word w
14 a word of length l and the next word w

Table 3.1: Feature templates for the agenda based word segmentor

reduce overfitting, the length features are normalized to 7, treating any larger values as having the

value 7. Any segmented sentence is mapped to a global feature vector according to these templates.

There are 356, 337 features with non-zero values after 6 training iterations using the development

data.

For this particular feature set, the longest range features are word bigrams. Therefore, among

partial candidates ending with the same bigram, the best one will also be in the best final candidate.

The decoder can be optimized accordingly: when an incoming character is combined with candidate

items as a new word, only the best candidate is kept among those having the same last word.

3.2.4 Experiments

Two sets of experiments were conducted for the word-based segmentor. The first, used for devel-

opment, was based on the part of Chinese Treebank 4 that is not in Chinese Treebank 3. This

corpus contains 240K characters (150K words and 4798 sentences). 80% of the sentences (3813)

were randomly chosen for training and the rest (985 sentences) were used as development testing

data. The convergence of the non-averaged and averaged perceptron was observed and compared.

The influence of particular features and the agenda size was also studied.

The second set of experiments used training and testing sets from the first and second inter-

national Chinese word segmentation bakeoffs (Sproat and Emerson, 2003; Emerson, 2005). The

accuracies are compared to other models in the literature.
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Iteration 1 2 3 4 5 6 7 8 9 10
P (non-avg) 89.0 91.6 92.0 92.3 92.5 92.5 92.5 92.7 92.6 92.6
R (non-avg) 88.3 91.4 92.2 92.6 92.7 92.8 93.0 93.0 93.1 93.2
F (non-avg) 88.6 91.5 92.1 92.5 92.6 92.6 92.7 92.8 92.8 92.9
P (avg) 91.7 92.8 93.1 92.2 93.1 93.2 93.2 93.2 93.2 93.2
R (avg) 91.6 92.9 93.3 93.4 93.4 93.5 93.5 93.5 93.6 93.6
F (avg) 91.6 92.9 93.2 93.3 93.3 93.4 93.3 93.3 93.4 93.4
#Incorrect sentences 3401 1652 945 621 463 288 217 176 151 139

Table 3.2: The accuracy using non-averaged and averaged perceptron
P – precision (%), R – recall (%), F – F-measure.

B 2 4 8 16 32 64 128 256 512 1024
Tr 660 610 683 830 1111 1645 2545 4922 9104 15598
Seg 18.65 18.18 28.85 26.52 36.58 56.45 95.45 173.38 325.99 559.87
F 86.90 92.95 93.33 93.38 93.25 93.29 93.19 93.07 93.24 93.34

Table 3.3: The influence of agenda size
B - agenda size, Tr - training time (seconds), Seg - testing time (seconds), F - F-measure.

F-measure is used as the accuracy measure. Define precision p as the percentage of words in the

decoder output that are segmented correctly, and recall r as the percentage of gold standard output

words that are correctly segmented by the decoder. The (balanced) F-measure is 2pr/(p + r).

cws systems are evaluated using two types of tests. The closed tests require that the system is

trained only with a designated training corpus. Any extra knowledge is not allowed, including com-

mon surnames, Chinese and Arabic numbers, European letters, lexicons, part-of-speech, semantics

and so on. The open tests do not impose such restrictions.

Open tests measure a model’s capability to utilize extra information and domain knowledge,

which can lead to improved performance, but since this extra information is not standardized, direct

comparison between open test results is more difficult.

The convergence of the perceptron

In this experiment, the agenda size was set to 16 for both training and testing. Table 3.2 shows

the precision, recall and F-measure for the development set after 1 to 10 training iterations, as well

as the number of mistakes made in each iteration. Here a mistake refers to a sentence with any

incorrectly segmented word. The accuracy curves by different numbers of training iterations for

both the non-averaged and averaged perceptron are given in Figure 3.3.
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Figure 3.3: The accuracy curves of the averaged and non-averaged perceptron algorithms

The number of mistakes made in each iteration decreases when the number of training iteration

increases, reflecting the convergence of the learning algorithm. The averaged perceptron improves

the segmentation accuracy at each iteration, compared with the non-averaged perceptron. The

accuracy curve was used to fix the number of training iterations at 6 for the remaining experiments.

The influence of agenda size

Reducing the agenda size increases the decoding speed, but it could cause loss of accuracy by elim-

inating potentially good candidates. The agenda size also affects the training time, and resulting

model, since the perceptron training algorithm uses the decoder output to adjust the model param-

eters. Table 3.3 shows the accuracies with ten different agenda sizes, each used for both training

and testing.

Accuracy does not increase beyond B = 16. Moreover, the accuracy is quite competitive even

with B as low as 4. This reflects the fact that the best segmentation is often within the current

top few candidates in the agenda.4 Since the training and testing time generally increases as N

increases, the agenda size is fixed to 16 for the remaining experiments.

4The optimization in Section 3.2.3, which has a pruning effect, was applied to this experiment. Similar observations
were made in separate experiments without such optimization.
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Features F Features F
All 93.38 w/o 1 92.88
w/o 2 93.36 w/o 3, 4, 5 92.72
w/o 6 93.13 w/o 7 93.13
w/o 8 93.14 w/o 9, 10 93.31
w/o 11, 12 93.38 w/o 13, 14 93.23

Table 3.4: The influence of features
F: F-measure. Feature numbers are from Table 3.1

The influence of particular features

Our cws model is highly dependent upon word information. Most of the features in Table 3.1 are

related to words. Table 3.4 shows the accuracy with various features from the model removed.

Among the features, vocabulary words (feature 1) and length prediction by characters (features 3

to 5) showed strong influence on the accuracy, while word bigrams (feature 2) and special characters

in them (features 11 and 12) showed comparatively weak influence.

Closed test on the sighan bakeoffs

Four training and testing corpora were used in the first bakeoff (Sproat and Emerson, 2003), including

the Academia Sinica Corpus (AS), the Penn Chinese Treebank Corpus (CTB), the Hong Kong City

University Corpus (CU) and the Peking University Corpus (PU). However, because the testing data

from the Penn Chinese Treebank Corpus is currently unavailable, we excluded this corpus. The

corpora are encoded in GB (PU, CTB) and BIG5 (AS, CU), which use different ways to encode the

same character into machine bytes. In order to test them consistently in our system, they are all

converted to UTF8 encoding without loss of information.

The results are shown in Table 3.5. We follow the format from Peng et al. (2004). Each row

represents a cws model. The first eight rows represent models from Sproat and Emerson (2003) that

participated in at least one closed test from the table, row “Peng” represents the crf model from

Peng et al. (2004), and the last row represents our model. The first three columns represent tests

with the AS, CU and PU corpora, respectively. The best score in each column is shown in bold.

The last two columns represent the average accuracy of each model over the tests it participated in

(SAV), and our average over the same tests (OAV), respectively. For each row the best average is

shown in bold.
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AS CU PU SAV OAV
S01 93.8 90.1 95.1 93.0 95.0
S04 93.9 93.9 94.0
S05 94.2 89.4 91.8 95.3
S06 94.5 92.4 92.4 93.1 95.0
S08 90.4 93.6 92.0 94.3
S09 96.1 94.6 95.4 95.3
S10 94.7 94.7 94.0
S12 95.9 91.6 93.8 95.6
Peng 95.6 92.8 94.1 94.2 95.0

96.5 94.6 94.0

Table 3.5: The accuracies over the first sighan bakeoff data

AS CU PK MR SAV OAV
S14 94.7 94.3 95.0 96.4 95.1 95.4
S15b 95.2 94.1 94.1 95.8 94.8 95.4
S27 94.5 94.0 95.0 96.0 94.9 95.4
Zh-a 94.7 94.6 94.5 96.4 95.1 95.4
Zh-b 95.1 95.1 95.1 97.1 95.6 95.4

94.6 95.1 94.5 97.2

Table 3.6: The accuracies over the second sighan bakeoff data

We achieved the best accuracy in two of the three corpora, and better overall accuracy than the

majority of the other models. The average score of system S10 is 0.7% higher than our model, but

S10 only participated in the PU test.

Four training and testing corpora were used in the second bakeoff (Emerson, 2005), including the

Academia Sinica corpus (AS), the Hong Kong City University Corpus (CU), the Peking University

Corpus (PK) and the Microsoft Research Corpus (MR). Different encodings were provided, and the

UTF8 data for all four corpora were used in this experiment.

Following the format of Table 3.5, the results for this bakeoff are shown in Table 3.6. We chose

the three models that achieved at least one best score in the closed tests from Emerson (2005), as

well as the sub-word-based model of Zhang et al. (2006) for comparison. Row “Zh-a” and “Zh-

b” represent the pure sub-word crf model and the confidence-based combination of the crf and

rule-based models from Zhang et al. (2006), respectively. The last row represents our model.

Again, our model achieved better overall accuracy than the majority of the other models. One

system to achieve comparable accuracy with our system is Zh-b, which improves upon the sub-word

crf model (Zh-a) by combining it with an independent dictionary-based submodel and improving
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the accuracy of known words. In comparison, our system is based on a single perceptron model.

In summary, closed tests for both the first and the second bakeoff showed competitive results

for our system compared with the best results in the literature. Our word-based system achieved

the best F-measures over the AS (96.5%) and CU (94.6%) corpora in the first bakeoff, and the CU

(95.1%) and MR (97.2%) corpora in the second bakeoff.

3.3 Further studies of word-based segmentation

The previous section described the word segmentor we proposed in Zhang and Clark (2007). The

main contribution of the segmentor is the use of a word-based, global linear model, which allows

arbitrary features to be defined for cws.

There are alternative configurations for the word-based segmentor. For example, structural svm

or mira can be used as alternative learning algorithms to the generalized perceptron, and dynamic

programming can be applied rather than beam-search. In this section, we study more details of the

various parts of the word segmentor, giving more discussion and experiments related to the learning

algorithm in Section 3.3.1, and the decoding algorithm in Section 3.3.2.

Open knowledge that is not in the training data has been shown to improve the accuracy of

cws. Such knowledge includes information about special characters (Ng and Low, 2004), character

clustering information (Shi and Wang, 2007; Liang, 2005) and character mutual information (Liang,

2005). We study a method to include rule-based knowledge in the statistical system using the

perceptron algorithm in Section 3.3.3.

3.3.1 The training algorithm

We used the averaged perceptron to train the parameters for the word-based model. During training,

negative features (i.e. those features that occur only in the incorrect parser outputs, but not in the

training data) are built into the model. We did further experiments to observe the effect of negative

features, by removing them from the system. The observation was that negative features had a tiny

positive impact on the accuracies. Because the number of features for the cws task is comparatively

small, we conclude that negative features should be used.
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Bakeoff 1 Bakeoff 2
AS CU PU AS CU PU MS Avg

M Ac It Ac It Ac It Ac It Ac It Ac It Ac It Ac It
1 96.5 6 94.6 6 94.0 6 94.6 6 95.1 6 94.5 6 97.2 6 95.2 6
2 96.9 3 94.5 5 94.0 5 95.0 3 95.1 5 94.5 5 97.2 5 95.3 4
3a 96.9 4 94.5 5 94.2 8 95.0 4 95.1 9 94.6 8 97.2 5 95.4 6
3b 96.9 4 94.6 7 94.1 7 95.0 4 95.1 8 94.6 9 97.2 10 95.4 7

Table 3.7: A comparison of different methods to determine the number of training iterations
M - method, Ac - Accuracy, It - the number of iterations, Avg - Average

Method 1: Fix the number of training iterations according to development test
Method 2: Stop training when the number of errors is below 7.6% training data

Method 3a: Set aside one in every 10 sentences from the training data and draw the accuracy curve
Method 3b: Set aside the first 10% of the training data and draw the accuracy curve

Another approach to reduce the number of features is setting a frequency threshold, so that

only features with a frequency higher than the threshold are included in the system. Collins (2002)

experimented with a threshold value of 5, and showed that it had a negative impact on the accuracy.

We therefore did not set such a threshold.

In our previous experiments, the number of training iterations is fixed to 6 according to the devel-

opment test. An alternative way to decide the number of training iterations is to use the convergence

of the perceptron: when the number of incorrect outputs is small enough in a training iteration, we

stop the training process to prevent overfitting on the training data. Using this method, the number

of training iterations is adjusted flexibly according to different training data. Another alternative

method is to adjust the number of training iterations by experiment: instead of using a separate

set of development data, we split the training data into development training and testing sets, and

then find the best iteration number from the corresponding accuracy curve on the development data.

This method was used by Carreras et al. (2006) in their parsing model. The following subsection

gives details of our experiments comparing the effect of the above methods.

Deciding the number of training iterations

We compare the effect of different methods to decide the number of training iterations by using the

first and second international bakeoff data. The results are shown in Table 3.7. Method 1 is the

same method that was applied in our previous experiments. For method 2, we find a fixed ratio

between the number of training errors and the total number of training examples. When the number
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of training errors falls below this ratio in a training iteration, the training process is stopped. By

observation from the development test (Table 3.2 and Figure 3.3), this ratio is set to 288/3813 = 7.6%

(data from iteration 6). For method 3, 10% of the training examples are extracted from each dataset

as the development test examples. Two different ways of sampling are experimented. Method 3a

extracts one in every 10 training sentences, while method 3b takes the first 10% of the training

examples.

For each dataset, the highest accuracy and the smallest number of training iterations are high-

lighted with bold font. It can be seen from the table that both Method 2 and Method 3 performed

better than Method 1, while Method 3 achieved slightly higher accuracy than Method 2. The two

sampling methods for Method 3 gave almost identical results. The effect of both Method 1 and

Method 2 is dependent on a separate set of development data. In this experiment, Method 2 took

the smallest number of training iterations for every dataset.

As a conclusion, in order to decide the number of training iterations for different datasets, the

best choice for optimal accuracy is experimenting with the training data in each dataset separately

(Method 3). On the other hand, when there are many training and testing datasets, this method

requires much more experimental effort than using a separate set of development data (Method 1

and Method 2). When separate development data are used, the ratio of training errors (Method 2) is

more informative than the absolute iteration number (Method 1) to help estimate the best number

of training iterations for multiple sets of test data. It can be used as a time-saving alternative to

the optimal approach.

3.3.2 The decoding algorithm

In the word-based segmentor in Section 3.2, a single agenda (Figure 3.2) is used to limit the size

of the search space. The method showed reasonable accuracy with a small agenda size. However,

comparisons have been made only between different agenda sizes for the same decoder. In this

section, we compare the effect of different decoders.
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Input: raw sentence sent – a list of characters
Variables: candidate sentence item – a list of words

max word-length record maxlen
the list of agendas agendas

Initialization: agendas[0] = [“”]; agenda[i] = [], i 6= 0
Algorithm:

for index = 1 .. sent.length:
for start index = max(0..index−maxlen + 1):

word = sent[start index..index]
for item ∈ agendas[start index]:

item1 = item
item1.append(word)
agendas[index].insert(item1)
agendas[index].B best cutoff()

Outputs: agendas[sent.length].best item

Figure 3.4: The multiple beam decoding algorithm

Method Training time Decoding time
Beam 53 sec 8 sec
Multiple beam 353 sec 73 sec

Table 3.8: Speed comparison of the single and multiple beam decoders for the word segmentor

A decoder with multiple beams

We propose a multiple beam decoder as shown in Figure 3.4. In order to enlarge the search space, an

agenda is kept for each character in the input sentence, recording the best partial candidates ending

with the character. Like the single beam decoder, the input sentence is processed incrementally.

