
Accepted Manuscript

Sentiment-aware volatility forecasting

Frank Z. Xing, Erik Cambria, Yue Zhang

PII: S0950-7051(19)30154-6
DOI: https://doi.org/10.1016/j.knosys.2019.03.029
Reference: KNOSYS 4725

To appear in: Knowledge-Based Systems

Received date : 17 October 2018
Revised date : 17 February 2019
Accepted date : 24 March 2019

Please cite this article as: F.Z. Xing, E. Cambria and Y. Zhang, Sentiment-aware volatility
forecasting, Knowledge-Based Systems (2019), https://doi.org/10.1016/j.knosys.2019.03.029

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.knosys.2019.03.029

Sentiment-Aware Volatility Forecasting

Frank Z. Xinga, Erik Cambriaa,∗, Yue Zhangb

aSchool of Computer Science & Engineering, Nanyang Technological University, Singapore
bInstitute of Advanced Technology, Westlake University, China

Abstract

Recent advances in the integration of deep recurrent neural networks and statistical inferences
have paved new avenues for joint modeling of moments of random variables, which is highly
useful for signal processing, time series analysis, and financial forecasting. However, introduc-
ing explicit knowledge as exogenous variables has received little attention. In this paper, we
propose a novel model termed sentiment-aware volatility forecasting (SAVING), which incor-
porates market sentiment for stock return fluctuation prediction. Our framework provides an
ensemble of symbolic and sub-symbolic AI approaches, that is, including grounded knowledge
into a connectionist neural network. The model aims at producing a more accurate estimation
of temporal variances of asset returns by better capturing the bi-directional interaction between
movements of asset price and market sentiment. The interaction is modeled using Variational
Bayes via the data generation and inference operations. We benchmark our model with 9 other
popular ones in terms of the likelihood of forecasts given the observed sequence. Experimental
results suggest that our model not only outperforms pure statistical models, e.g., GARCH and
its variants, Gaussian-process volatility model, but also outperforms the state-of-the-art autore-
gressive deep neural nets architectures, such as the variational recurrent neural network and the
neural stochastic volatility model.

Keywords: Volatility modeling; Sentiment knowledge; Time series analysis; Variational neural
networks; Financial text mining.

∗Corresponding author
Email addresses: zxing001@ntu.edu.sg (Frank Z. Xing), cambria@ntu.edu.sg (Erik Cambria),

yue.zhang@wias.org.cn (Yue Zhang)
Preprint submitted to Knowledge-Based Systems February 17, 2019

*Revised Manuscript (Clean Version)
Click here to view linked References

1. Introduction

Moments of asset returns carry important information in financial decision making. For ex-
ample, the expected returns are calculated as the mean of return series, and volatility is measured
by a covariance matrix over assets. For simplicity, the classic approach to portfolio manage-
ment [1] (also called the mean-variance analysis framework) ignores higher moments and only5

considers the first two orders of moments of asset returns to diversify the investment. Under
this framework, the constrained utility maximization problem is formulated as a quadratic opti-
mization problem to maximize expected return and minimize the portfolio risk at the same time.
Modern ways of derivatives pricing also heavily rely on the concepts of asset price and volatil-
ity, such as in the Black-Scholes model [2, 3]. Among these concepts, volatility is believed10

to be comparatively more difficult to approximate due to its complicated temporal dependency
structure.

Traditional econometric models, such as the generalized autoregressive conditional heteroscedas-
ticity (GARCH) group [4], formulate the time-varying volatility as a deterministic linear function
of the past variable observations and its lagged items. However, financial data are characterized15

by chaotic behaviors and a poor signal-to-noise ratio. Observations suggest that linear modeling
of volatility tends to be unstable and overfits to local randomness. Another method to model
volatility in a deterministic generative manner is using a latent stochastic process as prior [5],
hence called “stochastic volatility”.

Recently, using deep recurrent neural networks (RNN) for sequential modeling has become20

popular. Successful applications of deep RNN have been reported on hand-writing recognition
and speech synthesis. Compared to previous econometric research, deep RNN takes a data-
driven approach to implicitly learn the approximation function. Therefore, it is claimed to have
extra expressive power to capture the non-linear variation of volatility [6, 7]. The variational
RNN (VRNN) is a hybrid of variational autoencoder and RNN which can be naturally used for25

joint modeling of a stochastic variable with its mean and variance [7], where the conditional
distribution of the variable is generated from a Gaussian process determined by latent variable
states. The neural stochastic volatility model (NSVM) further extends VRNN with autoregressive
architecture for the hidden state, bi-directional architecture for variable encoding, and stochastic
sampling techniques [8] to formalize a general form volatility model.30

Both VRNN [7] and NSVM [8] take information only from the past observations. In the
context of predicting expected stock returns and its volatility, the input information will be the
historical prices and return sequences. One major concern of directly applying VRNN or NSVM
is that, the role of investors or market participants is absent in their model settings [9]. In the
real world, unfortunately, asset price fluctuations can be driven by events [10] and market senti-35

ment [11, 12], or even irrational or collective actions that happens for no obvious reason. Implied
volatility is thus very sensitive to the news and social media response [13, 14, 15, 16]. Omitting
exogenous variables can thus be a defect in the attempt of constructing such a forecasting system.

To address this issue, we propose to extend VRNN volatility modeling by integrating senti-
ment signals from social media data. Our model is termed sentiment-aware volatility forecasting40

(SAVING). In this model, asset-specific sentiment time series are generated with the support of
both symbolic AI and sub-symbolic AI methods. After being aligned with the return series, the
sentiment variable becomes a component of both hidden states and the latent random variable for
joint distribution modeling. Our contributions can be summarized as follows:

1. Joint-modeling of asset returns and market sentiment in a variational recurrent neural45

framework, instead of simple concatenation and normalization of the two heterogeneous
2

sources of knowledge.
2. Providing an interface for deep neural models to acquire explainable sentiment information

from knowledge bases, bridging the gap of knowledge-based systems and pure machine
learning systems.50

Experimental results show that the SAVING model can achieve an improved performance
on the task of volatility forecasting compared with the state-of-the-art recurrent neural models.
In fact, on our dataset, the difference between the previously proposed recurrent neural models
and the deterministic linear models are not significant, though they all seem to be better than
naı̈ve architectures with no effort made on adapting data features. We believe the room for55

improvement with an autoregressive model is limited and attribute the merit of the SAVING
model to the fact that it effectively incorporates market sentiment to the predictive process.