However, at each stage, partial sequence candidates are available at all previous characters. There-

fore, the decoder can examine all possible words ending with the current character. These possible

words are combined with the relevant partial candidates from the previous agendas to generate new

candidates, which are then inserted into the current agenda. The output of the decoder is the top

candidate in the last agenda, representing the best segmentation for the whole sentence. To improve

the running speed, a maximum word length record is kept to limit the length of candidate words.

We chose 16 for the size of each agenda, and used exactly the same features as shown in Table 3.1,

so that a direct comparison between the two decoders can be made. The training (one iteration)

and decoding time of the single-beam and multiple-beam search decoders are shown in Table 3.8.

As expected, the multiple beam decoder is slower.
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Figure 3.5: The perceptron convergence with the multiple beam decoder

Bakeoff 1 Bakeoff 2
AS CU PU AS CU PU MS Average

Beam 96.9 94.5 94.0 95.0 95.1 94.5 97.2 95.3
Multiple beam 97.0 94.4 94.5 95.1 95.1 94.4 97.2 95.4

Table 3.9: Accuracy comparison of the single and multiple beam decoders for the segmentor

The accuracies of the two decoders are compared using the standard training and testing data

from the international bakeoffs. Considering both the accuracy and the experimental effort, we use

Method 2 in Table 3.7 (the ratio of training errors) to determine the number of training iterations for

each dataset. The accuracy curve for the development data is shown in Figure 3.5. According to this

figure, we set the threshold ratio to be 204/3813 = 0.054 (the 7th iteration from the development

test).

Test results using the first and second international bakeoff data are shown in Table 3.9, following

the format of the previous sections. Compared to the single beam decoder, the multiple beam decoder

achieved higher accuracy with the AS and PU corpora in the first bakeoff, and the AS corpus in

the second bakeoff. However, it performs slightly worse with the CU corpus in the first bakeoff and

the PU corpus in the second bakeoff. The overall accuracy is slightly improved over the single beam

decoder.

In conclusion, the multiple beam decoder gave small improvements on the accuracies, but due

to the much larger search space, it is much slower than the single beam decoder. It provides an

alternative choice for the word segmentor. However, for the joint pos tagging problem in Chapter 4,
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a very large search space is inevitable. There the advantage of the multiple beam search method

will be shown clearly, for the single beam search method can not give comparable accuracy.

Dynamic programming

Given the feature set from Table 3.1, a dynamic programming decoder with O(n2) time complexity

can be implemented. The potential advantage of the dynamic programming decoding algorithm

over single-beam or multiple-beam search is that the search is exact. We used the same feature

templates and tested the accuracies of this decoder, but did not find significant improvement in

accuracy. In addition, the dynamic programming decoder ran much slower than the multiple-beam

search decoder. Therefore, we conclude that beam-search is a competitive choice in both speed and

accuracy for the word segmentor.

Discriminating full words and partial words during decoding

A potential limitation of the beam search decoding algorithm in Figure 3.2 is the simple scoring

mechanism for partial sequences, treating partial words equally as full words. Here a partial word

refers to a part of a full word. For example, “加拿大 (Canada)” is a full word, and “加” and “加

拿” are partial words from it. While “加拿” does not make any sense as a word, “加 (add)” can be

interpreted as a single-character word. At each processing stage, the decoder compares candidate

items ending with the same character, and keeps the B best according to the score. Since the last

word in a candidate can be a partial word such as “加拿”, it is possible for a potentially correct

candidate to be discarded from the agenda because of a low score from the partial ending word.

One solution to this problem is to take partial words and full words differently in score assign-

ments. In particular, full words are scored in exactly the same way as the original decoder (using

all feature templates from Table 3.1), while partial words are scored only according to the existing

information (feature template 7 from Table 3.1). Correspondingly, candidate items in the agenda

need to be classified into two types – full items and partial items, according to their ending words.

To give some heuristic about the potential of candidates, features are extracted from the current

sequence as well as the next character. Therefore, the features for a full item also include templates

6, 9 and 11 from the last word, and the features for a partial item also include template 7 from the
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Bakeoff 1 Bakeoff 2
AS CU PU AS CU PU MS Average

original 96.9 94.5 94.0 95.0 95.1 94.5 97.2 95.3
discriminating full/partial words 97.0 94.6 94.2 95.1 95.0 94.4 97.1 95.3

Table 3.10: Discriminating partial words and full words in the single beam decoder

Bakeoff 1 Bakeoff 2
AS CU PU AS CU PU MS Average

w/o knowledge 96.9 94.5 94.0 95.0 95.1 94.5 97.2 95.3
with knowledge 96.9 94.5 94.8 95.3 95.1 94.7 97.2 95.5

Table 3.11: Knowledge about English letters and Arabic numbers

last word.

The data from the first and second international bakeoffs are used to test the effect of the new

decoding algorithm. Method 2 in Table 3.7 was used to determine the number of training iterations.

By a development test, the ratio of training errors is set to 0.050. It can be seen from Table 3.10

that by discriminating full words and partial words, the accuracy increased for four out of the seven

datasets, while dropped for the rest. The averaged accuracy is slightly better than the original

decoding algorithm, but not significant.

3.3.3 Knowledge of English letters and Arabic numbers

The previous sections studied various aspects of the word-based segmentation model using closed-set

knowledge – knowledge from the training data. However, there are many sources of open knowledge

that can help segmentation. For example, knowledge about foreign letters, numbers and common

surnames have been widely used in word segmentation. Moreover, semantic knowledge has also been

applied to improve the accuracy (Shi and Wang, 2007). In this section, we explore the application

of specific knowledge to the word-based segmentation algorithm.

Foreign languages can be embedded in Chinese sentences, typical examples being English (or

European) letters and Arabic numbers. In news articles, for example, they are often used in original

name references, website links, technical terms, quoted speech, telephone numbers and IDs. From the

second international segmentation bakeoff, the proportions of sentences that contain English letters

and Arabic numbers in the four training datasets are 13861/708953 = 2.0% (Academia Sinica),

3096/53019 = 5.8% (Hong Kong City University), 1097/86959 = 1.3% (Microsoft Research) and
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517/43018 = 1.2% (Peking University), respectively.

The segmentation of foreign letters should follow rules from the original languages. For example,

English words are explicitly separated, and adjacent letters are never segmented. The same is true

for Arabic numbers. Consequently, knowledge about foreign letters can help a word segmentor to

treat them differently from Chinese characters, therefore improving the segmentation accuracy.

Knowledge of foreign letters can be built into features in a pure statistical system (Ng and Low,

2004). For example, tokens in an input sentence can be classified into different categories, including

Arabic numbers, Chinese characters and English letters. N -grams of such categories can then be

used as features in the word segmentor. However, because the linguistic rules for segmenting English

letters and Arabic numbers are very clear, it is more straightforward to build these rules into the

segmentor directly. While the processing of Chinese characters stays unchanged, foreign letters

are processed by rules separately. This method not only guarantees correct segmentation between

foreign letters, but also reduces the size of the statistical data.

In this section we add knowledge to the statistical word segmentor in Section 3.2.2 by using the

following rules:

(1) Adjoining English letters and Arabic numbers in the input sentence are not separated;

(2) Spaces between English words and Arabic numbers mark word boundaries.

The above rules can be incorporated into the statistical segmentor, by modifications to the

decoder. In particular, when an input sentence is processed, the rules are used to prune wrong can-

didates. Because the perceptron learning algorithm is based on the decoding process, the statistical

system will collect information for only the correctly segmented foreign words.

Table 3.11 shows the comparison with the pure statistical model. As can be seen from the table,

the use of knowledge and rules improves the accuracy for 3 out of 7 the datasets, giving an absolute

increase of 0.2% on the overall accuracy. It is worth noticing that in some of the datasets, spaces

between English letters are removed from the input, which may explain why rules did not help in

these cases.
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3.4 Conclusion and discussion

We proposed a word-based cws model as an alternative to the existing character-based tagging

models, which allows word information to be used as features. We built a word-based segmentor

using the discriminative perceptron learning algorithm and a beam-search decoder. Closed tests

using the first and second sighan cws bakeoff data demonstrated our system to be competitive

with the best in the literature.

Based on the word segmentor we built, we explored alternative decoding algorithms, different

configurations for training, and the ability to incorporate extra knowledge besides the training data.

These experiments showed the flexibility of word-based segmentation.

Our classification of character-based and word-based approaches is not strict. Character-based

systems can also make limited use of word information. For example, Ng and Low (2004) incorporate

full word information into a feature, and Zhang et al. (2006) combine a crf and a rule-based model.

Unlike the character-tagging models, the crf submodel assigns tags to sub-words, which include

single-character words and the most frequent multiple-character words from the training corpus.

Thus it can be seen as a step towards a word-based model. However, sub-words do not necessarily

contain full word information. Moreover, sub-word extraction is performed separately from feature

extraction.

In conclusion, we showed that a word-based segmentor can achieve comparable accuracy to the

best character-based segmentors. Moreover, the word-based approach is a direct solution to the cws

problem, having the generality to include any character-based features.



Chapter 4

Part-of-speech Tagging

Traditionally, Chinese word segmentation and pos-tagging are performed in a pipeline. The output

from the word segmentor is taken as the input for the pos-tagger. A disadvantage of pipelined

segmentation and pos-tagging is that pos-tag information, which is potentially useful for segmenta-

tion, is not used during the segmentation step. In addition, word segmentation errors are propagated

to the pos-tagger, leading to lower quality of the overall segmented and pos-tagged output. We

propose a global linear model that performs word segmentation and pos-tagging simultaneously,

and show that it outperforms a pipelined baseline significantly using the same feature templates. In

cross-validation tests using ctb, our joint segmentor and pos-tagger gave overall segmentation and

tagging accuracies that are comparable to the best reported in the literature.

4.1 Introduction and background

Parts-of-speech (pos) represent the basic lexical-grammatical information relating to words in a

sentence. The definition of pos depends on a specific language or grammar; common Chinese pos

include noun, verb, adjective, adverb, preposition, and measure word (Huang and Liao, 2002). The

set of pos used by this thesis is defined by the Penn Chinese Treebank (Xia, 2000), the training

data for the statistical models.

A pos-tagger assigns a part-of-speech tag to each word in the input sentence. Since pos-tagging is

59
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a typical sequence labeling problem, the hmm, memm and crf models introduced back in Chapter 2

can be applied directly to it, with the input words being the observation sequence and pos-tags

being the states.

Besides the standard labeling models, an early model for pos-tagging is the maximum entropy

tagger of Ratnaparkhi (1996). The Ratnaparkhi tagger calculates the conditional probability of each

pos-tag separately, based on a trigram me model. Features are extracted from the five-word window

with the current word at the middle and the three-tag window with the current tag at the end. The

Ratnaparkhi (1996) tagger can be seen as similar to an memm model, but with a wider range of

features.

More recent statistical pos-taggers have made improvements on the English Penn Treebank

data by using different statistical models, including the crf (Lafferty et al., 2001), the generalized

perceptron (Collins, 2002) and svm (Giménez and Màrquez, 2003).

Traditional pos-taggers process an input sentence from left to right, assuming that each pos-

tag is dependent only on its predecessors. However, sometimes it is easier to decide a pos-tag

when its successors have been given. The recent bidirectional pos-taggers (Toutanova et al., 2003;

Tsuruoka and Tsujii, 2005) make use of both left-to-right and the right-to-left pos dependencies for

pos-tagging. Instead of working from left to right, the Tsuruoka and Tsujii (2005) tagger assigns

pos-tags in a best-first order, tagging the word with the smallest pos ambiguity at each processing

stage, given the current contextual information. For example, initially when an input sentence is

given, no pos-tags are available in the sentence, and the first tag is assigned to the word with the

smallest pos ambiguity according to word information only. After a pos-tag is assigned, it provides

contextual information to its neighboring words on both sides. The tagging process is repeated until

all input words are tagged.

Shen et al. (2007) extended the idea of bidirectional pos-taggers further by developing a learning

algorithm that supports the best-first decoding process. Shen et al. (2007) applied a perceptron

training algorithm to guide a bidirectional beam-search decoder, and reported the current best

accuracy in pos-tagging on the Penn Treebank data using a single model.

The aforementioned pos-tagging algorithms assume that the input sentences have explicit word

boundaries, and therefore can be applied to Chinese only after word segmentation is performed.
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However, as discussed in the previous chapter, word segmentation is not a trivial task. State-of-

the-art word segmentors have 90% to 98% accuracy on standard training and testing data, and the

error rate significantly increases for out-of-domain data. Segmentation errors will propagate to the

pipelined pos-tagger, reducing the quality of pos-tagged outputs.

On the other hand, pos-information can be used to improve Chinese word segmentation. For

example, the pos + word pattern “number word” + “个 (a common measure word)” can help in

segmenting the character sequence “一个人” into the word sequence “一 (one) 个 (measure word)

人 (person)” instead of “一 (one)个人 (personal; adjective)”. Moreover, the comparatively rare pos

pattern “number word” + “number word” can help to prevent segmenting a long number word into

two words.

In this chapter, we study Chinese pos-tagging by considering word segmentation and pos-tagging

simultaneously. To avoid error propagation and make use of pos information in word segmentation,

segmentation and pos-tagging can be viewed as a single task: given an input sentence as a character

sequence, a joint segmentor and pos-tagger considers all possible segmented and tagged sequences,

and chooses the overall best output by using both segmentation and pos information. A major

challenge for such a joint system is the large search space. For an input sentence with n characters,

the number of possible output sequences is O(2n−1 ·T n), where T is the size of the tag set. Due to the

nature of the combined candidate items, decoding can be inefficient even with dynamic programming.

We propose a novel joint solution for Chinese word segmentation and pos-tagging. In order to

decode efficiently, a novel beam search algorithm is applied. We use a discriminative joint model to

score segmented and pos-tagged candidate outputs, where features are extracted from words and

pos-tags simultaneously, and trained consistently by a single generalized perceptron. In experiments

with the Chinese Treebank data, our joint system gave an error reduction of 14.6% in segmentation

accuracy and 12.2% in the overall segmentation and tagging accuracy, compared to the traditional

pipeline approach. In addition, our overall segmentation and pos-tagging accuracies are comparable

to the best in the literature, which exploit knowledge outside the training data, even though our

system is fully data-driven.

In the following sections, we give the details of the pipelined word segmentor and pos-tagger,

and the joint segmentor and pos-tagger, and report the experimental results. Most of the following
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1 word w
2 word bigram w1w2

3 single-character word w
4 a word of length l with starting character c
5 a word of length l with ending character c
6 space-separated characters c1 and c2

7 character bigram c1c2 in any word
8 the first / last characters c1 / c2 of any word
9 word w immediately before character c
10 character c immediately before word w
11 the starting characters c1 and c2 of two consecutive words
12 the ending characters c1 and c2 of two consecutive words
13 a word of length l with previous word w
14 a word of length l with next word w

Table 4.1: Feature templates for the baseline word segmentor

content has been previously published (Zhang and Clark, 2008a).

4.2 The baseline system

In this section, we describe the pipelined word segmentor and pos-tagger that serves as our baseline

system. We use baseline segmentor and baseline pos-tagger to refer to the word segmentor which does

only segmentation, and the pos-tagger which performs pos-tagging on segmented input sentences,

in the baseline system.

We use the word-based segmentor from Chapter 3 as the baseline segmentor, and implement a

perceptron pos-tagging system similar to the tagger from Collins (2002). Our baseline segmentor is

the same as that described in Section 3.2, and the feature templates are shown in Table 4.1 (repeated

from Table 3.1). The features are extracted from word bigrams, capturing word, word length and

character information in the context. Similarly to the last chapter, the word length features are

normalized. However, in contrast to the last chapter, the threshold for normalization is set to 15

according to development tests, and any word length larger than 15 is normalized to 15.

Our baseline pos-tagger is based on the perceptron model. Given a segmented input sentence x,

the tagged output yout(x) satisfies:

yout(x) = argmax
y∈GEN(x)

Score(y)
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1 tag t with word w
2 tag bigram t1t2
3 tag trigram t1t2t3
4 tag t followed by word w
5 word w followed by tag t
6 word w with tag t and previous character c
7 word w with tag t and next character c
8 tag t on single-character word w in character trigram c1wc2

9 tag t on a word starting with char c
10 tag t on a word ending with char c
11 tag t on a word containing char c (not the starting or ending character)
12 tag t on a word starting with char c0 and containing char c
13 tag t on a word ending with char c0 and containing char c
14 tag t on a word containing repeated char cc
15 tag t on a word starting with character category g
16 tag t on a word ending with character category g

Table 4.2: Feature templates for the baseline pos-tagger

where GEN(x) represents the set of possible outputs for x. The averaged perceptron learning algo-

rithm and beam-search are applied to the training and decoding, respectively.

We define a set of features for the baseline pos-tagger according to previous research on Chinese

pos-tagging, as shown in Table 4.2. The contextual information includes the pos-tag trigram ending

with the current tag, and the neighboring three-word window with the current word in the middle.

To reduce overfitting and increase the decoding speed, templates 4, 5, 6 and 7 only include words

with less than 3 characters. Like the baseline segmentor, the baseline tagger uses normalized word

length features.

Templates 15 and 16 in Table 4.2 are inspired by the CTBMorph feature templates of Tseng et

al. (2005), which gave the most accuracy improvement in their experiments. Here the category of a

character is the set of tags seen on the character during training. Other morphological features of

Tseng et al. (2005) are not used because they require extra web corpora besides the training data.

During training, the baseline pos-tagger stores special word-tag pairs into a tag dictionary (Rat-

naparkhi, 1996), which is used by the decoder to prune unlikely tags. For each word occurring more

than N times in the training data, the decoder can only assign a tag the word has been seen with

in the training data. This method led to improvement in the decoding speed as well as the output

accuracy for English pos-tagging (Ratnaparkhi, 1996). Besides tags for frequent words, our baseline

pos-tagger also uses the tag dictionary to store closed-set tags (Xia, 2000) – those associated only
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Inputs: training examples (xi, yi)
Initialization: set ~w = 0
Algorithm:

for t = 1..T , i = 1..N
calculate zi = segment tag(xi)
if zi 6= yi

~w = ~w + Φ(yi)− Φ(zi)
Outputs: ~w

Figure 4.1: The generalized perceptron learning algorithm for the joint segmentor and pos-tagger

with a limited number of Chinese words.

4.3 The joint segmentor and POS-tagger

We build the joint word segmentation and pos-tagging system using exactly the same source of

information as the baseline system, by applying the feature templates from the baseline word seg-

mentor and pos-tagger. No extra knowledge is used by the joint model. However, because word

segmentation and pos-tagging are performed simultaneously, pos information participates in word

segmentation.

4.3.1 Formulation of the joint model

We formulate joint word segmentation and pos-tagging as a single problem, which maps a raw

Chinese sentence to a segmented and pos tagged output. Given an input sentence x, the output

yout(x) satisfies:

yout(x) = argmax
y∈GEN(x)

Score(y)

where GEN(x) represents the set of possible outputs for x.

Score(y) is computed by a global linear model. Denoting the global feature vector for the tagged

sentence y by Φ(y), we have:

Score(y) = Φ(y) · ~w

where ~w is the parameter vector in the model. Each element in ~w gives a weight to its corresponding

element in Φ(y), which is the count of a particular feature over the whole sentence y. We calculate
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the ~w value by supervised learning, using the averaged perceptron algorithm given in Figure 4.1.1

This algorithm is similar to the perceptron algorithm given in Figure 2.5, except that zi is cal-

culated by the decoder output zi = segment tag(xi) instead of the exact highest scored output

zi = argmaxy∈GEN(xi)
Φ(y) · ~w, for the same reason as given in the last chapter.

We take the union of feature templates from the baseline segmentor (Table 4.1) and pos-tagger

(Table 4.2) as the feature templates for the joint system. All features are treated equally and

processed together according to the linear model, regardless of whether they are from the baseline

segmentor or tagger. In fact, most features from the baseline pos-tagger, when used in the joint

model, represent segmentation patterns as well. For example, the aforementioned pattern “number

word” + “个”, which is useful only for the pos “number word” in the baseline tagger, is also an

effective indicator of the segmentation of the two words (especially “个”) in the joint model.

4.3.2 The decoding algorithm

One of the main challenges for the joint segmentation and pos-tagging system is the decoding

algorithm. The speed and accuracy of the decoder is important for the perceptron learning algorithm,

but the system faces a very large search space of combined candidates. Given the linear model and

feature templates, efficient exact inference is difficult to achieve even with dynamic programming.

Experiments with the standard beam-search decoder described in Chapter 3, which was applied

to word segmentation, resulted in low accuracy. This beam search algorithm processes an input

sentence incrementally. At each stage, the incoming character is combined with existing partial

candidates in all possible ways to generate new partial candidates. An agenda is used to control the

search space, keeping only the B best partial candidates ending with the current character. The

algorithm is simple and efficient, with a linear time complexity of O(BTn) when applied to the joint

segmentation and tagging problem, where n is the size of input sentence, and T is the size of the tag

set. It worked well for word segmentation alone (Chapter 3), even with an agenda size as small as 4,

and a simple beam search algorithm also works well for pos-tagging (Ratnaparkhi, 1996). However,

when applied to the joint model, it resulted in a reduction in segmentation accuracy (compared to

the baseline segmentor) even with B as large as 1024.

1In order to provide a comparison for the perceptron algorithm we also tried svmstruct (Tsochantaridis et al.,
2004) for parameter estimation, but this training method was prohibitively slow with the freely available software.
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Input: raw sentence sent – a list of characters
Variables: candidate sentence item – a list of

(word, tag) pairs;
maximum word-length record
maxlen for each tag;
the agenda list agendas;
the tag dictionary tagdict;
start index for current word;
end index for current word

Initialization: agendas[0] = [“”],
agendas[i] = [] (i! = 0)

Algorithm:
for end index = 1 to sent.length:

foreach tag:
for start index =
max(1, end index−maxlen[tag] + 1)
to end index:

word = sent[start index..end index]
if (word, tag) consistent with tagdict:

for item ∈ agendas[start index− 1]:
item1 = item
item1.append((word,tag))
agendas[end index].insert(item1)

Outputs: agendas[sent.length].best item

Figure 4.2: The decoding algorithm for the joint word segmentor and pos-tagger

One possible cause of the poor performance of the standard beam search method is the combined

nature of the candidates in the search space. In the baseline pos-tagger, candidates in the beam are

tagged sequences ending with the current word, which can be compared directly with each other.

However, for the joint problem, candidates in the beam are segmented and tagged sequences up to

the current character, where the last word can be a complete word or a partial word. A problem

arises in whether to give pos-tags to incomplete words. If partial words are given pos-tags, it is

likely that some partial words are “justified” as complete words by the current pos information.

On the other hand, if partial words are not given pos-tag features, the correct segmentation for

long words can be lost during partial candidate comparison (since many short completed words with

pos-tags are likely to be preferred to a long incomplete word with no pos-tag features).2

Another possible cause is the exponential growth in the number of possible candidates with

2We experimented with both assigning pos features to partial words and omitting them; the latter method per-
formed better but both performed significantly worse than the multiple beam search method described below.



CHAPTER 4. PART-OF-SPEECH TAGGING 67

increasing sentence size. The number increases from O(T n) for the baseline pos-tagger to O(2n−1T n)

for the joint system. As a result, for an incremental decoding algorithm, the number of possible

candidates increases exponentially with the current word or character index. In the pos-tagging

problem, a new incoming word enlarges the number of possible candidates by a factor of T (the size

of the tag set). For the joint problem, however, the enlarging factor becomes 2T with each incoming

character. The speed of search space expansion is much faster, but the number of candidates is still

controlled by a single, fixed-size beam at any stage. If we assume that the beam is not large enough

for all the candidates at at each stage, then, from the newly generated candidates, the baseline

pos-tagger can keep 1/T for the next processing stage, while the joint model can keep only 1/2T ,

and has to discard the rest. Therefore, we can see that the chance for the overall best candidate to

fall out of the beam is largely increased. Since the search space growth is exponential, increasing

the fixed beam size is not effective in solving the problem.

To solve the above problems, we develop a multiple beam search algorithm, which compares

candidates only with complete tagged words, and enables the size of the search space to scale with

the input size. The algorithm is shown in Figure 4.2. In this decoder, an agenda is assigned to

each character in the input sentence, recording the B best segmented and tagged partial candidates

ending with the character. The input sentence is still processed incrementally. However, now when a

character is processed, existing partial candidates ending with any previous characters are available.

Therefore, the decoder enumerates all possible tagged words ending with the current character,

and combines each word with the partial candidates ending with its previous character. All input

characters are processed in the same way, and the final output is the best candidate in the final

agenda. The time complexity of the algorithm is O(WTBn), with W being the maximum word size,

T being the total number of pos-tags and n the number of characters in the input. It is also linear

in the input size. Moreover, the decoding algorithm gives reasonable accuracy with a small agenda

size of B = 16.

To further limit the search space, two optimizations are used. First, the maximum word length

for each tag is recorded and used by the decoder to prune unlikely candidates. Because the majority

of tags only apply to words with length 1 or 2, this method has a strong effect. Development tests

showed that it improves the speed significantly, while having a very small negative influence on the
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accuracy. Second, like the baseline pos-tagger, the tag dictionary is used for Chinese closed set tags

and the tags for frequent words. To words outside the tag dictionary, the decoder still tries to assign

every possible tag.

4.3.3 Online learning

Apart from features, the decoder maintains other types of information, including the tag dictionary,

the word frequency counts used when building the tag dictionary, the maximum word lengths by

tag, and the character categories. The above data can be collected by scanning the corpus before

training starts. However, in both the baseline tagger and the joint pos-tagger, they are updated

incrementally during the perceptron training process, consistent with online learning.3

The online updating of word frequencies, maximum word lengths and character categories is

straightforward. For the online updating of the tag dictionary, however, the decision for frequent

words must be made dynamically because the word frequencies keep changing. This is done by

caching the number of occurrences of the current most frequent word M , and taking all words

currently above the threshold M/5000+5 as frequent words. 5000 was chosen to control the number

of frequent words. The parameter 5 is used to force all tags to be assigned before a word is seen

more than 5 times.

4.4 Experiments

The Chinese Treebank 4 was used for the experiments. It was separated into two parts: ctb3 (420K

characters in 150K words / 10364 sentences) was used for the final 10-fold cross validation, and

the rest (240K characters in 150K words / 4798 sentences) was used as training and test data for

development.

The standard F-scores were used to measure both the word segmentation accuracy and the overall

segmentation and pos-tagging accuracy, where the overall accuracy is TF = 2pr/(p + r), with the

precision p being the percentage of correctly segmented and tagged words in the decoder output,

and the recall r being the percentage of gold-standard tagged words that are correctly identified by

3We took this approach because we wanted the whole training process to be online. However, for comparison
purposes, we also tried precomputing the above information before training and the difference in performance was
negligible.
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Figure 4.3: The convergence of the learning algorithm for the baseline segmentor
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Figure 4.4: The convergence of the learning algorithm for the baseline tagger

the decoder. For direct comparison with Ng and Low (2004), the pos-tagging accuracy was also

calculated by the percentage of correct tags on each character.

4.4.1 Development experiments

The accuracy curves for the baseline and joint models according to different numbers of training

iterations are shown in Figure 4.3, Figure 4.4 and Figure 4.5, respectively. These curves were used

to indicate the convergence of the perceptron and can be used to decide the number of training

iterations for the test. It should be noticed that the accuracies from Figure 4.4 and Figure 4.5 are

not comparable because gold-standard segmentation is used as the input for the baseline tagger

(Figure 4.4). According to the figures, the number of training iterations for the baseline segmentor,

pos-tagger, and the joint system are set to 8, 6, and 7, respectively for the remaining experiments.

There are many factors which can influence the accuracy of the joint model. Here we consider

the special character category features and the effect of the tag dictionary. The character category
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Figure 4.5: The convergence of the learning algorithm for the joint system

Tag Seg NN NR VV AD JJ CD
NN 20.47 – 0.78 4.80 0.67 2.49 0.04
NR 5.95 3.61 – 0.19 0.04 0.07 0
VV 12.13 6.51 0.11 – 0.93 0.56 0.04
AD 3.24 0.30 0 0.71 – 0.33 0.22
JJ 3.09 0.93 0.15 0.26 0.26 – 0.04
CD 1.08 0.04 0 0 0.07 0 –

Table 4.3: Error analysis for the joint model

features (templates 15 and 16 in Table 4.2) represent a Chinese character by all the tags associated

with the character in the training data. They have been shown to improve the accuracy of a Chinese

pos-tagger (Tseng et al., 2005). In the joint model, these features also represent segmentation

information, since they concern the starting and ending characters of a word. Development tests

showed that the overall tagging F-score of the joint model increased from 84.54% to 84.93% using

the character category features. In the development test, the use of the tag dictionary improves the

decoding speed of the joint model, reducing the decoding time from 416 seconds to 256 seconds. The

overall tagging accuracy also increased slightly, consistent with observations from pure pos-taggers

in the literature.

The error analysis for the development test is shown in Table 4.3. Here an error is counted
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when a pos-tagged word in the standard output is not produced by the decoder, due to incorrect

segmentation or tag assignment. Statistics about the six most frequently mistaken tags are shown

in the table, where each row presents the analysis of one tag from the standard output, and each

column gives a wrongly assigned value. The column “Seg” represents segmentation errors. Each

figure in the table shows the percentage of the corresponding error out of all the errors.

It can be seen from the table that NN-VV and VV-NN mistakes were the most commonly made

by the decoder, while NR-NN mistakes are also frequent. These three types of errors significantly

outnumber the rest, together contributing 14.92% of all the errors. Moreover, the most commonly

mistaken tags are NN and VV, while among the most frequent tags in the corpus, PU, DEG and

M had comparatively less errors. Lastly, segmentation errors contribute around half (51.47%) of all

the errors.

4.4.2 Test results

10-fold cross validation was performed to test the accuracy of the joint word segmentor and pos-

tagger, and to make comparisons with existing models in the literature. Following Ng and Low

(2004), we partitioned the sentences in ctb3, ordered by sentence ID, into 10 groups evenly. In the

nth test, the nth group was used as the testing data.

Table 4.4 shows the results for the cross validation tests, each row representing one test. As can

be seen from the table, the joint model outperforms the baseline system in each test.

Table 4.5 shows the overall accuracies of the baseline and joint systems, together with the relevant

models in the literature. The accuracy of each model is shown in a row, where “Ng” represents

the models from Ng and Low (2004) and “Shi” represents the models from Shi and Wang (2007).