The remainder of the article is organized as follows: Section 2 provides background for the
compared methods, including econometric models and the VRNN model; Section 3 shows how
the polarity score for each message is computed with the help of a knowledge base and the60

sentiment aggregation/quantization process to form a discrete sentiment time series; Section 4
describes the variable operations in the SAVING model; next, Section 5 reports and discusses
experimental results; finally, Section 6 summarizes related research and Section 7 concludes the
article with future work.

2. Background65

In this section we provide some background about our baselines, including the GARCH
model, the state-of-the-art VRNN model, and its variants such as NSVM.

2.1. Linear Volatility Modeling

Time-varying variance is a common phenomenon for financial time series, that is, strong fluc-
tuations are clustered in certain time periods. Constant-variance models, e.g., the Autoregressive
Moving Average (ARMA) model are not suitable for modeling such time series. Consequently,
deterministic linear modeling of volatility is proposed. The GARCH model [4] is one of the
most recognized among them, which models a time series xt by a Gaussian process and its
time-varying variance σ2

x,t, as in Eq. (1) and Eq. (2):

σ2
x,t = α0 +

p∑

i=1

αix
2
t−i +

q∑

j=1

βjσ
2
t−j , (1)

xt ∼ N (0, σ2
x,t). (2)

where p is the moving average order and q is the autoregressive order. Together, they characterize
the number of parameters a GARCH model would have. Since each variable xt is sampled from70

a local Gaussian distribution with zero mean, the residuals will always follow ε2t ≡ x2t . In this
context, Eq. (1) is de facto an ARMA model of σ2

x,t.
Variants of the GARCH model include ARCH [17], where autoregressive coefficients β are

set to zero; EGARCH [18], where log(σ2
x,t) is used instead of σ2

x,t and a bias is imposed on xt to
address asymmetric volatility; GJR-GARCH [19], where asymmetric volatility is expressed by75

adding an indicator function of the sign of xt−1, namely adding δx2t−1It−1 to the right side of
Eq. (1) where It−1 = 0 if xt−1 ≥ 0 and It−1 = 1 if xt−1 < 0.

3

We reconsider random variable xt in Eq. (1) by decomposing it to a deterministic time-
dependent σx,t and a latent standard Gaussian process zt ∼ N (0, 1):

xt = σx,t · zt. (3)

This decomposition inverses the idea of the reparameterization trick [20] to introduce zt, though
the stochastic item zt is eliminated from the GARCH model by taking square. However, in
stochastic volatility models zt can be a separate item where xt is drawn. Subsequently, a new set
of parameters γ may be introduced. In real-world data, though, parameters α and β may have
more complicated form. Therefore, a general form volatility model can be abstracted as Eq. (4),

σ2
x,t = f[α,β,γ](σ

2
x,<t, x<t, z≤t) (4)

where σ2
x,<t can be further eliminated [8]. In this case, the volatility is specified from this

process:

1. generation of autoregressive latent process z≤t;80

2. generation of past observations x<t = g(z≤t);
3. generation of σ2

x,t.

Note that the analytical solution of function f in Eq. (4) may not be easy to specify as the number
of parameters grows large. Fortunately, recent advances in deep learning provide us a new way
to parameterize f .85

2.2. VRNN for Sequence Modeling

Suppose we have a sequence of observations x = (x1, x2, ..., xt), a basic RNN learns the
parameters θ of a neural network f and keeps updating its hidden state ht as in Eq. (5):

ht = fθ(xt, ht−1). (5)

The neural network fθ may consist of any neuron structures, such as the long short-term memory
(LSTM) [21] and gated recurrent unit (GRU) [22]. In a standard RNN [23], the computation
follows Eq. (6) and Eq. (7):

xt = Whoht−1 + bo (6)

ht = tanh(Whhht−1 +Whxxt + bh) (7)

where W ∗∗ are transition matrices spanning timesteps and b∗ are biases that define θ. A high-
level illustration of the computation process is provided in Figure 1.

Figure 1: A basic RNN model that outputs xt (dashed arrow) and keep updating its hidden state ht−1 (solid arrow).

4

The RNN computation in Eq. (5) implicitly models a regressor for xt based on all past ob-
servations x<t through substituting h<t. However, σx,t does not appear. A naı̈ve volatility
forecasting technique to induce σx,t is to estimate σ2

t with σ2
t−1, that is to write Eq. (8):

σ2
x,t = Var(x<t) =

1

(t− 1)2

t−1∑

i=1

t−1∑

j>i

(xi − xj)2. (8)

However, the expressive power of Eq. (8) is restricted. It will be clearer if we look at the lagged-
form of Eq. (8):

σ2
x,t = [1 + (

t− 2

t− 1
)2]σ2

x,t−2 +

∑t−1
i=1(xt−1 − xi)2

(t− 1)2
. (9)

The autoregressive coefficients are not learned as in deterministic linear volatility models, but
will only be a fixed function of t. For this reason, we argue that the standard RNN does not90

suffice complicated volatility modeling. Or, in other words, the standard RNN cannot generate
sequences with certain types of time-varying volatility.