Each accuracy measure is shown in a column, including the segmentation F-score (SF ), the overall

tagging F-score (TF ) and the tagging accuracy by characters (TA). As can be seen from the table,

our joint model achieved the largest improvement over the baseline, reducing the segmentation error

by 14.58% and the overall tagging error by 12.18%.

The overall tagging accuracy of our joint model was comparable to but less than the joint model

of Shi and Wang (2007). Despite the higher accuracy improvement from the baseline, the joint

system did not give higher overall accuracy. One likely reason is that Shi and Wang (2007) included



CHAPTER 4. PART-OF-SPEECH TAGGING 72

Baseline Joint
# SF TF TA SF TF TA
1 96.98 92.91 94.14 97.21 93.46 94.66
2 97.16 93.20 94.34 97.62 93.85 94.79
3 95.02 89.53 91.28 95.94 90.86 92.38
4 95.51 90.84 92.55 95.92 91.60 93.31
5 95.49 90.91 92.57 96.06 91.72 93.25
6 93.50 87.33 89.87 94.56 88.83 91.14
7 94.48 89.44 91.61 95.30 90.51 92.41
8 93.58 88.41 90.93 95.12 90.30 92.32
9 93.92 89.15 91.35 94.79 90.33 92.45
10 96.31 91.58 93.01 96.45 91.96 93.45
Av. 95.20 90.33 92.17 95.90 91.34 93.02

Table 4.4: The accuracies by 10-fold cross validation

SF – segmentation F-score,
TF – overall F-score,

TA – tagging accuracy by character.

Model SF TF TA
Baseline+ (Ng) 95.1 – 91.7
Joint+ (Ng) 95.2 – 91.9
Baseline+* (Shi) 95.85 91.67 –
Joint+* (Shi) 96.05 91.86 –
Baseline (ours) 95.20 90.33 92.17
Joint (ours) 95.90 91.34 93.02

Table 4.5: The comparison of overall accuracies by 10-fold cross validation using ctb

+ – knowledge about sepcial characters,

* – knowledge from semantic net outside ctb.

knowledge about special characters and semantic knowledge from web corpora (which may explain

the higher baseline accuracy), while our system is completely data-driven. However, the comparison

is indirect because our partitions of the ctb corpus are different. Shi and Wang (2007) also chunked

the sentences before doing 10-fold cross validation, but used an uneven split. We chose to follow Ng

and Low (2004) and split the sentences evenly to facilitate further comparison.

Compared with Ng and Low (2004), our baseline model gave slightly better accuracy, consistent

with our previous observations about the word segmentors in Chapter 3. Due to the large accuracy

gain from the baseline, our joint model performed much better.

In summary, when compared with existing joint word segmentation and pos-tagging systems in

the literature, our proposed model achieved the best accuracy boost from the pipelined baseline,
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and competitive overall accuracy.

4.5 Comparison with related work

Ng and Low (2004) and Shi and Wang (2007) were important earlier models for joint word segmenta-

tion and pos-tagging. Both models reduced the large search space by imposing strong restrictions on

the form of search candidates. In particular, Ng and Low (2004) used character-based pos-tagging,

which prevents some important pos-tagging features such as word + pos-tag; Shi and Wang (2007)

used an N -best reranking approach, which limits the influence of pos-tagging on segmentation to

the N -best list. In comparison, our joint model does not impose any hard limitations on the interac-

tion between segmentation and pos information.4 Fast decoding speed is achieved by using a novel

multiple-beam search algorithm.

Nakagawa and Uchimoto (2007) proposed a hybrid model for word segmentation and pos-tagging

using an hmm-based approach. Word information is used to process known-words, and character

information is used for unknown words in a similar way to Ng and Low (2004). In comparison, our

model handles character and word information simultaneously in a single perceptron model.

Different methods have been proposed to reduce error propagation between pipelined tasks, both

in general (Sutton et al., 2004; Daume III, 2006; Finkel et al., 2006) and for specific problems such as

language modeling and utterance classification (Saraclar and Roark, 2005) and labeling and chunking

(Shimizu and Haas, 2006). Though our model is built specifically for Chinese word segmentation

and pos-tagging, the idea of using the perceptron model to solve multiple tasks simultaneously can

be generalized to other tasks.

4.6 Conclusion and future work

We proposed a joint Chinese word segmentation and pos-tagging model, which achieved a consid-

erable reduction in error rate compared to a baseline two-stage system.

We used a single linear model for combined word segmentation and pos-tagging, and chose the

generalized perceptron algorithm for joint training, and beam search for efficient decoding. However,

4Apart from the beam search algorithm, we do impose some minor limitations on the search space by methods
such as the tag dictionary, but these can be seen as optional pruning methods for optimization.



CHAPTER 4. PART-OF-SPEECH TAGGING 74

the application of beam search was complicated by the size of the combined search space. Motivated

by the question of what are the comparable partial hypotheses in the space, we developed a novel

multiple beam search decoder which effectively explores the large search space. Similar techniques

can potentially be applied to other problems involving joint inference in nlp.

Other choices are available for the decoding of a joint linear model, such as exact inference

with dynamic programming, provided that the range of features allows efficient processing. The

baseline feature templates for Chinese segmentation and pos-tagging, when added together, make

exact inference for the proposed joint model prohibitively slow. However, the accuracy loss from the

beam decoder, as well as alternative decoding algorithms, are worth further exploration.

The joint system takes features only from the baseline segmentor and the baseline pos-tagger

to allow a fair comparison. There may be additional features that are particularly useful to the

joint system. Open features, such as knowledge of numbers and European letters, and relationships

from semantic networks (Shi and Wang, 2007), have been reported to improve the accuracy of

segmentation and pos-tagging. Therefore, given the flexibility of the feature-based linear model, an

obvious next step is the study of open features in the joint segmentor and pos-tagger.



Chapter 5

Phrase-Structure Parsing

A parser produces the structure of an input natural language sentence according to a particular

formal grammar. Common grammar formalisms used by parsers include context free grammar,

dependency grammar, lexical functional grammar, head-driven phrase structure grammar, categorial

grammar and tree adjoining grammar. We study parsing with a context free grammar in this chapter,

and with dependency grammar in Chapter 6.

Transition-based approaches have shown competitive performance on constituent and depen-

dency parsing of Chinese. State-of-the-art accuracies have been achieved by a deterministic shift-

reduce parsing model on parsing the Chinese Treebank 2 data. We propose a global discriminative

model based on the shift-reduce constituent parsing process, combined with a beam-search decoder,

obtaining competitive accuracies on ctb2. We also report the performance of the parser on ctb5

data, obtaining the highest scores in the literature for a dependency-based evaluation.

5.1 Introduction and background

The syntax of a language can be described in different ways. While traditional grammars are often

prescriptive or descriptive, nlp algorithms require formal grammars that give a strict definition of

syntactic structures. Important grammar formalisms studied in nlp include context free grammar

(cfg) (Chomsky, 1957; Collins, 1997), dependency grammar (McDonald et al., 2005a; Nivre et al.,

75
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2006), combinatory categorial grammar (ccg) (Steedman, 2000; Clark and Curran, 2007), lexical

functional grammar (Kaplan and Bresnan, 1982), link grammar (Sleator and Temperley, 1993) and

tree adjoining grammar (Schabes, 1992). Figures 5.1 and 5.2 give an illustration of context free

grammar and dependency grammar, respectively. Beause the left hand side of each production rule

represents a syntactic constituent in a cfg, cfg parsing is also referred to as constituent parsing.

We study parsing with context free grammar in this chapter, and dependency grammar in the

next chapter. We assume that the input for a parser is a segmented and pos-tagged sentence, though

a parser can make pos-tagging decisions simultaneously (Bikel, 2004).

5.1.1 Background on CFG parsing

Given an input sentence, a rule-based parser searches for a set of production rules that generates

its structure. There are often multiple ways to generate the same sentence, and it is very hard for

rule-based parsers to choose the best one. A statistical parser is capable of ambiguity resolution

by assigning scores to different possible parses, and choosing the highest scored one to output.

According to whether word information is used in the parsing model, statistical parsers can be

divided into lexicalized and unlexicalized types. Though the statistical approach has become the
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procedure Scan(index):
for each rule Rx → aindex:

Chart[index, index, Rx] = True

procedure Compose(start, end, middle):
for each rule Rx → RyRz:

if Chart[start, middle, Ry] == True
and Chart[middle + 1, end, Rz]:
Chart[start, end, Rx] = True

function CYK():
initialize Chart with each entry = False
for each index ∈ {1..n}:

Scan(index)
for each length ∈ {2..n}:

for each start ∈ {1..n− length + 1}:
for each middle ∈ {start..start + length− 1}:

Compose(start, start + length− 1, middle)
return Chart[1, n, Rstart]

Figure 5.3: An illustration of the cyk parser

dominant approach in the computational linguistics literature, many ideas and algorithms developed

for rule-based parsers are still used.

Rule-based parsing

The cyk (Cocke and Schwartz, 1970; Kasami, 1965; Younger, 1967) and the Earley (Earley, 1970)

algorithms are two important rule-based algorithms. Both use dynamic programming to build charts

for parsing.

The cyk (or cky) algorithm is a bottom-up parser that finds a set of possible parses by building a

chart. cyk works with the Chomsky normal form (cnf) of the cfg, which requires each production

rule to be either A → B C or A → α, where A, B and C are non-terminal symbols and α is

a terminal symbol. By restricting the form of production rules, cnf is used to ensure the cubic

computational complexity of the cyk algorithm.

Denote the input sentence as a1, ..., an, and the non-terminal symbols in a cnf as R1, ..., Rr

(the start symbol being Rstart). Each cnf production rule can be written either as Rx → ay or

as Rx → RyRz . The cyk algorithm is illustrated in Figure 5.3. It finds a possible parse tree by

building a compact chart of partial parse trees. The chart is an n by n by r table, where Chart[start,
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end, symbol] records a boolean value indicating whether the subsequence of the input sentence from

start to end can be generated from symbol. It is constructed by two bottom-up building actions:

“scan”, which builds a partial parse tree from a terminal symbol a, and “compose”, which builds

a partial parse tree from two non-terminals Ry and Rz. Because information about a partial parse

tree can be shared by all possible parses that contain it, it is computed only once and cached in

the corresponding chart entry for reuse. The chart-parsing idea from the cyk algorithm has wide

applications to parsing algorithms.

The Earley algorithm combines bottom-up search with top-down prediction. It processes input

sentences from the left to the right, storing different types of partial parses from the beginning of

the sentence to the current word in a chart. Three actions are used, including “predict”, which lists

possible non-terminals for the current word, “scan”, which matches the current word to a production

rule that generates it, and “complete”, which finishes predictions and moves to the next word. Unlike

the cyk algorithm, the Earley algorithm does not require the cfg to be in cnf.

Given an input sentence, a rule-based parser finds a parse tree according to the grammar, or

null when there are no parses. However, there can be often multiple parses for an input sentence,

and it is difficult for a rule-based parser to resolve ambiguities. A classical example of ambiguity for

English parsing is the prepositional phrase attachment (PP attachment) problem, which is illustrated

in Figure 5.4. In this example, it is ambiguous whether “with my hand” is attached to “touch” or

“man”, for both parse trees are syntactically correct. The ambiguity can only be resolved with

knowledge about the relationship between the words in the sentence. It is impossible for manual

rules to cover every case exhibiting this kind of ambiguity.

Statistical parsing

An important early model for statistical cfg parsing is the probabilistic context free grammar

(pcfg), which associates each production rule with a probability. pcfg is a generative model,

treating the production rules in a parse tree as independent of one another. Therefore, the probability

of a parse tree can be computed by the product of the probabilities of each production rule in it.

Denoting each production rule in a parse tree T for the sentence S with Li → Ri, the score of the
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Figure 5.4: An illustration of the PP attachment problem

parse tree T can be written as:

Score(T ) = P (T |S) =
P (T, S)

P (S)
∝ P (T, S) =

∏

i

P (Ri|Li)

Given the above score definition, a pcfg parser works by examining all possible parse trees for an

input sentence, and choosing the one with the highest probability.

A modified version of the cyk algorithm for pcfg parsing is shown in Figure 5.5. In contrast

to the cyk algorithm in Figure 5.3, which records in Chart[start, end, symbol] a boolean value

indicating whether symbol can generate the sub string from start to end, the cyk algorithm for
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procedure Scan(index):
for each rule Rx → aindex:

Chart[index, index, Rx] = P (aindex|Rx)

procedure Compose(start, end, mid):
for each rule Rx → RyRz:

Chart[start, end, Rx] = max (
Chart[start, end, Rx],
Chart[start, mid, Ry] ×
Chart[mid+1, end, Rz] × P (RyRz|Rx) )

function CYK():
initialize Chart with each entry = 0
for each index ∈ {1..n}:

Scan(index)
for each length ∈ {2..n}:

for each start ∈ {1..n− length + 1}:
for each mid ∈ {start..start + length− 1}:

Compose(start, start + length− 1, mid)
return Chart[1, n, Rstart]

Figure 5.5: An illustration of the cyk style parser for pcfg

pcfg parsing uses Chart[start, end, symbol] to record the probability score for symbol generating

the sub string from start to end. Correspondingly, the function CYK() returns a probability instead

of a boolean value. Real valued chart entries allow ambiguity resolution: when there are multiple

ways to build a partial parse, the pcfg parser chooses the most probable one in the chart. The

chart is built in the bottom-up direction, and the top chart entry corresponds to the most probable

parse.

The probabilities associated with production rules are standardly derived from annotated text

using maximum likelihood estimation, introduced back in Section 2.1.1. Suppose that there are 1000

production rules starting with symbol VP in the training corpus, among which 600 are VP→ V NP.

According to the maximum likelihood princple, the probability P (V NP |VP ) is 600/1000 = 0.6.

The manually annotated corpus for parser training is called a treebank.

The pcfg parser uses the probability to disambiguate different parse trees for the same sentence.

However, its power for ambiguity resolution is limited (Briscoe and Carroll, 1993). One of the

reasons is not using word information. For example, a pcfg parser will generate the same parse

trees for the sentences “I touched the man with my hand” and “I saw the man with my umbrella”,
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because both sentences have the same pos-tag sequence, and are identical to the parser.

Magerman (1995) included word information in a decision-tree based parser by lexicalizing con-

stituents with their head words. The Magerman parser builds a parse tree bottom-up by using a

set of actions, and computes the probability of the parse tree by the product of the probabilities of

the actions. The production rule, the head words, the pos of head words and position information

are extracted from each node and its surrounding nodes, and used as contextual information. The

parser uses a two-pass decoding algorithm to balance between time efficiency and search optimality.

Magerman’s parser was reported to give significant accuracy improvement over pcfg parsing by the

use of a lexicalized grammar.

Collins (1996) developed a dependency-based statistical cfg parser, which was much simpler

than the Magerman parser, and yet achieved comparable accuracy. Like the Magerman (1995)

parser, Collins’ parser is based on lexicalized cfg. It treats the probability of a parse tree as the

product of the probabilities of a set of baseNPs (a non-recursive noun phrase) and a set of lexical

dependencies. The use of baseNPs excludes dependencies within noun phrases from the parse trees,

thereby reducing the dependency ambiguity in the model. The parameters are estimated by relative

frequencies and the decoder is a cyk style chart parser.