To solve this problem, a VRNN integrates the architecture of a variational autoencoder
(VAE) [20]. Using the probabilistic parameterization of the joint distribution of x and the la-
tent variables z, the hidden state h as in RNNs is by design characterized by mean and variance
information in a Gaussian case. For this reason, we can write the generative model as Eq. (10):

p(x|z) ∼ N (hµ(z), hσ(z)) (10)

where volatility item σx,t is embodied in the hidden state h.
We expand Eq. (10) across time steps:

p(xt|z≤t, x<t) ∼ N (hµ,σ(gτ (zt), ht−1)) (11)
p(zt|z<t, x<t) ∼ N (hµ,σ(gυ(xt), ht−1)) (12)

where gτ and gυ are neural networks to approximate the non-linear functions. The parameteri-
zation of VRNN is therefore:

p(x≤t, z≤t) =
t∏

i=1

p(xi|z≤i, x<i)p(zi|z<i, x<i). (13)

where p(x≤t, z≤t) is joint probability of all the observations. Like in Eq. (5), hidden state of a
VRNN is updated after generation of zt and xt (see Eq. (11) and Eq. (12)):

ht = fθ(gυ(xt), gτ (zt), ht−1). (14)

3. Sentiment Time Series

Our goal being to integrate sentiment signals from social message streams into a volatility
model, we first transform the streams into a sentiment time series. In this section, we discuss how
a sentiment variable st is defined. We represent the sentiment information for a specific asset A
as a quadruple, that is, to calculate sentiment polarity and intensity for each relevant message
and aggregate them in a discrete-time axis. We have:

st(A) = (sIt (+), sIt (−), sVt (+), sVt (−)). (15)
5

where sIt (+), e.g., is the average intensity for all the positive messages, and sVt (−) the count95

of negative messages regarding A. One can obtain the polarity score of a message by many
techniques, e.g., training a neural network for sentiment analysis. In the SAVING model, how-
ever, we employ a knowledge-based method to embrace high interpretability and bridge the gap
between connectionist models and many other disciplines, such as cognitive linguistics and com-
monsense reasoning [24, 25].100

sentimentt

capitalizationt Σt Ωt allocation model

L0∼kpricet CAPM Πt Q∗
t

L0∼kvolumet neural model Q̂t ∆Qt

I had a feeling $AAPL would go down but this is stupid .

nsubj

dobj

det

acl:relcl

nsubj

aux cc

but-conj

nsubj

cop

root

Figure 2: Polarity computing via reasoning through a typed dependency tree.

3.1. Polarity Computing

We compute the polarity score of each message using augmented sentic computing [26].
This approach relies on a group of linguistic rules to explicitly catch the long-term dependency
in texts. Unlike its predecessor [27], which leverages polarity algebra, augmented sentic com-
puting implements modificatory functions for different pivot types. A message is first parsed105

into multiple relation tuples with the Stanford typed dependency parser [28]. Later, a semantic
parser will look at each uni-gram and bi-gram1 and attempt to acquire the polarity score from a
concept-level sentiment knowledge base. We employ the latest version of SenticNet [29], which
contains 100,000 natural language concepts.

Figure 2 provides an example of how polarity scores of concepts are propagated along the110

dependency structure. Two concepts go down and stupid are identified with polarity score
of −0.07 and −0.93 respectively. The polarity of stupid is passed through a nominal subject
relation so that the multi-word expression this is stupid inherits the score of −0.93. Sim-
ilarly, the other high level relative clause
feeling (that) $AAPL would go down triggers an amplified intensity of−

√
| − 0.07| =115

−0.27. Note that the two structures are linked by an adversative but-conjunction, the overall po-
larity is thus calculated as

√
|[(−0.27) + (−0.93)]/2| = +0.78 and passed to the root of the

sentence. The computing process is backed-up with a multi-layered perceptron (MLP) network
to solve zero-shot problem: if no concept is acquired from the knowledge base, the polarity is
derived from supervised learning. Finally, if a message consists of multiple sentences, the overall120

polarity score will be an average of each sentence polarity score.

Messages arrive continuously with a timestamp Ti. Discrete-time operations, e.g., trading,
will entail daily sentiment quantization. Taking market closure into consideration, we aggregate
market sentiment from the previous trading day to one hour before the closing time. Algorithm 1125

elaborates the process for sentiment time series construction.

1Only meaningful part-of-speech tag pairs, such as ADJ+NOUN, VERB+NOUN, and VERB+ADV are considered and
lemmatized.

6

Algorithm 1: Constructing sentiment time series.
Data: message stream of a specific asset {mi, Ti}
Result: sentiment time series st(A)

1 for i = 1, 2, ... do
2 if Ti < t then
3 C(mi)← parse concepts from mi;
4 if C(mi)

⋃
KB 6= ∅ then

5 s(mi)←augmented sentic computing mi;
6 else
7 s(mi)←MLP(mi,Θ);
8 end
9 if s(mi) > 0 then

10 sIt (+)← n−1
n sIt (+) + 1

ns(mi);
11 sVt (+)← sVt (+) + 1;
12 else if s(mi) < 0 then
13 sIt (−)← n−1

n sIt (−) + 1
ns(mi);

14 sVt (−)← sVt (−) + 1;
15 n← n+ 1;
16 else
17 t← t+ 1; [st(A), n]← 0;
18 end
19 end
20 return st(A)← (sIt (+), sIt (−), sVt (+), sVt (−));

4. Sentiment-Aware Volatility Forecasting

We describe the three types of variable operations (generation-recurrence-inference) in the
SAVING model with the presence of sentiment variable st (see Figure 3). To incorporate st,
the latent variables will be shared by xt and st, and the hidden state will be a concatenation of130

dimensions including return x, sentiment s and latent variables z. In this sense, we use bold
notation zt and ht slightly different from that in VRNN. In VRNN, the bold notations zt and ht
denote vector representations for each time period t, whereas in the SAVING model, for example,
z denotes the full history of zt, zt−1, zt−2,

Our goal is to learn the complicated dynamics of variable interactions with an implicit func-
tion F of Eq. (16):

F(σt, x<t, s<t, z≤t) = 0. (16)

With the shared latent variables and their autoregressive nature, namely p(zt|z<t) ∼ N (µz,<t, σ
2
z,<t),135

two symmetric causal chains st−1 → zt → xt and xt−1 → zt → st are built up to model the
bi-directional interaction between movements of asset price and market sentiment. Although
this interaction has been justified by Granger causality test from both sides [30, 14, 15], the SAV-
ING model is the first deep RNN architecture to elegantly capture this feature to the best of our
knowledge (see Figure 4).140

7

(a) Generation (b) Recurrence (c) Inference

Figure 3: Graphical illustration of the SAVING model: 3(a) joint generating process for asset return and sentiment from
hidden state and latent variables; 3(b) updating hidden state of neurons; 3(c) inferencing posterior distribution of latent
variables using time-lagged items. The hidden variables are denoted by diamonds and observable variables by circles.