Both Magerman (1995) and Collins (1996) compute the probability of a parse tree by the product

of basic components. However, neither gave theoretical justification to the probability computation.

Collins (1997) proposed three generative cfg parsing models, which can be seen as instances of

the generative models for the structural prediction problem in Section 2.1.1. The computation of

parse tree probabilities for these parsers is justified by the probability chain rule and independence

assumptions, and the parameter estimation is justified by mle.

Various probabilistic models have been proposed for statistical parsing since the Collins parser,

including the Charniak (2000) parser, which uses another generative model, and the Ratnaparkhi

(1999) parser, which is based on the maximum entropy theory. Having been successfully applied

to English parsing, probabilistic models were adapted to Chinese. Bikel and Chiang (2000) applied

two probabilistic English parsers to Chinese, with minor adjustments to the parameters. Levy and

Manning (2003) further studied the linguistic properties of the Chinese Treebank, and proposed a

generative probabilistic model for Chinese parsing that makes different independence assumptions
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from English. Bikel (2004) reimplemented the Collins parser and applied it to Chinese parsing

directly, with only changes to the head-finding rules. While the above work can be seen as adapta-

tions of the Collins parser, Luo (2003) and Fung et al. (2004) applied the maximum entropy parsing

method to Chinese parsing.

Discriminative models have been applied to statistical cfg parsing mainly in the form of rerank-

ing (Collins, 2000; McClosky et al., 2006; Huang, 2008), which finds the best parse from a list of

best outputs of a baseline parser by using discriminative features. The current best accuracies for

English Penn Treebank parsing are achieved by discriminative reranking. However, full discrimina-

tive parsing models such as Collins and Roark (2004) gave lower accuracies than the best generative

models, and competitive accuracies are reached only by incorporating a generative baseline into the

discriminative parser.

All the previously mentioned cfg parsers work on parse trees directly, searching for the highest

scored parse among possible candidates. An alternative statistical approach is transition-based

parsing, which associates scores with each decision in the parsing process, selecting the parse which

is built by the highest scoring sequence of decisions (Briscoe and Carroll, 1993). The parsing

algorithm is typically some form of bottom-up shift-reduce algorithm, so that scores are associated

with actions such as shift and reduce. One advantage of this approach is that the parsing can be

highly efficient, for example by pursuing a greedy strategy in which a single action is chosen at each

decision point.

For English constituent-based parsing using the Penn Treebank, the best performing transition-

based parser lags behind the current state-of-the-art (Sagae and Lavie, 2005). However, for con-

stituent parsing using the Chinese Treebank, Wang et al. (2006) have shown that a shift-reduce

parser can give competitive accuracy scores together with high speeds, by using an svm to make a

single decision at each point in the parsing process.

5.1.2 Introduction to our Chinese constituent parser

There are two deficiencies in Wang et al. (2006)’s approach. One, the greedy nature of the algorithm

means that errors can be made by committing to a parse decision too early; and two, the local

nature of the classification models means that the parser may make decisions which are not globally
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optimal. In this chapter we describe a global discriminative model for Chinese shift-reduce parsing,

combined with beam search, thereby addressing the weaknesses of the Wang et al. approach. The

parser still operates in linear time, but use of beam search allows the parser to recover from errors

made by a greedy search. We use a generalized perceptron model defined over a complete sequence

of transition-based actions, so that the perceptron algorithm learns weights in the context of a

complete parse.

The contributions of this chapter are as follows. First, we define a global discriminative model

for Chinese constituent-based parsing, continuing recent work in this area which has focused on

English (Clark and Curran, 2007; Carreras et al., 2008; Finkel et al., 2008). Second, we show

how such a model can be applied to shift-reduce parsing and combined with beam search, resulting

in an accurate linear-time parser. Using ctb2, our model achieved Parseval F-scores competitive

with the current state-of-the-art for Chinese parsing. We also present accuracy scores for the much

larger ctb5, using both a constituent-based and dependency-based evaluation. The scores for the

dependency-based evaluation were higher than the state-of-the-art dependency parsers for the ctb5

data. Most of the content in the rest of the chapter has been published (Zhang and Clark, 2009).

5.2 The shift-reduce parsing process

The shift-reduce parsing process used by our beam-search decoder is based on the greedy shift-reduce

parsers of Sagae and Lavie (2005) and Wang et al. (2006). The process assumes binary-branching

trees; section 5.2.1 explains how these are obtained from the arbitrary-branching trees in the Chinese

Treebank.

The input is assumed to be segmented and pos-tagged, and the word-pos pairs waiting to be

processed are stored in a queue. A stack holds the partial parse trees that are built during the

parsing process. A parse state is defined as a 〈stack,queue〉 pair. Parsing actions, including shift

and various kinds of reduce, define functions from states to states by shifting word-pos pairs onto

the stack and building partial parse trees.

The actions used by the parser are:

• shift, which pushes the next word-pos pair in the queue onto the stack;
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• reduce–unary–X, which makes a new unary-branching node with label X; the stack is popped

and the popped node becomes the child of the new node; the new node is pushed onto the

stack;

• reduce–binary–{L/R}–X, which makes a new binary-branching node with label X; the stack

is popped twice, with the first popped node becoming the right child of the new node and the

second popped node becoming the left child; the new node is pushed onto the stack;

• terminate, which pops the root node off the stack and ends parsing.12

The trees built by the parser are lexicalized. The left (L) and right (R) versions of the reduce-

binary rules indicate whether the head of the new node is to be taken from the left or right child.

Note also that, since the parser is building binary trees, the X label in the reduce rules can be

one of the temporary constituent labels, such as NP∗, which are needed for the binarization process

described in Section 5.2.1. Hence the number of left and right binary reduce rules is the number of

constituent labels in the binarized grammar.

Wang et al. (2006) give a detailed example showing how a segmented and pos-tagged sentence

can be incrementally processed using the shift-reduce actions to produce a binary tree. We show

this example in Figure 5.6.

5.2.1 The binarization process

The algorithm in Figure 5.7 is used to map ctb trees into binarized trees, which are required by

the shift-reduce parsing process. For any tree node with more than two child nodes, the algorithm

works by first finding the head node, and then processing its right-hand-side and left-hand-side,

respectively. Y = X1..Xm represents a tree node Y with child nodes X1...Xm(m ≥ 1).

The label of the newly generated node Y ∗ is based on the constituent label of the original node

Y , but marked with an asterisk. Hence binarization enlarges the set of constituent labels. We call

1Sagae and Lavie (2005) and Wang et al. (2006) only used the first three transition actions, setting the final state
as all incoming words having been processed, and the stack containing only one node. However, there are a small
number of sentences (14 out of 3475 from the training data) that have unary-branching roots. For these sentences,
Wang’s parser will terminate immediately after a root is found, and therefore fail to produce unary-branching roots.
We define a separate action to terminate parsing, allowing unary-reduce actions to be applied to roots.

2The effect of the terminate action on the parsing accuracy is empirical. On the one hand, it allows unary-
branching roots to be produced, enabling more sentences to be parsed correctly. On the other hand, it enlarges the
set of transition actions, and thereby enlarges the search space. In our development experiments, we did not find
consistent accuracy improvements by introducing this extra action.
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Figure 5.6: An example shift-reduce constituent parsing process

the constituents marked with ∗ temporary constituents. The binarization process is reversible, in

that output from the shift-reduce parser can be unbinarized into ctb format, which is required for

evaluation.
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for node Y = X1..Xm ∈ T :
if m > 2 :

find the head node Xk(1 ≤ k ≤ m) of Y
m′ = m
while m′ > k and m′ > 2 :

new node Y ∗ = X1..Xm′−1

Y ← Y ∗Xm′

m′ = m′ − 1
n′ = 1
while n′ < k and k − n′ > 1 :

new node Y ∗ = Xn′ ..Xk

Y ← Xn′Y ∗

n′ = n′ + 1

Figure 5.7: the binarization algorithm with input T

5.2.2 Restrictions on the sequence of actions

Not all sequences of actions produce valid binarized trees. In the deterministic parser of Wang et al.

(2006), the highest scoring action predicted by the classifier may prevent a valid binary tree from

being built. In this case, Wang et al. simply return a partial parse consisting of all the subtrees on

the stack.

In our parser a set of restrictions is applied which guarantees a valid parse tree. For example,

two simple restrictions are that a shift action can only be applied if the queue of incoming words

is non-empty, and the binary reduce actions can only be performed if the stack contains at least

two nodes. Some of the restrictions are more complex than this; the full set is listed below. The

restriction on the number of consecutive unary rule applications is taken from Sagae and Lavie

(2005); it prevents infinite running of the parser by repetitive use of unary reduce actions, and

ensures linear time complexity in the length of the sentence.

• the shift action can only be performed when the queue of incoming words is not empty;

• when the node on top of the stack is temporary and its head word is from the right child, no

shift action can be performed;

• the unary reduce actions can be performed only when the stack is not empty;

• a unary reduce with the same constituent label (Y → Y ) is not allowed;

• no more than three unary reduce actions can be performed consecutively;

• the binary reduce actions can only be performed when the stack contains at least two nodes,
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Variables: state item item = (S, Q), where
S is stack and Q is incoming queue;
the agenda agenda;
list of state items next;

Algorithm:
for item ∈ agenda:

if item.score = agenda.bestScore and
item.isFinished:
rval = item
break

next = []
for move ∈ item.legalMoves:

next.push(item.TakeAction(move))
agenda = next.getBBest()

Outputs: rval

Figure 5.8: the beam-search decoding algorithm for the constituent parser

with at least one of the two nodes on top of stack (with R being the topmost and L being the

second) being non-temporary;

• if L is temporary with label X∗, the resulting node must be labeled X or X∗ and left-headed

(i.e. to take the head word from L); similar restrictions apply when R is temporary;

• when the incoming queue is empty and the stack contains only two nodes, binary reduce can

be applied only if the resulting node is non-temporary;

• when the stack contains only two nodes, temporary resulting nodes from binary reduce must

be left-headed;

• when the queue is empty and the stack contains more than two nodes, with the third node

from the top being temporary, binary reduce can be applied only if the resulting node is

non-temporary;

• when the stack contains more than two nodes, with the third node from the top being tempo-

rary, temporary resulting nodes from binary reduce must be left-headed;

• the terminate action can be performed when the queue is empty, and the stack size is one.

5.3 Decoding with beam search

Our incremental decoder is based on the shift-reduce parsing process described in Section 5.2. We

apply beam-search, keeping the B highest scoring state items in an agenda during the parsing
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Inputs: training examples (xi, yi)
Initialization: set ~w = 0
Algorithm:

for t = 1..T , i = 1..N :
zi = parse(xi, ~w)
if zi 6= yi:

~w = ~w + Φ(yi)− Φ(zi)
Outputs: ~w

Figure 5.9: the perceptron learning algorithm for the constituent parser

process. The agenda is initialized with a state item containing the starting state, i.e. an empty

stack and a queue consisting of all word-pos pairs from the sentence.

At each stage in the decoding process, existing items from the agenda are progressed by applying

legal parsing actions. From all newly generated state items, the B highest scoring are put back on

the agenda. The decoding process is terminated when the highest scored state item in the agenda

reaches the final state. If multiple state items have the same highest score, parsing terminates if any

of them are finished. The algorithm is shown in Figure 5.8.

5.4 Model and learning algorithm

We use a linear model to score state items. Recall that a parser state is a 〈stack,queue〉 pair, with

the stack holding subtrees and the queue holding incoming words waiting to be processed. The score

for state item Y is defined by:

Score(Y ) = ~w · Φ(Y ) =
∑

i

λi fi(Y )

where Φ(Y ) is the global feature vector from Y , and ~w is the weight vector defined by the model.

Each element from Φ(Y ) represents the global count of a particular feature from Y . The feature

set consists of a large number of features which pick out various configurations from the stack and

queue, based on the words and subtrees in the state item. The features are described in Section 5.4.1.

The weight values are set using the generalized perceptron algorithm, described in Chapter 2.

The perceptron algorithm is shown in Figure 5.9. As before, it is slightly different from the per-

ceptron algorithm in Figure 2.5 in Chapter 2 in that zi is computed from the parse function, instead
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Description Feature templates
Unigrams S0tc, S0wc, S1tc, S1wc,

S2tc, S2wc, S3tc, S3wc,

N0wt, N1wt, N2wt, N3wt,

S0lwc, S0rwc, S0uwc,

S1lwc, S1rwc, S1uwc,

Bigrams S0wS1w, S0wS1c, S0cS1w, S0cS1c,

S0wN0w, S0wN0t, S0cN0w, S0cN0t,

N0wN1w, N0wN1t, N0tN1w, N0tN1t

S1wN0w, S1wN0t, S1cN0w, S1cN0t,

Trigrams S0cS1cS2c, S0wS1cS2c,

S0cS1wS2c, S0cS1cS2w,

S0cS1cN0t, S0wS1cN0t,

S0cS1wN0t, S0cS1cN0w

Bracket S0wb, S0cb

S0wS1cb, S0cS1wb, S0cS1cb

S0wN0tb, S0cN0wb, S0cN0tb

Separator S0wp, S0wcp, S0wq, S0wcq,

S1wp, S1wcp, S1wq, S1wcq

S0cS1cp, S0cS1cq

Table 5.1: Feature templates concerning actions

of being defined as the highest scored candidate. The parse function in our parser is implemented

using beam-search, which is approximate. In order to avoid overfitting we used the averaged version

of this algorithm.

We also apply the early update modification from Collins and Roark (2004). If the agenda, at

any point during the decoding process, does not contain the correct partial parse, it is not possible

for the decoder to produce the correct output. In this case, decoding is stopped early and the weight

values are updated using the highest scoring partial parse on the agenda.

5.4.1 Feature set

Table 5.1 shows the set of feature templates for the model. Individual features are generated from

these templates by first instantiating a template with particular labels, words and tags, and then

pairing the instantiated template with a particular action. In the table, the symbols S0, S1, S2,

and S3 represent the top four nodes on the stack, and the symbols N0, N1, N2 and N3 represent

the first four words in the incoming queue. S0L, S0R and S0U represent the left and right child

for binary branching S0, and the single child for unary branching S0, respectively; w represents the
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lexical head token for a node; c represents the label for a node. When the corresponding node is a

terminal, c represents its pos-tag, while when the corresponding node is non-terminal, c represents

its constituent label; t represents the pos-tag for a word.

The context S0, S1, S2, S3 and N0, N1, N2, N3 for the feature templates is taken from Wang et

al. (2006). However, Wang et al. (2006) used a polynomial kernel function with an svm and did not

manually create feature combinations. Since we used the linear perceptron algorithm we manually

combined Unigram features into Bigram and Trigram features.

The “Bracket” row shows bracket-related features, which were inspired by Wang et al. (2006).

Here brackets refer to left brackets including “（”, ““” and “《” and right brackets including “）”,

“”” and “》”. In the table, b represents the matching status of the last left bracket (if any) on the

stack. It takes three different values: 1 (no matching right bracket has been pushed onto stack), 2

(a matching right bracket has been pushed onto stack) and 3 (a matching right bracket has been

pushed onto stack, but then popped off).

The “Separator” row shows features that include one of the separator punctuations (i.e. “，”,

“。”, “、” and “；”) between the head words of S0 and S1. These templates apply only when

the stack contains at least two nodes; p represents a separator punctuation symbol. Each unique

separator punctuation between S0 and S1 is only counted once when generating the global feature

vector. q represents the count of any separator punctuation between S0 and S1.