Figure 4: The full architecture of the SAVING model expanding on the time arrow. Generation operations are denoted
by dashed arrows; recurrence operations are denoted by dotted arrows; inference operations are denoted by solid arrows.

4.1. Generation

The major difference between the SAVING model and the VRNN [7] is that for both return
and sentiment variables, the conditional distribution of zt is no longer an autoregressive Gaussian
distribution, but takes into consideration the past input observations. For instance, generation of
xt involves three arguments:

p(xt|x<t, zt) ∼ N (µx,t, σ
2
x,t), (17)

where [µx,t, σx,t] = φx(ϕx(xt−1), ϕz(zt),ht−1), (18)

µx,t and σx,t denote the parameters of the Gaussian distribution where xt is sampled, ϕx and ϕz

are neural networks that extract information from xt−1 and zt. Decoder φx maps the dimension
back to dim(µx + σx).

8

Similarly, st is synchronized with zt, denoting the sentiment accumulated between the cur-
rent and the previous market closing time:

p(st|s<t, zt) ∼ N (µs,t, σ
2
s,t), (19)

where [µs,t, σs,t] = φs(ϕ
s(st−1), ϕz(zt),ht−1), (20)

µs,t and σs,t denote the parameters of the Gaussian distribution where st is sampled, ϕs is a145

neural network that extracts information from st−1 and φs is a decoder. To initialize the genera-
tion process, we assume the first pair of observation (xt, st) is drawn from a standard Gaussian
distribution.

4.2. Recurrence

The recurrent process updates the hidden state. In the SAVING model, ht is a concatena-
tion of three heterogeneous memories for the latent variables, return series and sentiment series
respectively. Since zt already contains joint information, its update is independent from other
parts of the model:

ht = [hzt ,h
x,s
t] (21)

hzt = fθ(ϕ
z(zt−1), hzt−1). (22)

However, observed xt and st are not integrated in the generation phase. Consequently, the hid-
den state will be shared by return and sentiment variables to facilitate forecasting through the
completeness of zt:

hx,st = fθ(ϕ
x(xt), ϕ

s(st),h
x,s
t−1). (23)

where fθ is the neural network to join the new observations and the previous model (see Eq. (5)).150

4.3. Inference

After the hidden state is updated by the latest xt and st, the joint distribution of observable
variables will be used to infer conditional distribution of zt+1. Variational inference [31, 20] is
employed to stochastically optimize an approximation q(zt|xt, st) for the posterior p(zt|x<t, s<t),
because of the difficulties in calculating the joint marginal distribution. According to Bayes’ the-
orem, the conditional probability distribution of zt is

p(zt|x<t, s<t) =
p(x<t, s<t|z)p(z)

p(x<t, s<t)
, (24)

where the integral p(x<t, s<t) =
∫
p(x<t, s<t|z)p(z)dz is computationally intractable since z

is unknown. Therefore, we learn parameters µz,t and σz,t, such that

q(zt|xt, st) ∼ N (µz,t, σ
2
z,t), (25)

where [µz,t, σz,t] = ψ(ϕz(zt−1), ϕx,s(x, s),ht−1). (26)

Encoder ψ maps the dimension to dim(µz + σz).

9

4.4. Learning
Parameters of the encoding and decoding neural networks, i.e. φx, φs, and ψ are co-trained

using stochastic gradient descent. Recall that our objective is to minimize the Kullback-Leibler
divergence between q(zt|xt, st) and p(zt|x<t, s<t):

KL(qt||pt) = −
t∑

i=1

p(x≤i, s≤i) ln
q(zi|xi, si)

p(x≤i, s≤i, zi)
. (27)

Since the integral of joint distribution
∫
p(x≤i, s≤i)dxds is fixed with a series of observations,

minimizing the Kullback-Leibler divergence is equivalent to maximizing the Evidence Lower
Bound (ELBO). After independent factorization of the generation and inference processes by
substituting conditioning variables with time-lagged items, the loss function can be written as a
negative ELBO [32]:

`(q) =
t∑

i=1

[KL(qi||pi)− ln p(xi, si|x<i, s<i, zi)]. (28)

Then we apply gradient descent until convergence for:




φx ← φx − ρ ∂`(q)/∂φx
φs ← φs − ρ ∂`(q)/∂φs
ψ ← ψ − ρ ∂`(q)/∂ψ

(29)

where gradients over the variational distribution q is actually intractable. However, we can elim-
inate q via Monte Carlo sampling [33]. We draw S samples of the latent variables z to approxi-
mate the gradient of the loss function:

∂` =
1

S

S∑

i=1

ln
p(x≤i, s≤i, zi)
q(zi|xi, si)

∂ ln q(zi|xi, si). (30)

In the SAVING model, all the samples are assumed to be Gaussian. Due to its recursive
nature, the forecasting horizon can be arbitrarily set once the learning phase is accomplished.155

Nevertheless, it is always recommended to re-train the model once new observations are re-
ceived. In our experiment settings, the volatility forecasting is one-step-forward. This setting
also ensures that the testing is strictly out-of-sample and over-fitting is reduced to a minimum
level.

5. Experiments160

We empirically investigate the effectiveness of the SAVING model over a range of baselines
in the literature using historical stock price data and social media streams.

5.1. Data Preparation
A high-quality source for constructing sentiment time series is crucial to the performance of

the SAVING model. We employ StockTwits2, a social media platform for sharing ideas between165

2http://stocktwits.com/
10

investors, traders, and entrepreneurs. We believe that the professional platform contains less
noisy information compared to general-purpose venues, such as Twitter. Due to the limited
accessibility of historical data, we test the SAVING model on 10 US stocks with relatively big
market capitalization for over one year (from August 14, 2017 to August 22, 2018). In total,
82.2MB of textual data are collected, out of which a small portion is user-labeled. Table 1170

lists the stock tickers, user-labeled numbers of positive and negative messages, positive/negative
ratios, and the total numbers of messages in this period.

The messages associated with one specific company are filtered by cashtags3. To align senti-
ment time series and return series, we cut off the messages after 3:00 P.M. for the next trading day.
This configuration allows for one hour of trading operations before market closure in practice.175

The price series are transformed to daily log returns xt = log(pricet/pricet−1) and normalized
before feeding into the SAVING model. For both return series and sentiment time series, the
missing values are filled by the closest previous record.

5.2. Model Settings

In our experiments, hyperparameters are set as following: the dimension of sentiment vari-180

able is set to dim st = 4 to include both intensity and volume of daily message streams [9];
return variable is univariate and stock-specific, though 10 stock pairs (xt, st) are concatenated
for training to allow for modeling relationships of connected stocks; GRU cells are used for RNN
function fθ with 20% dropout and other neural networks such as φx, φs, ψ, ϕx, ϕs, and ϕz are
implemented with two-layered MLPs, where each layer has 10 neurons.

Table 1: Basic data statistics: 2017-08-14 to 2018-08-22.

Ticker #Pos. #Neg. Pos./Neg. ratio Total

AAPL 28, 495 12, 040 2.37 130, 425
AGN 1, 432 592 2.42 8, 622
AMZN 27, 902 7, 029 3.97 97, 580
BABA 35, 607 4, 488 7.93 97, 253
GOOG 5, 824 1, 684 3.46 23, 371
GS 3, 619 1, 177 3.07 19, 142
PFE 1, 414 115 12.30 8, 946
SBUX 2, 618 1, 461 1.79 14, 873
STMP 485 112 4.33 3, 202
TSLA 44, 398 28, 882 1.54 153, 060

185

The embedding dimension for hidden state is set to 15: equally partitioned for return, senti-
ment, and latent variables to create a bottleneck for the input dimension. Adagrad optimizer [36]
is found to be exceptional for training of the SAVING model parameters, whereas when using
other popular optimizers such as Adam or stochastic gradient descent the converged NLLs are
much higher. We set learning rate to lr = 5 × 10−4 and save the trained model each 10 epochs190

for 500 epochs in sum. The final model is empirically chosen with NLLs on the training set
as the criterion. Then, this final model is used for one-step-forward forecasting only. As the

3A cashtag combines a dollar sign and some catchy word, in our context usually a stock ticker, e.g., $AAPL.

11

Table 2: Performance of the SAVING model and other compared benchmarks measured by NLL: only the SAVING
model and s+LSTM employ sentiment information, other models are autoregressive.

Ticker SAVING GARCH [4] EGARCH [18] TARCH [34] GJR [19] GP-vol [35] VRNN [7] NSVM [8] LSTM [21] s+LSTM

AAPL -3.2798 -3.1010 -3.1041 -3.1280 -3.1255 -3.1184 -2.9900 -2.9561 -0.7271 -2.1504
AGN -3.0387 -3.0113 -3.0113 -3.0102 -3.0129 -3.0158 -3.0296 -2.9321 -0.9030 -1.2742
AMZN -2.9296 -2.8183 -2.8183 -2.8194 -2.8187 -2.7918 -2.8559 -2.7961 -0.2887 -2.1488
BABA -3.2003 -2.7253 -2.7253 -2.7228 -2.7292 -2.7229 -2.7240 -2.7188 -0.4521 -1.6865
GOOG -3.2319 -3.0670 -3.0670 -3.0823 -3.0851 -3.0207 -2.9752 -2.9281 -0.4657 -2.1528
GS -3.2609 -3.1267 -3.1267 -3.1245 -3.1333 -3.1160 -3.0121 -2.9710 -0.4832 -0.6010
PFE -2.8548 -3.4011 -3.4078 -3.3921 -3.4111 -3.3911 -3.0978 -3.0582 -0.3844 -0.0159
SBUX -2.9606 -3.1579 -3.1580 -3.1647 -3.1656 -3.1046 -3.0814 -2.9911 -0.5805 -1.5442
STMP -3.1081 -2.3556 -2.3556 -2.4437 -2.4412 -2.3738 -2.3985 -2.1883 -0.4343 -1.2197
TSLA -2.7775 -2.1776 -2.3483 -2.3735 -2.3493 -2.3005 -2.5850 -2.0769 -0.2006 0.9380

Average -3.0642 -2.8942 -2.9122 -2.9261 -2.9272 -2.8956 -2.8749 -2.7617 -0.4920 -1.1856

new data come in, the training set is updated and the outdated model is discarded with a re-train
procedure.

The SAVING model is trained in an online fashion on a Nvidia Tesla M60 GPU. The train-195

ing time, in theory, will increase with the growth of historical data and the number of stocks
considered. Empirically, convergence can be reached in minute-level for one year’s data.