Whenever an action is being considered at each point in the beam-search process, templates from

Table 5.1 are matched with the context defined by the parser state and combined with the action

to generate features.

Wang et al. (2006) used a range of other features, including rhythmic features of S0 and S1 (Sun

and Jurafsky, 2003), features from the most recently found node that is to the left or right of S0

and S1, the number of words and the number of punctuations in S0 and S1, the distance between

S0 and S1 and so on. We did not include these features in our parser, because they did not lead to

improved performance during development experiments.
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Constituent Rules
ADJP r ADJP JJ AD; r

ADVP r ADVP AD CS JJ NP PP P VA VV; r

CLP r CLP M NN NP; r

CP r CP IP VP; r

DNP r DEG DNP DEC QP; r

DP r M; l DP DT OD; l

DVP r DEV AD VP; r

FRAG r VV NR NN NT; r

IP r VP IP NP; r

LCP r LCP LC; r

LST r CD NP QP; r

NP r NP NN IP NR NT; r

NN r NP NN IP NR NT; r

PP l P PP; l

PRN l PU; l

QP r QP CLP CD; r

UCP l IP NP VP; l

VCD l VV VA VE; l

VP l VE VC VV VNV VPT VRD VSB

VCD VP; l

VPT l VA VV; l

VRD l VV VA; l

VSB r VV VE; r

default r

Table 5.2: Head-finding rules to extract dependency data from ctb

l – search from left to right; r – from right to left.

5.5 Experiments

The experiments were performed using the Chinese Treebank 5 data. Standard data preparation

was performed before the experiments: empty terminal nodes were removed; any non-terminal nodes

with no children were removed; any unary X → X nodes resulting from the previous steps were

collapsed into one X node.

The standard Chinese Treebank is not lexicalized, and the head-finding rules from Table 5.2 are

used to assign lexical heads to the Treebank data. Most of the head-finding rules are taken from

the work of Sun and Jurafsky (2004), while we added rules to handle NN and FRAG, and a default

rule to use the rightmost node as the head for constituents that are not listed.

For all experiments, we used the evalb tool3 for evaluation, and used labeled recall (LR),

3http://nlp.cs.nyu.edu/evalb/
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Figure 5.10: The influence of beam-size

labeled precision (LP ) and F1 score (which is the harmonic mean of LR and LP ) to measure

parsing accuracy.

5.5.1 The influence of beam-size

Figure 5.10 shows the accuracy curves using different beam-sizes for the decoder. The number of

training iterations is on the x-axis with F -score on the y-axis. The tests were performed using the

development test data and gold-standard pos-tags. The figure shows the benefit of using a beam

as opposed to a beam size of 1 corresponding to deterministic parsing, with comparatively little

accuracy gain being obtained beyond a beam size of 8. Hence we set the beam size to 16 for the rest

of the experiments.

5.5.2 Test results on CTB2

The experiments in this section were performed using ctb2 to allow comparison with previous

work.4 The data was split into training, development test and test sets, as shown in Table 5.3,

4We extracted this data from Chinese Treebank 5.
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Sections Sentences Words
Training 001–270 3484 84,873
Development 301–325 353 6,776
Test 271–300 348 7,980

Table 5.3: The standard split of ctb2 data

Model LR LP F1
Bikel Thesis 80.9% 84.5% 82.7%

Wang 2006 SVM 87.2% 88.3% 87.8%

Wang 2006 Stacked 88.3% 88.1% 88.2%

Our parser 89.4% 90.1% 89.8%

Table 5.4: Accuracies on ctb2 with gold-standard pos-tags

which is consistent with Wang et al. (2006) and earlier work. The tests were performed using both

gold-standard pos-tags and pos-tags automatically assigned by a pos-tagger. We used our own

implementation of the perceptron-based tagger of Collins (2002).

The results of various models measured using sentences with less than 40 words and using gold-

standard pos-tags are shown in Table 5.4. The rows represent the model of Bikel and Chiang (2000),

Bikel (2004), the svm and ensemble models of Wang et al. (2006), and our parser, respectively. The

accuracy of our parser is competitive using this test set.

The results of various models using automatically assigned pos-tags are shown in Table 5.5. The

rows in the table represent the models of Bikel and Chiang (2000), Levy and Manning (2003), Xiong

et al. (2005), Bikel (2004), Chiang and Bikel (2002), the svm model from Wang et al. (2006) and the

ensemble system from Wang et al. (2006), and our parser, respectively. Our parser gave comparable

accuracies to the svm and ensemble models from Wang et al. (2006). However, comparison with

Table 5.4 shows that our parser is more sensitive to pos-tagging errors than some of the other

models. One possible reason is that some of the other parsers, e.g. Bikel (2004), use the parser

model itself to resolve tagging ambiguities, whereas we rely on a pos tagger to accurately assign a

single tag to each word. In fact, for the Chinese data, pos tagging accuracy is not very high, with the

perceptron-based tagger achieving an accuracy of only 93%. The beam-search decoding framework

we use could accommodate joint parsing and tagging, although the use of features based on the

tags of incoming words complicates matters somewhat, since these features rely on tags having been
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≤ 40 words ≤ 100 words Unlimited

LR LP F1 POS LR LP F1 POS LR LP F1 POS

Bikel 2000 76.8% 77.8% 77.3% - 73.3% 74.6% 74.0% - - - - -
Levy 2003 79.2% 78.4% 78.8% - - - - - - - - -
Xiong 2005 78.7% 80.1% 79.4% - - - - - - - - -
Bikel Thesis 78.0% 81.2% 79.6% - 74.4% 78.5% 76.4% - - - - -
Chiang 2002 78.8% 81.1% 79.9% - 75.2% 78.0% 76.6% - - - - -
Wang 2006 SVM 78.1% 81.1% 79.6% 92.5% 75.5% 78.5% 77.0% 92.2% 75.0% 78.0% 76.5% 92.1%
Wang 2006 Stacked 79.2% 81.1% 80.1% 92.5% 76.7% 78.4% 77.5% 92.2% 76.2% 78.0% 77.1% 92.1%
Our parser 80.2% 80.5% 80.4% 93.5% 76.5% 77.7% 77.1% 93.1% 76.1% 77.4% 76.7% 93.0%

Table 5.5: Accuracies on ctb2 with automatically assigned tags

Sections Sentences Words
Set A 001–270 3,484 84,873
Set B Set A; 400–699 6,567 161,893
Set C Set B; 700–931 9,707 236,051

Table 5.6: Training sets with different sizes

assigned to all words in a pre-processing step. We leave this problem for future work.

In a recent paper, Petrov and Klein (2007) reported LR and LP of 85.7% and 86.9% for sentences

with less than 40 words and 81.9% and 84.8% for all sentences on the ctb2 test set, respectively.

These results are significantly better than any model from Table 5.5. However, they used a training

set from ctb5 that is much larger than the standard ctb2 training set. Therefore we did not include

their scores in the table.

5.5.3 The effect of training data size

ctb2 is a relatively small corpus, and so we investigated the effect of adding more training data from

ctb5. Intuitively, more training data leads to higher parsing accuracy. By using an increased number

of training sentences (Table 5.6) from ctb5 with the same development test data (Table 5.3), we

draw the accuracy curves with different number of training iterations (Figure 5.11). This experiment

confirmed that the accuracy increases with the amount of training data.

Another motivation for us to use more training data is to reduce overfitting. We invested con-

siderable effort into feature engineering using ctb2, and found that a small variation of feature

templates (e.g. changing the feature template S0cS1c from Table 5.1 to S0tcS1tc) can lead to a
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Figure 5.11: The influence of the size of training data

Sections Sentences Words

Training
001–815;

16,118 437,859
1001–1136

Dev
886–931;

804 20,453
1148–1151

Test
816–885;

1,915 50,319
1137–1147

Table 5.7: Standard split of ctb5 data

≤ 40 words Unlimited

LR LP F1 POS LR LP F1 POS

87.9% 87.5% 87.7% 100% 86.9% 86.7% 86.8% 100%
80.2% 79.1% 79.6% 94.1% 78.6% 78.0% 78.3% 93.9%

Table 5.8: Accuracies on ctb5 using gold-standard and automatically assigned pos-tags

comparatively large change (up to 1%) in the accuracy. One possible reason for this variation is

the small size of the ctb2 training data. When performing experiments using the larger set B from

Table 5.6, we observed improved stability relative to small feature changes.

5.5.4 Test accuracy using CTB5

Table 5.8 presents the performance of the parser on ctb5. We adopt the data split from Duan et

al. (2007), as shown in Table 5.7. We used the same parser configurations as Section 5.5.2.
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Non-root Root Complete
Dependency parser 86.21% 76.26% 34.41%
Constituent parser 86.95% 79.19% 36.08%

Table 5.9: Comparison with state-of-the-art dependency parsing using ctb5 data

As an additional evaluation we also produced dependency output from the phrase-structure trees,

using the head-finding rules, so that we can also compare with dependency parsers. We compare

the dependencies read off our constituent parser using ctb5 data with our dependency parser. The

same measures are taken and the accuracies with gold-standard pos-tags are shown in Table 5.9.

Our constituent parser gave higher accuracy than the dependency parser described in Chapter 6. It

is interesting that our constituent parser uses many fewer feature templates than our dependency

parser, but the features include constituent information, which is unavailable to dependency parsers.

5.6 Comparison with related work

The incremental shift-reduce process used by our parser is based on the deterministic shift-reduce

parsing process of Wang et al. (2006). An important difference between the Wang et al. (2006)

parser and our parser is that our parser is based on a discriminative learning model with global

features, whilst the parser of Wang et al. (2006) is based on a local classifier that optimizes each

individual choice. Instead of greedy local decoding, we used beam search in the decoder.

Both our parser and and the parser of Collins and Roark (2004) use a global discriminative model

and an incremental parsing process. The major difference is the use of different incremental parsing

processes. To achieve better performance for Chinese parsing, our parser is based on the shift-reduce

parsing process. In addition, we did not include a generative baseline model in the discriminative

model, as did Collins and Roark (2004).

5.7 Conclusion

We developed an incremental shift-reduce parser that uses a global discriminative model and a

beam-search decoder, which achieved accuracy that is comparable or exceeds that previously re-

ported by others using the ctb2 data. We observed that more training data improves accuracy and
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stability, and reported performance of the parser using ctb5 data, obtaining the highest scores for

a dependency evaluation on that data in the literature.

Due to the comparatively low accuracy for Chinese pos-tagging, the parsing accuracy dropped

significantly using automatically assigned pos-tags than using gold-standard pos-tags. An obvious

area for future work is to investigate possible methods of joint pos-tagging and parsing under the

discriminative model and beam-search framework.



Chapter 6

Dependency Parsing

Dependency grammar is a syntactic framework which focuses on word-to-word dependencies, which

are useful for many nlp applications.

The two main approaches to statistical dependency parsing are graph-based and transition-based,

which adopt very different views of the problem, each having its own strengths and limitations. Given

an input sentence, graph-based parsers generate all possible candidates, scoring each of them, and

choose the highest scored one as the output. Since the search space is typically exponential in

the length of the sentence, graph-based parsers often apply dynamic programming to decode in

polynomial time. In contrast, transition-based parsers build the output by using a stack and a set

of transition-actions, such as shift and reduce. They are often deterministic and much faster. While

giving comparable accuracy to graph-based parsers for English, transition-based parsers have been

shown to be more accurate than graph-based parsers with Chinese data.

In this chapter we study both graph-based and transition-based approaches under the framework

of beam-search. By developing a graph-based and a transition-based dependency parser, we show

that a beam-search decoder is a competitive choice for both methods. More importantly, we propose

a beam-search-based parser that combines both graph-based and transition-based parsing into a

single system for training and decoding, showing that it outperforms both the pure graph-based and

the pure transition-based parsers. The combined system gave state-of-the-art accuracy of 86.2% on

the ctb data. When applied to the English Treebank, it also gave an accuracy of 92.1%, which is

98
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Figure 6.1: An example Chinese dependency tree

close to the best reported for purely supervised models in the literature.

6.1 Introduction and background

A dependency graph represents the syntactic structure of a sentence according to a dependency

grammar. As can be seen from Figure 6.1, a dependency graph consists of a set of vertices and

directed arcs. Each arc represents the relationship between a pair of words in the sentence; it points

from the head word to its modifier. For example, in the link between the word “我 (I)” and the word

“喜欢 (like)”, “喜欢 (like)” is the head word and “我 (I)” is the subject that modifies “喜欢 (like)”;

in the link between the word “喜欢 (like)” and the word “读书 (reading)”, “喜欢 (like)” is the head

word and “读书 (reading)” is the object that modifies “喜欢 (like)”. In a dependency graph, there

is only one word that does not modify any other word, and it is called the root of the sentence. The

other words each modify exactly one word. No word can modify itself. According to this definition,

a dependency graph can also be viewed as a tree. It is also called the dependency tree or parse tree.

A dependency tree is called projective if there are no crossing links when the sentence is repre-

sented linearly, in word order, with the links either all above or all below the word string. Though

almost all languages are non-projective to some degree, the majority of sentences in most languages

are projective. In the CoNLL shared tasks of dependency parsing (Buchholz and Marsi, 2006; Nivre

et al., 2007), for example, most datasets contain only 1% to 2% non-projective dependency links, and

projective dependency parsing models can give reasonable accuracy in these tasks (Carreras et al.,

2006). Eisner (1996), McDonald et al. (2005a) and Nivre et al. (2006) discribe important examples

of projective parsing models. Non-projective dependency trees can be transformed into projective

dependency trees by using a reversible procedure (Nivre et al., 2006). Direct non-projective parsing

models have also been proposed (McDonald et al., 2005b).
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Left span Right span Combined span Action
left-free left-free left-free N/A
left-free both-free left-free right-left cross link
left-free both-free right-free left-right cross link
left-free both-free both-free N/A
both-free right-free left-free right-left cross link
both-free right-free right-free left-right cross link
both-free right-free both-free N/A
right-free right-free right-free N/A

Table 6.1: Combination of different spans

Input: sent – tagged input with a special EOS(root)
Variables: spans left, right and combined

span start index start
span type type
span length length
the chart chart

Initialization:
length=2
for start = 1 .. sent.length:

for type in {left free, both free, right free}:
initialize(chart[start][length][type])

Algorithm:
for length = 3 .. sent.length:

for start = 0 .. sent.length− length:
for each possible left, right sub spans

compute the best chart[start][length][type]
according to the span combination rules

Outputs: chart[0][sent.length][right free]

Figure 6.2: An illustration of the Eisner decoder for unlabeled dependency parsing

A dependency tree without dependency labels such as “Subj” and “Obj” is unlabeled. The same

techniques used by unlabeled dependency parsers can be applied to labeled dependency parsing.

In an early paper on statistical parsing, Eisner (1996) gave three probabilistic models for depen-

dency parsing. Given an input sentence, the models find the most probable output by examining

all possible dependency trees. The probability of a candidate dependency tree is computed as the

product of smaller, independent probabilities, according to the three different models. An important

contribution of Eisner (1996) is an efficient dynamic programming decoding algorithm. As a pro-

jective dependency parser, the Eisner decoder has O(n3) time complexity, in contrast to the O(n5)
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complexity for the lexicalized cyk parsing algorithm. This is achieved by introducing a special

structure: the span. A span consists of more than one word and the corresponding pos tags and

dependency links. Moreover, all the words inside a span (i.e. not the left or right boundary) must

have a head word in the span. According to whether the boundary words are dependent on a head

within the span, spans can be classified into three types: left-free (only the right boundary word

being dependent on a head word), right-free (only the left boundary word being dependent on a

head word) and both-free (neither boundary words being dependent on head words). Two spans can

be combined into a larger span, according to the rules shown in Table 6.1, provided that (1) they

are adjacent and share the same boundary word; (2) the left span is minimal (i.e. not the simple

combination of two spans). According to these rules, a dependency tree can be built by recursive

span combinations. This process is illustrated by Figure 6.2. By recording the best for all spans

with the same type and words, the decoding algorithm performs dynamic programming in cubic

time.

MSTParser (McDonald et al., 2005a) used a discriminative model with the Eisner (1996) decoding

algorithm, computing the score of a parse tree by the weighted sum of global features. The mira

and the generalized perceptron learning algorithms introduced back in Chapter 2 were used to train

the feature weights.

MaltParser (Nivre et al., 2006) is a deterministic parser that builds the output parse by using a

stack and four transition actions. It adopts a very different view of the parsing problem. Instead of

searching for the output parse directly, it works by finding a sequence of transition actions to build

it. Greedy local search is used to build a parse tree in linear time.

McDonald and Nivre (2007) used the terms “graph-based” and “transition-based” to describe

the difference between MSTParser (McDonald and Pereira, 2006) and MaltParser (Nivre et al.,

2006). We use the same terms in this thesis, but do not differentiate graph-based and transition-

based parsers by whether dynamic programming or greedy search is applied to the decoder. A

graph-based parser can use an approximate decoder, and a transition-based parser is not necessarily

deterministic. We classify the two types of parser by the following two criteria:

1. whether or not the outputs are built by explicit transition-actions, such as shift and reduce;

2. whether it is dependency graphs or transition-actions that the parsing model assigns scores
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to.

MSTParser and MaltParser gave comparable accuracies in the CoNLL-X shared task (Buchholz

and Marsi, 2006). However, they make different types of errors, which can be seen as a reflection

of their theoretical differences (McDonald and Nivre, 2007). MSTParser has the strength of exact

inference, but its choice of features is constrained by the requirement of efficient dynamic program-

ming. MaltParser is deterministic, yet its comparatively larger feature range is an advantage. By

comparing the two, three interesting research questions arise: (1) how to increase the flexibility in

defining features for graph-based parsing; (2) how to add search to transition-based parsing; and (3)

how to combine the two parsing approaches so that the strengths of each are utilized.

We study these questions under the beam-search framework, building three parsers. First, using

the same features as MSTParser, we develop a graph-based parser to examine the accuracy loss from

beam-search compared to exact-search, and the accuracy gain from extra features that are hard to

encode for exact inference. Our conclusion is that beam-search is a competitive choice for graph-

based parsing. Second, using the transition actions from MaltParser, we build a transition-based

parser and show that search has a positive effect on its accuracy compared to deterministic parsing.

Finally, we show that by using a beam-search decoder, we are able to combine graph-based and

transition-based parsing into a single system, which significantly outperforms each baseline system.

In experiments with the ctb, the combined parser gave 86.2% accuracy, outperforming the previous

best reported by 1.8%.

In line with previous work on dependency parsing using the Penn Treebank, we focus on projective

dependency parsing. The main content in the remainder of this chapter has been published (Zhang

and Clark, 2008b).

6.2 The graph-based parser

Like MSTParser (McDonald et al., 2005a; McDonald and Pereira, 2006), we define the graph-based

parsing problem as finding the highest scoring tree y from all possible outputs given an input x:

yout(x) = argmax
y∈GEN(x)

Score(y)
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Variables: agenda – the beam for state items
item – partial parse tree
output – a set of output items
index, prev – word indexes

Input: x – pos-tagged input sentence.
Initialization: agenda = [“”]
Algorithm:
for index in 1..x.length():

clear output
for item in agenda:

// for all prev words that can be linked with
// the current word at index
prev = index− 1
while prev 6= 0: // while prev is valid

// add link making prev parent of index
newitem = item // duplicate item
newitem.link(prev, index) // modify
output.append(newitem) // record
// if prev does not have a parent word,
// add link making index parent of prev
if item.parent(prev) == 0:

item.link(index, prev) // modify
output.append(item) // record

prev = the index of the first word before
prev whose parent does not exist
or is on its left; 0 if no match

clear agenda
put the best items from output to agenda

Output: the best item in agenda

Figure 6.3: A beam-search decoder for graph-based dependency parsing, developed from the deter-
ministic Covington (2001) algorithm for projective parsing

where GEN(x) denotes the set of possible parses for the input x. We do not consider the method

of finding the argmax to be part of the definition of graph-based parsing, only the fact that the

dependency graph itself is being scored, and factored into scores attached to the dependency links.

The score of an output parse y is given by a linear model:

Score(y) = Φ(y) · ~w

where Φ(y) is the global feature vector from y and ~w is the weight vector of the model.

McDonald et al. (2005a) used both the generalized perceptron and mira learning algorithms,
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while we chose the perceptron learning algorithm to train the values of ~w. Like the previous chapters,

the perceptron algorithm for the parser is similar to the algorithm in Figure 2.5 in chapter 2,

except that the decoder output is used in place of the exact highest scored output, because we

use approximate beam-search. Again, we use the averaged weight values for the perceptron, which

reduces overfitting.

The biggest difference between MSTParser and our graph-based parser is the decoding algorithm.

While MSTParser used the Eisner (1996) decoder, which performed exact-inference, we use beam-

search. We built the beam-search decoder by extending the deterministic Covington algorithm

for projective dependency parsing (Covington, 2001). As shown in Figure 6.3, our decoder works

incrementally, building a state item (i.e. partial parse tree) word by word. Before decoding starts,

the agenda contains an empty sentence. At each processing stage, existing partial candidates from

the agenda are extended in all possible ways by adding dependency links between the current words

and its predecessors according to the Covington algorithm. After all items in the agenda have been

processed, the agenda is emptied and the best B among the newly generated candidates are put into

it. The same process is repeated until all input words are processed, and the best candidate output

from the agenda is taken as the final output. At each processing stage, partial candidates are scored

by the graph-based model according to information up to the current word.

The projectivity of the output dependency trees is guaranteed by the incremental Covington

process. Because when each word is processed, possible links are added between the current word

and all its predecessors, the time complexity of this algorithm is O(n2), where n is the length of the

input sentence.

During training, the “early update” strategy of Collins and Roark (2004) is used as in Chapter 5:

when the correct state item falls out of the beam at any stage, parsing is stopped immediately,

and the model is updated using the current best partial item. The intuition is to improve learning

by avoiding irrelevant information: when all the items in the current agenda are incorrect, further

parsing steps will be irrelevant because the correct partial output no longer exists in the candidate

ranking.

Table 6.2 shows the feature templates from the MSTParser (McDonald and Pereira, 2006), which

are defined in terms of the context of a word, its parent and its sibling. To give more templates,
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1 Parent word (P) Pw; Pt; Pwt

2 Child word (C) Cw; Ct; Cwt

3 P and C PwtCwt; PwtCw;

PwCwt; PwtCt;

PtCwt; PwCw; PtCt

4 A tag Bt PtBtCt

between P, C

5 Neighbour words PtPLtCtCLt;

of P, C, PtPLtCtCRt;

left (PL/CL) PtPRtCtCLt;

and right (PR/CR) PtPRtCtCRt;

PtPLtCLt; PtPLtCRt;

PtPRtCLt; PtPRtCRt;

PLtCtCLt; PLtCtCRt;

PRtCtCLt; PRtCtCRt;

PtCtCLt; PtCtCRt;

PtPLtCt; PtPRtCt

6 sibling (S) of C CwSw; CtSt;

CwSt; CtSw;

PtCtSt;

Table 6.2: Feature templates from MSTParser
w – word; t – pos-tag.

1 leftmost (CLC) and PtCtCLCt;
rightmost (CRC) PtCtCRCt
children of C

2 left (la) and right (ra) Ptla; Ptra;
arity of P Pwtla; Pwtra

Table 6.3: Additional feature templates for the graph-based dependency parser

features from templates 1 – 5 are also conjoined with the link direction and distance, while features

from template 6 are also conjoined with the direction and distance between the child and its sibling.

Here “distance” refers to the difference between word indices. We apply all these feature templates

to the graph-based parser. In addition, we define two extra feature templates (Table 6.3) that

capture information about grandchildren and arity (i.e. the number of children to the left or right).

These features are not conjoined with information about direction and distance. They are difficult to

include in an efficient dynamic programming decoder, but easy to include in a beam-search decoder.
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Figure 6.4: Feature context for the transition-based dependency parsing algorithm

6.3 The transition-based parser

We develop our transition-based parser using the transition model of the MaltParser (Nivre et al.,

2006), which is characterized by the use of a stack and four transition actions: shift, arcright,

arcleft and reduce. An input sentence is processed from left to right, with an index maintained

for the current word. Initially empty, the stack is used throughout the parsing process to store

unfinished words, which are the words before the current word that may still be linked with the

current or a future word.

The shift action pushes the current word to the stack and moves the current index to the next

word. The arcright action adds a dependency link from the stack top to the current word (i.e.

the stack top becomes the parent of the current word), pushes the current word on to the stack,

and moves the current index to the next word. The arcleft action adds a dependency link from

the current word to the stack top, and pops the stack. The reduce action pops the stack. Among

the four transition actions, shift and arcright push a word on to the stack while arcleft and

reduce pop the stack; shift and arcright read the next input word while arcleft and arcright

add a link to the output. By repeated application of these actions, the parser reads through the

input and builds a parse tree.

The MaltParser works deterministically. At each step, it makes a single decision and chooses one

of the four transition actions according to the current context, including the next input words, the

stack and the existing links. As illustrated in Figure 6.4, the contextual information consists of the

top of stack (ST), the parent (STP) of ST, the leftmost (STLC) and rightmost child (STRC) of ST,

the current word (N0), the next three words from the input (N1, N2, N3) and the leftmost child of

N0 (N0LC). Given the context s, the next action T is decided as follows:

T (s) = arg max
T∈ACTION

Score(T, s)



CHAPTER 6. DEPENDENCY PARSING 107

where ACTION = {shift, arcright, arcleft, reduce}.

One drawback of deterministic parsing is error propagation, since once an incorrect action is

made, the output parse will be incorrect regardless of the subsequent actions. To reduce such error

propagation, a parser can keep track of multiple candidate outputs and avoid making irrevocable

decisions too early. Suppose that the parser builds a set of candidates GEN(x) for the input x, the

best output yout(x) can be decided by considering all actions:

yout(x) = argmax
y∈GEN(x)

∑

T ′∈act(y) Score(T ′, sT ′)

Here T ′ represents one action in the sequence (act(y)) by which y is built, and sT ′ represents the

corresponding context when T ′ is taken.

Our transition-based algorithm keeps B different sequences of actions in the agenda, and chooses

the one having the overall best score as the final parse. Pseudo code for the decoding algorithm is

shown in Figure 6.5. Here each state item contains a partial parse tree as well as a stack configuration,

and state items are built incrementally by transition actions. Initially the stack is empty, and the

agenda contains an empty sentence. At each processing stage, one transition action is applied to

existing state items as a step to build the final parse. Unlike the MaltParser, which makes a decision

at each stage, our transition-based parser applies all possible actions to each existing state item in

the agenda to generate new items; then from all the newly generated items, it takes the B with the

highest overall score and puts them onto the agenda. In this way, some ambiguity is retained.

Note that the number of transition actions needed to build different parse trees can vary. For

example, the three-word sentence “A B C” can be parsed by the sequence of three actions “shift

arcright arcright” (B modifies A; C modifies B) or the sequence of four actions “shift arcleft

shift arcright” (both A and C modifies B). To ensure that all final state items are built by the

same number of transition actions, we require that the final state items must 1) have fully-built

parse trees; and 2) have only one root word left on the stack. In this way, stack-popping actions

should be made even after a complete parse tree is built, if the stack still contains more than one

word.

Now because each word excluding the root must be pushed to the stack once and popped off

once during the parsing process, the number of actions needed to parse a sentence is always 2n− 1,
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Variables: agenda – the beam for state items
item – (partial tree, stack config)
output – a set of output items
index – iteration index

Input: x – pos-tagged input sentence.
Initialization: agenda = [(“”, [])]
Algorithm:
for index in 1 .. 2× x.length() −1:

clear output
for item in agenda:

// when all input words have been read, the
// parse tree has been built; only pop.
if item.length() == x.length():

if item.stacksize() > 1:
item.Reduce()
output.append(item)

// when some input words have not been read
else:

if item.lastaction() 6= Reduce:
newitem = item
newitem.Shift()
output.append(newitem)

if item.stacksize() > 0:
newitem = item
newitem.ArcRight()
output.append(newitem)
if (item.parent(item.stacktop())==0):

newitem = item
newitem.ArcLeft()
output.append(newitem)

else:
newitem = item
newitem.Reduce()
output.append(newitem)

clear agenda
transfer the best items from output to agenda

Output: the best item in agenda

Figure 6.5: A beam-search decoding algorithm for transition-based dependency parsing

where n is the length of the sentence. Therefore, the decoder has linear time complexity, given a

fixed beam size. Because the same transition actions as the MaltParser are used to build each item,

the projectivity of the output dependency tree is ensured.
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Inputs: training examples (xi, yi)
Initialization: set ~w = 0
Algorithm:
// R training iterations; N examples
for t = 1..R, i = 1..N :

zi = arg maxy∈GEN(xi)

∑

T ′∈act(yi)
Φ(T ′, c′) · ~w

if zi 6= yi:
~w = ~w +

∑

T ′∈act(yi)
Φ(T ′, cT ′)

−
∑

T ′∈act(zi)
Φ(T ′, cT ′)

Outputs: ~w

Figure 6.6: the perceptron learning algorithm for the transition-based dependency parser

1 stack top STwt; STw; STt

2 current word N0wt; N0w; N0t

3 next word N1wt; N1w; N1t

4 ST and N0 STwtN0wt; STwtN0w;

STwN0wt; STwtN0t;

STtN0wt; STwN0w; STtN0t

5 pos bigram N0tN1t

6 pos trigrams N0tN1tN2t; STtN0tN1t;

STPtSTtN0t; STtSTLCtN0t;

STtSTRCtN0t; STtN0tN0LCt

7 N0 word N0wN1tN2t; STtN0wN1t;

STPtSTtN0w; STtSTLCtN0w;

STtSTRCtN0w; STtN0wN0LCt

Table 6.4: Feature templates for the transition-based dependency parser
w – word; t – pos-tag.

We use a linear model to score each transition action, given a context:

Score(T, s) = Φ(T, s) · ~w

Φ(T, s) is the feature vector extracted from the action T and the context s, and ~w is the weight

vector. Features are extracted according to the templates shown in Table 6.4, which are based on the

context in Figure 6.4. Note that our feature definitions are similar to those used by MaltParser, but

rather than using a kernel function with simple features (e.g. STw, N0t, but not STwt or STwN0w),

we combine features manually.

As with the graph-based parser, we use the generalized perceptron to train the transition-based

model. The perceptron algorithm for the transition-based parser is shown in Figure 6.6. It is worth
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noticing that, in contrast to MaltParser, which trains each action decision individually, our training

algorithm globally optimizes all action decisions for a parse. Again, “early update” and averaging

parameters are applied to the training process.