5.3. Compared Methods

Following the previous work [8], we adopt multiple benchmarks from different model groups,
including deterministic linear models, stochastic volatility models, and deep recurrent neural200

models optionally equipped with sentiment information:

1. GARCH(1,1), where only xt−1 and σ2
t−1 are included on right hand side of Eq. (1);

EGARCH(1,1), where the volatility variables are in their log form; TARCH(1,1,1) [34],
where the power of σ is set to 1; GJR-GARCH(1,1,1), where one lagged asymmetric shock
is added.205

2. Gaussian-process volatility model (GP-vol) [35], where xt is generated from a Gaussian
process parameterized by µ ≡ 0 and σ2

t .
3. Variational neural models including VRNN [7], where the prior on latent variables is au-

toregressive and can be understood as a time-varying VAE, and NSVM [8], where the prior
also depends on past observations.210

4. LSTM [21], which consists of two layers: a recurrent layer with 10 LSTM cells, 20%
dropout and rectified linear unit activations (ReLU), and a dense layer of 10 neurons,
summing up to 590 trainable parameters. Additionally we have s+LSTM, where sentiment
and return variables are concatenated to form an input. The naı̈ve volatility forecasting
based on a sliding window of returns is implemented as with Eq. (8).215

5.4. Results and Discussion

We observe some interesting facts after a quick pass through Table 1. Generally, people post
far more positive messages than negative ones on social media, at least for the scope of stocks
studied. For hotspot stocks, such as AAPL and TSLA, the ratio is about 2. Less discussed stock
like PFE has an amazingly high ratio of around 12.220

It also occurs that frequently discussed stocks are more volatile, while stocks without much
news exposure have relatively stable returns. To evaluate the performance of different models
we use negative log-likelihood (NLL), which assumes the predicted return and volatility form

12

the ground truth distribution, and calculate the likelihood of observations. Under the Gaussian
distribution hypothesis of xt, NLL can also be interpreted as a mean squared error (MSE) with a
volatility-based regularization [37] (see Eq. (31)):

NLL = −
t∑

i=1

1√
2πσ2

i

exp
−(xi − µi)2

2σ2
i

=
1

2
[t ln 2π +

t∑

i=1

lnσ2
i +

t∑

i=1

(xi − µi)2
2σ2

i

]. (31)

Table 2 reports our experimental results. Furthermore, statistical significance analysis is summa-
rized in Table 3. Since the distribution of NLLs is difficult to solve, we conduct paired one-tailed
t-tests to investigate the improvement of using the SAVING model against other benchmark
methods. The tests only require the differences to be roughly normally distributed, which is
justified by the Shapiro-Wilk’s W for all the pairs. Though we still list results of the Wilcoxon225

signed-rank test for reference.
Our null hypothesis is that the average performance of the SAVING model among different

stocks is identical to or worse than the performance of the benchmark method. The hypothe-
sis is rejected for VRNN, NSVM, LSTM and s+LSTM at a significance level of 0.05 and for
GARCH and GP-vol at a significance level of 0.1. No sufficient evidence suggest that the SAV-230

ING model performs better than modified GARCH variants, though the relatively small p-values
still encourage to prefer the SAVING model over EGARCH, TARCH, and GJR-GARCH.

Table 3: Pairwise statistical analysis of the performance of the SAVING model against other benchmarks, measured by
NLLs.

Statistic GARCH [4] EGARCH [18] TARCH [34] GJR [19] GP-vol [35] VRNN [7] NSVM [8] LSTM [21] s+LSTM

Shapiro-Wilk’s W 0.96 0.96 0.95 0.95 0.96 0.98 0.97 0.90 0.92
p-value 0.78 0.82 0.70 0.66 0.76 0.96 0.91 0.22 0.37

paired one-tailed t 1.42 1.33 1.28 1.25 1.51 2.15 2.86 40.44 6.43
p-value 0.09* 0.11 0.12 0.12 0.08* 0.03** 0.01** 0.00** 0.00**

Wilcoxon’s W 14.0 15.0 15.0 15.0 12.0 8.0 5.0 0.0 0.0
p-value 0.17 0.20 0.20 0.20 0.11 0.05** 0.02** 0.01** 0.01**

The SAVING model outperforms other compared methods on 8 out of 10 stocks in terms
of NLL. We compare deterministic linear models and deep neural models. Unlike previous
studies, we do not find deep neural models, such as VRNN and NSVM to be superior to linear235

models. This may due to the use of different datasets and the difficulty of model tuning. In
fact, all the linear model variants exhibit similar and stable behavior, though GJR-GARCH and
TARCH perform slightly better than EGARCH and follows the original GARCH. It is worth
mentioning that the GJR-GARCH model even produces better results on two stocks and also
obtained very similar results on other five stocks. This observation justifies the necessity of240

considering asymmetric shock for volatility modeling.
LSTM and s+LSTM show very different results because these two models actually forecast

only returns, thus a great amount of information is lost. The volatility is later derived using
a naı̈ve variance estimation based on both observed and forecasted values. Furthermore, the
way to incorporate sentiment time series is by simple concatenation. While experiments of the245

SAVING model suggest this configuration of simple concatenation is not favored because we
need to simultaneously minimize error for sentiment prediction. In some extreme cases (2 out

13

0 50 100 150 200 250 300 350

−0.10

−0.05

0.00

0.05

0.10

0.15 positive sentiment
negative sentiment

positive count
negative count

log return

Figure 5: Return and sentiment series of TSLA. (Colors can be better displayed in the web version of this article.)

0 50 100 150 200 250 300 350

0.0004

0.0005

0.0006

0.0007

0.0008
GARCH
SAVING

Figure 6: Forecasted volatility of TSLA by two models. (Colors can be better displayed in the web version of this article)

of 10), introducing sentiment increases the error of predictions. This not only happens to the
LSTM/s+LSTM pair but also the SAVING/VRNN pair. Despite these rare cases, incorporating
sentiment still significantly improves LSTM based naı̈ve volatility forecasting, reducing average250

NLL by 0.6936.
The SAVING model, on the other hand, takes advantage of both sentiment information and

the expressive power of a VRNN. Figure 5 shows the log returns of TSLA, where sentiment
time series are scaled to fit into the chart. Although some movement segments are seemingly
aligned, this complicated relation between sentiment and asset prices is hard to capture with255

linear models. Figure 6 provides forecasted volatility of the SAVING model and a GARCH
model. We observe that the SAVING model can swiftly adapt to the current fluctuation level
whereas GARCH suffers from a long recovery time from previous shocks, consistent with [8].
For this reason, the SAVING forecasting exhibits some desired properties, e.g., stationary, so
that many financial models assuming a latent volatility still apply. The forecasting also shows260

pseudo-cyclical fluctuation, which is the case for returns as markets close regularly on weekends
and holidays.

14

The recent peak on day 358 (August 7, 2018) corresponds to the drastic jump after Elon
Musk announced his take-private plan on Twitter. We observe that the price quickly fell back in
the following days after the news sentiment faded away. It is arguable that in a relatively long265

term the stock’s volatility has really been influenced. However, the GARCH forecasting, based
on the observed results from day 240 to day 290, seems to need months to digest this shock
without considering market sentiment (see Figure 6).

6. Related Work

Volatility is a fundamental concept which many financial applications build on, such as as-270

set/derivative pricing, hedging, and portfolio optimization [11, 38]. A group of deterministic
linear models [4, 18, 19] pioneered time-varying volatility modeling. However, these models
can be disputed by noise-contaminated data, which is unfortunately common in the financial
world. Stochastic models, e.g., [39, 35] are thus developed to mitigate this weakness. In studies
of computational intelligence, fuzzy logic and fuzzy time series are also widely used to to model275

time-varying volatility [40, 41].
Recent developments of RNN provided us the possibility of analyzing time series with mod-

els having usually hundreds or thousands times of parameters than classical models. Specifically,
VRNN models that encode variance with model variables [7, 8] are suitable for volatility mod-
eling. Other approaches, such as reinforcement learning, are explored to implicitly model risk280

aversion from simulated portfolio performance [42]. These models are powerful but pure data
mining on past observations.

Since the relation between market sentiment and price movement has been widely testi-
fied [14, 15, 9], it would be more meaningful to seek for additional predictive power by in-
corporating this external information. More broadly speaking, the community witnessed a trend285

of grounding knowledge to connectionist models in recent years, thanks to the progress in text
mining [43], text categorization [44], and text clustering [45] techniques. For instance, Ding
et al. [10] extracted events from news and incorporated event embedding vectors into a deep
convolutional neural network (DCNN) for stock price prediction; Luo et al. [46] incorporated
manually-designed query-driven attention to employ expert knowledge for RNN-based financial290

sentiment analysis; Xing et al. [47] used the business classification knowledge to model stock
relationships with application to portfolio construction. We believe this idea can produce more
fruitful results in many scenarios.

7. Conclusion

In this work, we proposed the SAVING model to incorporate market sentiment as a form of295

external knowledge for volatility forecasting. The model inherits the expressive power of deep
VRNNs, and further explore effective ways to align data from two different sources. The gen-
eralized model not only provides an interface to external knowledge bases but also captures the
bi-directional interaction between market sentiment and asset price movements. Experiments
show that the SAVING model outperforms many state-of-the-art volatility forecasting models,300

such as GJR-GARCH, GP-vol, VRNN, and NSVM. Future work includes quantification and
visualization of sentiment-volatility interaction. We also plan to leverage sentiment knowledge
bases specific to the finance domain and integrate non-Gaussian distribution hypotheses of asset
returns or distribution agnostic models.

305

15

References
[1] H. Markowitz, Portfolio selection, The Journal of Finance 7 (1) (1952) 77–91.
[2] F. Black, M. Scholes, The pricing of options and corporate liabilities, Journal of Political Economy 81 (3) (1973)

637–654.
[3] P. Date, S. Islyaev, A fast calibrating volatility model for option pricing, European Journal of Operational Research310

243 (2) (2015) 599–606.
[4] T. Bollerslev, Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics 31 (3) (1986)

307–327.
[5] S. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency

options, Review of Financial Studies 6 (2) (1993) 327–343.315

[6] M. Hermans, B. Schrauwen, A recurrent latent variable model for sequential data, in: Proceedings of NIPS, Vol. 1,
2013, pp. 190–198.

[7] J. Chung, K. Kastner, L. Dinh, K. Goel, A. Courville, Y. Bengio, A recurrent latent variable model for sequential
data, in: Proceedings of NIPS, Vol. 2, 2015, pp. 2980–2988.

[8] R. Luo, W. Zhang, X. Xu, J. Wang, A neural stochastic volatility model, in: Proceedings of AAAI, 2018, pp.320

6401–6408.
[9] F. Z. Xing, E. Cambria, L. Malandri, C. Vercellis, Discovering bayesian market views for intelligent asset alloca-

tion, in: Proceedings of ECML PKDD, 2018.
[10] X. Ding, Y. Zhang, T. Liu, J. Duan, Deep learning for event-driven stock prediction, in: Proceedings of IJCAI,

2015, pp. 2327–2333.325

[11] L. Malandri, F. Z. Xing, C. Orsenigo, C. Vercellis, E. Cambria, Public mood–driven asset allocation: the importance
of financial sentiment in portfolio management, Cognitive Computation 10 (6) (2018) 1167–1176.

[12] S. Kelly, K. Ahmad, Estimating the impact of domain-specific news sentiment on financial assets, Knowledge-
Based Systems 150 (2018) 116–126.

[13] F. Z. Xing, E. Cambria, R. E. Welsch, Natural language based financial forecasting: A survey, Artificial Intelligence330

Review 50 (1) (2018) 49–73.
[14] J. Bollen, H. Mao, X. Zeng, Twitter mood predicts the stock market, Journal of Computational Science 2 (1) (2011)

1–8.
[15] J. Smailović, M. Grčar, N. Lavrač, M. Žnidaršič, Stream-based active learning for sentiment analysis in the financial

domain, Information Sciences 285 (2014) 181–203.335

[16] E. Cambria, D. Rajagopal, D. Olsher, D. Das, Big social data analysis, in: R. Akerkar (Ed.), Big Data Computing,
Chapman and Hall/CRC, 2013, Ch. 13, pp. 401–414.