6.4 The combined parser

The graph-based and transition-based approaches adopt very different views of dependency pars-

ing. McDonald and Nivre (2007) showed that the MSTParser and MaltParser produce different

errors. This observation suggests a combined approach: by using both graph-based information and

transition-based information, parsing accuracy might be improved.

The beam-search framework we have developed facilitates such a combination. Our graph-based

and transition-based parsers share many similarities. Both build a parse tree incrementally, keeping

an agenda of comparable state items. Both rank state items by their current scores, and use the

averaged perceptron with early update for training. The key differences are the scoring models and

incremental parsing processes they use, which must be addressed when combining the parsers.

Firstly, we combine the graph-based and the transition-based score models simply by summation.

This is possible because both models are global and linear. In particular, the transition-based model

can be written as:

ScoreT(y) =
∑

T ′∈act(y) Score(T ′, sT ′)

=
∑

T ′∈act(y) Φ(T ′, sT ′) · ~wT

= ~wT ·
∑

T ′∈act(y) Φ(T ′, sT ′)

If we take
∑

T ′∈act(y) Φ(T ′, sT ′) as the global feature vector ΦT(y), we have:

ScoreT(y) = ΦT(y) · ~wT

which has the same form as the graph-based model:

ScoreG(y) = ΦG(y) · ~wG
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We therefore combine the two models to give:

ScoreC(y) = ScoreG(y) + ScoreT(y)

= ΦG(y) · ~wG + ΦT(y) · ~wT

Concatenating the feature vectors ΦG(y) and ΦT(y) to give a global feature vector ΦC(y), and the

weight vectors ~wG and ~wT to give a weight vector ~wC, the combined model can be written as:

ScoreC(y) = ΦC(y) · ~wC

which is a linear model with exactly the same form as both sub-models, and can be trained with

the perceptron algorithm in Figure 2.5. Because the global feature vectors from the sub models are

concatenated, the feature set for the combined model is the union of the sub model feature sets.

Second, the transition-based decoder can be used for the combined system. Both the graph-

based decoder in Figure 6.3 and the transition-based decoder in Figure 6.5 construct a parse tree

incrementally. However, the graph-based decoder works on a per-word basis, adding links without

using transition actions, and so is not appropriate for the combined model. The transition-based

algorithm, on the other hand, builds state items which contain partial parse trees, and so provides

all the information needed by the graph-based parser (i.e. dependency graphs), and hence the

combined system. The beam search algorithm does not impose any limitations on the features,

allowing features from the graph-based model to be used.

In summary, we built the combined parser by using a global linear model, the union of feature

templates and the decoder from the transition-based parser.

6.5 Experiments

Because the parsers that we built are language-independent, and both MSTParser and MaltParser

were developed with English data, we used English data for development. The Penn Treebank 3

data was separated into the training, development test and test sets in the same way as McDonald

et al. (2005a), as shown in Table 6.5. Bracketed sentences from the Treebank were translated into
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Sections Sentences Words
Training 2–21 39,832 950,028
Development 22 1,700 40,117
Test 23 2,416 56,684

Table 6.5: The training, development and test data for English

Figure 6.7: The influence of beam size on the transition-based parser, using the development data
X-axis: number of training iterations

Y-axis: word precision

dependency structures using the head-finding rules of Yamada and Matsumoto (2003).

Before parsing, pos-tags are assigned to the input sentence using our reimplementation of the

pos-tagger of Collins (2002). Like McDonald et al. (2005a), we evaluated the parsing accuracy by

the precision of lexical heads (the percentage of input words, excluding punctuation, that have been

assigned the correct parent) and by the percentage of complete matches, in which all words excluding

punctuation have been assigned the correct parent.

6.5.1 The influence of the beam-size

The beam size affects all three parsers that we built, and we studied its influence on the transition-

based parser. Figure 6.7 shows different accuracy curves using the development data, each with a

different beam size B. The X-axis represents the number of training iterations, and the Y-axis the
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Word Complete
Yamada 2003 90.3 38.4
MSTParser 1 90.7 36.7
Graph [M] 91.2 40.8
Transition 91.4 41.8
Graph [MA] 91.4 42.5
MSTParser 2 91.5 42.1
Combined [TM] 92.0 45.0
Combined [TMA] 92.1 45.4

Table 6.6: Accuracy comparisons on English data

precision of lexical heads.

The parsing accuracy generally increased as the beam size increased, while the quantity of increase

became very small when B was large enough. The decoding times after the first training iteration

were 10.2s, 27.3s, 45.5s, 79.0s, 145.4s, 261.3s and 469.5s, respectively, when B = 1, 2, 4, 8, 16, 32, 64.

In the rest of the experiments, we set B = 64 in order to obtain the highest possible accuracy.

When B = 1, the transition-based parser becomes a deterministic parser. Comparison of the

curves when B = 1 and B = 2 shows that while the use of search reduced the parsing speed, it

dramatically improved the quality of the output parses. Therefore, beam-search is a reasonable

choice for transition-based parsing.

6.5.2 Comparison between the graph-based, the transition-based and the

combined parsers

The accuracies of our graph-based, transition-based and combined parsers on English data are shown

together with other systems in Table 6.6. In the table, each row represents a parsing model. Row

“Yamada 2003” represents Yamada and Matsumoto (2003); rows “MSTParser 1/2” show the first-

order (using feature templates 1 – 5 from Table 6.2) (McDonald et al., 2005a) and second-order

(using all feature templates from Table 6.2) (McDonald and Pereira, 2006) MSTParsers, as reported

by the corresponding papers. Rows “Graph [M]” and “Graph [MA]” represent our graph-based

parser using the features from MSTParser 2 (shown in Table 6.2) and the features from MSTParser

2 plus our additional features (shown in Table 6.3), respectively; row “Transition” represents our

transition-based parser; rows “Combined [TM]” and “Combined [TMA]” represent our combined
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parser using the transition-based features (shown in Table 6.4) plus the graph-based features from

MSTParser 2 (shown in Table 6.2), and the above features plus our additional graph-based features

(shown in Table 6.3), respectively. Columns “Word” and “Complete” show the precision of lexical

heads and complete matches, respectively.

As can be seen from the table, beam-search reduced the accuracies from 91.5%/42.1% (“MST-

Parser 2”) to 91.2%/40.8% (“Graph [M]”) with the same features as exact-inference. However, with

only two extra feature templates from Table 6.3, which were not conjoined with direction or distance

information, the accuracies were improved to 91.4%/42.5% (“Graph [MA]”). This improvement is a

benefit of beam-search, which facilitates the use of global features.

When only graph-based features (from MSTParser 2) were used, the combined parser gave 88.6%

accuracy, which is much lower than 91.2% from the graph-based parser using the same features

(“Graph [M]”). This can be explained by the difference between the decoders. In particular, the

graph-based model is unable to score the actions reduce and shift, since they do not modify the

parse tree. This comparison gives a reference for the effect of additional features in the combined

parser.

Using both transition-based features and graph-based features from the MSTParser 2 (“Com-

bined [TM]”), the combined parser achieved 92.0% per-word accuracy, which was significantly higher

than the pure graph-based and transition-based parsers. Additional graph-based features further

improved the accuracy to 92.1%/45.5%, which was the best among all the parsers compared.1

6.5.3 Final tests using the Chinese Treebank

We used the Penn Chinese Treebank 5 as experimental data. Following Duan et al. (2007), we split

the corpus into training, development and test data as shown in Table 6.7, and use the head-finding

rules in Table 5.2 in the last chapter to turn the bracketed sentences into dependency structures.

Like Duan et al. (2007), we used gold-standard pos-tags for the input. The parsing accuracy was

evaluated by the percentage of non-root words that were assigned the correct head, the percentage of

correctly identified root words, and the percentage of complete matches, all excluding punctuation.

1Recently, Koo et al. (2008) reported parent-prediction accuracy of 92.0% using a graph-based parser with a
different (larger) set of features (Carreras, 2007). By applying separate word cluster information, Koo et al. (2008)
improved the accuracy to 93.2%, which is the best known accuracy on the Penn Treebank data. We excluded these
from Table 6.6 because our work is not concerned with the use of such additional knowledge.
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Sections Sentences Words
Training 001–815; 16,118 437,859

1001–1136
Dev 886–931; 804 20,453

1148–1151
Test 816–885; 1,915 50,319

1137–1147

Table 6.7: Training, development and test data from ctb

Non-root Root Comp.
Graph [MA] 83.86 71.38 29.82
Duan 2007 84.36 73.70 32.70
Transition 84.69 76.73 32.79
Combined [TM] 86.13 77.04 35.25
Combined [TMA] 86.21 76.26 34.41

Table 6.8: Test accuracies with ctb5 data

The accuracies are shown in Table 6.8. Rows “Graph [MA]”, “Transition”, “Combined [TM]”

and “Combined [TMA]” show our models in the same way as for the English experiments from

Section 6.5.2. Row “Duan 2007” represents the transition-based model of Duan et al. (2007), which

applied beam-search to the deterministic model of Yamada and Matsumoto (2003), and achieved

the previous best accuracy on the data.

The observations were similar to the English tests. Our combined parser outperformed both

the graph-based and the transition-based parsers. It gave the best accuracy we are aware of for

dependency parsing using the ctb.

6.6 Comparison with related work

Our graph-based parser is derived from the work of McDonald and Pereira (2006). Instead of

performing exact inference by dynamic programming, we incorporated the linear model and feature

templates from McDonald and Pereira (2006) into our beam-search framework, while adding new

global features. Nakagawa and Uchimoto (2007) and Hall (2007) also showed the effectiveness of

global features in improving the accuracy of graph-based parsing, using the approximate Gibbs

sampling method and a reranking approach, respectively.

Our transition-based parser is derived from the deterministic parser of Nivre et al. (2006). We
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incorporated the transition process into our beam-search framework, in order to study the influence

of search on this algorithm. Existing efforts to add search to deterministic parsing include Sagae

and Lavie (2006a), which applied best-first search to constituent parsing, and Johansson and Nugues

(2006) and Duan et al. (2007), which applied beam-search to dependency parsing. All three methods

estimate the probability of each transition action, and score a state item by the product of the

probabilities of all its corresponding actions. But in contrast to our transition-based parser, which

trains all transitions for a parse globally, these models train the probability of each action separately.

Based on the work of Johansson and Nugues (2006), Johansson and Nugues (2007) studied global

training with an approximated large-margin algorithm. This model is the most similar to our

transition-based model, while the differences include the choice of learning and decoding algorithms,

the definition of feature templates and our application of the “early update” strategy.

Our combined parser is the main contribution of this chapter. In contrast to the models above,

it includes both graph-based and transition-based components. An existing method to combine

multiple parsing algorithms is the ensemble approach (Sagae and Lavie, 2006b), which was reported

to be useful in improving dependency parsing (Hall et al., 2007). A more recent approach (Nivre

and McDonald, 2008) combined MSTParser and MaltParser by using the output of one parser for

features in the other. The methods of both Hall et al. (2007) and Nivre and McDonald (2008)

can be seen as ways of combining separately defined models. In contrast, our parser combines two

components in a single model, in which all parameters are trained consistently.

6.7 Conclusion and future work

We developed a graph-based and a transition-based dependency parser using beam-search, demon-

strating that beam-search is a competitive choice for both parsing approaches. We then combined the

two parsers into a single system, using discriminative perceptron training and beam-search decoding.

The appealing aspect of the combined parser is the incorporation of two largely different views of the

parsing problem, thus increasing the information available to a single statistical parser, and thereby

significantly increasing the accuracy. When tested using both English and Chinese dependency data,

the combined parser was highly competitive compared to the best systems in the literature. The

idea of combining different approaches to the same problem using a global discriminative model
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could be applied to other nlp tasks.

An interesting conclusion from our experiments is that transition-based parsing gave higher

accuracies than graph-based parsing for Chinese. This may be because transition-based parsing is

more suitable for Chinese syntax, but this hypothesis remains to be justified in future experiments.



Chapter 7

Conclusion

We explored discriminative approaches to the statistical processing of Chinese syntax, including word

segmentation, pos-tagging, and parsing using both phrase-structure and dependency grammars. One

of the main advantages of the discriminative approach is the freedom in using arbitrary features

to capture global statistical patterns. This freedom was exploited in this thesis by our effort to

incorporate more sources of statistical information for the improvement of accuracy. For example,

our word-based segmentor extends the character-based approach by including word information;

our joint word segmentor and pos-tagger utilizes pos information for word segmentation. We also

built a dependency parser that combines statistical information from two different methods into a

single, consistently trained model. Our models gave state-of-the-art accuracies in these problems,

demonstrating the advantage of using a global discriminative approach.

We built our discriminative models using the perceptron learning and beam-search decoding al-

gorithms. Compared to alternative discriminative training algorithms, the perceptron has a simple

parameter update process, which is often efficient in both memory usage and running time, de-

pending on the decoding algorithm. As an online algorithm, perceptron learning is based on the

decoding process. Beam-search can have linear time complexity and enables perceptron training

to be performed efficiently for complex search spaces. For performing joint word segmentation and

pos-tagging, practical running speed can be achieved by beam-search, but not by dynamic program-

ming in our experiments. Though for particular tasks, there may be better choices for attaining a

118
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particular level of accuracy, the combination of perceptron and beam-search was shown to perform

consistently well for the tasks we considered. We found that when used with the perceptron learning

algorithm, beam-search gave no less accuracy than exact inference for word segmentation, possibly

because the parameter adjustment of the perceptron is based on the errors made by the decoder.

Beam-search also has the advantage of allowing arbitrary features when compared with dynamic pro-

gramming. For the combined dependency parser, it is difficult for a dynamic programming decoder

to achieve reasonable performance using both graph and transition features.

The thesis made the following contributions to Chinese nlp specifically. For statistical methods

applied to Chinese pos-tagging, we advocated joint processing with word segmentation. Because sta-

tistical pos-tagging corpora contain segmentation information, no extra effort is needed for manual

annotation. A joint system can give a significant accuracy boost over the traditional pipelined ap-

proach. For statistical Chinese parsing, we found that the transition-based approach is a competitive

choice with both constituent and dependency grammar. A possible explanation is that transition-

based parsing is more effective for the syntactic structure in Chinese, and further investigation may

lead to improved parsing accuracy.

We conclude that the discriminative approach is a competitive choice for the statistical analysis of

Chinese syntax, and that the incorporation of a wider range of relevant information into the features

of a discriminative model helps to improve the prediction accuracy in general. The statistical

nlp systems that we studied are purely data-driven: the models make predictions according to

statistical information from the training data. Data-driven models shift the manual work of building

linguistic knowledge into the work of data annotation, and are currently the dominant approach

in the computational linguistics literature. However, total reliance on the training data brings

disadvantages, one problem being the comparative difficulty in domain adaptation. The accuracy of

a statistical nlp system drops significantly when the testing data is in a different domain or genre

from the training data. We experimented with the use of linguistic rules to simplify the prediction

problem for word segmentation, and observed moderate improvement on accuracy. Future work

needs to be done in the study of methods to incorporate more linguistic knowledge into a statistical

system and help reduce the reliance on manually created training data.
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pseudo-projective dependency parsing with support vector machines. In Proceedings of CoNLL,
pages 221–225, New York City, June.
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