[17] R. F. Engle, Autoregressive conditional heteroscedasticity with estimates of variance of united kingdom inflation,
Econometrica 50 (4) (1982) 987–1008.

[18] D. B. Nelson, Conditional heteroskedasticity in asset returns: A new approach, Econometrica 59 (2) (1991) 347–340

370.
[19] L. R. Glosten, R. Jagannathan, D. E. Runkle, On the relation between expected value and the volatility of the

nominal excess return on stocks, The Journal of Finance 48 (1993) 1779–1801.
[20] D. P. Kingma, T. Salimans, R. Józefowicz, X. Chen, I. Sutskever, M. Welling, Improving variational autoencoders

with inverse autoregressive flow, in: Proceedings of NIPS, 2016, pp. 4736–4744.345

[21] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Computation 9 (8) (1997) 1735–1780.
[22] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio, Learning phrase

representations using rnn encoder-decoder for statistical machine translation, in: Proceedings of EMNLP, 2014,
pp. 1724–1734.

[23] J. L. Elman, Finding structure in time, Cognitive science 14 (2) (1990) 179–211.350

[24] E. Cambria, A. Hussain, C. Havasi, C. Eckl, Common sense computing: From the society of mind to digital
intuition and beyond, in: J. Fierrez, J. Ortega, A. Esposito, A. Drygajlo, M. Faundez-Zanuy (Eds.), Biometric ID
Management and Multimodal Communication, Vol. 5707 of Lecture Notes in Computer Science, Springer, Berlin
Heidelberg, 2009, pp. 252–259.

[25] E. Cambria, D. Olsher, K. Kwok, Sentic activation: A two-level affective common sense reasoning framework, in:355

Proceedings of AAAI, 2012, pp. 186–192.
[26] F. Z. Xing, E. Cambria, R. E. Welsch, Intelligent bayesian asset allocation via market sentiment views, IEEE

Computational Intelligence Magazine 13 (4) (2018) 25–34.
[27] S. Poria, E. Cambria, A. F. Gelbukh, F. Bisio, A. Hussain, Sentiment data flow analysis by means of dynamic

linguistic patterns, IEEE Computational Intelligence Magazine 10 (4) (2015) 26–36.360

[28] M.-C. de Marneffe, C. D. Manning, The stanford typed dependencies representation, in: Coling: Proceedings of
the workshop on Cross-Framework and Cross-Domain Parser Evaluation, 2008, pp. 1–8.

[29] E. Cambria, S. Poria, D. Hazarika, K. Kwok, SenticNet 5: Discovering conceptual primitives for sentiment analysis

16

by means of context embeddings, in: Proceedings of AAAI, 2018, pp. 1795–1802.
[30] C. W. J. Granger, Investigating causal relations by econometric models and cross-spectral methods, Econometrica365

37 (3) (1969) 424–438.
[31] D. J. Rezende, S. Mohamed, D. Wierstra, Stochastic backpropagation and approximate inference in deep generative

models, in: Proceedings of ICML, 2014, pp. 1278–1286.
[32] C. M. Bishop, N. D. Lawrence, T. Jaakkola, M. I. Jordan, Approximating posterior distributions in belief networks

using mixtures, in: Proceedings of NIPS, 1997, pp. 1–7.370

[33] R. Ranganath, S. Gerrish, D. M. Blei, Black box variational inference, in: Proceedings of AISTATS, 2014, pp.
814–822.

[34] R. Rabemananjara, J. M. Zakoian, Arch models and asymmetries in volatility, Journal of Applied Econometrics
8 (1) (1993) 31–49.

[35] Y. Wu, J. M. Hernández-Lobato, Z. Ghahramani, Gaussian process volatility model, in: Proceedings of NIPS,375

Vol. 27, 2014, pp. 1044–1052.
[36] J. Duchi, E. Hazan, Y. Singer, Adaptive subgradient methods for online learning and stochastic optimization, Jour-

nal of Machine Learning Research 12 (2011) 2121–2159.
[37] S. J. Taylor, Asset Price Dynamics, Volatility, and Prediction, Princeton University Press, 2005.
[38] T. Bao, C. Diks, H. Li, A generalized capm model with asymmetric power distributed errors with an application to380

portfolio construction, Economic Modelling 68 (2018) 611–621.
[39] S. Kim, N. Shephard, S. Chib, Stochastic volatility: Likelihood inference and comparison with arch models, The

Review of Economic Studies 65 (3) (1998) 361–393.
[40] Q. Song, B. S. Chissom, Fuzzy time series and its models, Fuzzy Sets and Systems 54 (1993) 269–277.
[41] O. Duru, A multivariate model of fuzzy integrated logical forecasting method (m-filf) and multiplicative time series385

clustering: A model of time-varying volatility for dry cargo freight market, Expert Systems with Applications 39 (4)
(2012) 4135–4142.

[42] Y. Ding, W. Liu, J. Bian, D. Zhang, T.-Y. Liu, Investor-imitator: A framework for trading knowledge extraction, in:
The ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2018, pp. 1310–1319.

[43] M. Dragoni, M. Federici, A. Rexha, Reus: a real-time unsupervised system for monitoring opinion streams, Cog-390

nitive Computation.
[44] Y. Li, Q. Pan, S. Wang, T. Yang, E. Cambria, A generative model for category text generation, Information Sciences

450 (2018) 301–315.
[45] L. M. Abualigah, A. T. Khader, E. S. Hanandeh, Hybrid clustering analysis using improved krill herd algorithm,

Applied Intelligence 48 (11) (2018) 4047–4071.395

[46] L. Luo, X. Ao, F. Pan, J. Wang, T. Zhao, N. Yu, Q. He, Beyond polarity: Interpretable financial sentiment analysis
with hierarchical query-driven attention, in: Proceedings of IJCAI, 2018, pp. 4244–4250.

[47] F. Z. Xing, E. Cambria, R. E. Welsch, Growing semantic vines for robust asset allocation, Knowledge-Based
Systems 165 (2019) 297–305.

17

