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Abstract

Recent advances in the integration of deep recurrent neural . ~* .orks and statistical inferences
have paved new avenues for joint modeling of moments o. “andc . variables, which is highly
useful for signal processing, time series analysis, and financial 1. vecasting. However, introduc-
ing explicit knowledge as exogenous variables has rece. =d litt! ; attention. In this paper, we
propose a novel model termed sentiment-aware volatn. 7 forccasting (SAVING), which incor-
porates market sentiment for stock return fluctuation nred». “on. Our framework provides an
ensemble of symbolic and sub-symbolic Al approac. ~s, that is, including grounded knowledge
into a connectionist neural network. The mode! aims at  roducing a more accurate estimation
of temporal variances of asset returns by better « ot 1y the bi-directional interaction between
movements of asset price and market sentir*ent. . e interaction is modeled using Variational
Bayes via the data generation and inference ¢ »e. “ious. We benchmark our model with 9 other
popular ones in terms of the likelihood cf forec."ts given the observed sequence. Experimental
results suggest that our model not only ou ~ertouns pure statistical models, e.g., GARCH and
its variants, Gaussian-process volatility model, uut also outperforms the state-of-the-art autore-
gressive deep neural nets architectv _., “ich as the variational recurrent neural network and the
neural stochastic volatility model.
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1. Introduction

Moments of asset returns carry important information in financial decisio.. M’ ging. For ex-
ample, the expected returns are calculated as the mean of return series, and v. 'atility "= measured
by a covariance matrix over assets. For simplicity, the classic approac* *» po.."lio manage-
ment [1] (also called the mean-variance analysis framework) ignores b gher ... ments and only
considers the first two orders of moments of asset returns to diversii, ‘b . investment. Under
this framework, the constrained utility maximization problem is for- _ latea . - a quadratic opti-
mization problem to maximize expected return and minimize the f srtfolio ‘sk at the same time.
Modern ways of derivatives pricing also heavily rely on the conce, *s of as et price and volatil-
ity, such as in the Black-Scholes model [2, 3]. Among thes. concepws, volatility is believed
to be comparatively more difficult to approximate due to its *om .ca ed temporal dependency
structure.

Traditional econometric models, such as the generalized au. ~egressive conditional heteroscedas-

ticity (GARCH) group [4], formulate the time-varying v-latility as 1 deterministic linear function
of the past variable observations and its lagged items. How. =r .inancial data are characterized
by chaotic behaviors and a poor signal-to-noise ratio. Obs. ‘vations suggest that linear modeling
of volatility tends to be unstable and overfits to 1.« ranuvmness. Another method to model
volatility in a deterministic generative manner is using " latent stochastic process as prior [5],
hence called “stochastic volatility”.

Recently, using deep recurrent neural network - ‘QNN) for sequential modeling has become
popular. Successful applications of deep Ri -~ have “een reported on hand-writing recognition
and speech synthesis. Compared to previous =co. dmetric research, deep RNN takes a data-
driven approach to implicitly learn the &, -....”*“ion function. Therefore, it is claimed to have
extra expressive power to capture the non-u. ~ar variation of volatility [6, 7]. The variational
RNN (VRNN) is a hybrid of variational autoencoder and RNN which can be naturally used for
joint modeling of a stochastic var able w th its mean and variance [7], where the conditional
distribution of the variable is gen. *ated frc n a Gaussian process determined by latent variable
states. The neural stochastic vo! .tility 1.. > :1 (NSVM) further extends VRNN with autoregressive
architecture for the hidden ste ¢, b’ dire~tional architecture for variable encoding, and stochastic
sampling techniques [8] to fori. ~ (ze 7 general form volatility model.

Both VRNN [7] and ".SVM |», take information only from the past observations. In the
context of predicting ex- ectc.” stock returns and its volatility, the input information will be the
historical prices and ret--n sequences. One major concern of directly applying VRNN or NSVM
is that, the role of ir esto s or market participants is absent in their model settings [9]. In the
real world, unfortuna.. 'v asset price fluctuations can be driven by events [10] and market senti-
ment [11, 12], or - ven irraw. nal or collective actions that happens for no obvious reason. Implied
volatility is thus verv sens iive to the news and social media response [13, 14, 15, 16]. Omitting
exogenous variable. ~an .aus be a defect in the attempt of constructing such a forecasting system.

To addrr ,s this ‘ssue, we propose to extend VRNN volatility modeling by integrating senti-
ment signal from sc :ial media data. Our model is termed sentiment-aware volatility forecasting
(SAVING). L, “hic - jodel, asset-specific sentiment time series are generated with the support of
both sy .nbolic Al and sub-symbolic Al methods. After being aligned with the return series, the
sentim ut varial le becomes a component of both hidden states and the latent random variable for
joint disu>* sn modeling. Our contributions can be summarized as follows:

. Jc n-inodeling of asset returns and market sentiment in a variational recurrent neural
~-amework, instead of simple concatenation and normalization of the two heterogeneous
2
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sources of knowledge.

2. Providing an interface for deep neural models to acquire explainable sep' .mer . information
from knowledge bases, bridging the gap of knowledge-based systems an. nure machine
learning systems.

Experimental results show that the SAVING model can achieve a- imy ‘. ~=d performance
on the task of volatility forecasting compared with the state-of-the-ar. . ~’ crent neural models.
In fact, on our dataset, the difference between the previously prope~ = recu. nt neural models
and the deterministic linear models are not significant, though tt 3y all s« >m to be better than
naive architectures with no effort made on adapting data feature = We ' elieve the room for
improvement with an autoregressive model is limited and at* .cate we merit of the SAVING
model to the fact that it effectively incorporates market sentir ent * s th - predictive process.

The remainder of the article is organized as follows: Sectivu 2 pr vides background for the
compared methods, including econometric models and the V.1 NN model; Section 3 shows how
the polarity score for each message is computed witb the help >f a knowledge base and the
sentiment aggregation/quantization process to form a disci.*= ¢ atiment time series; Section 4
describes the variable operations in the SAVING model, =xt, Section 5 reports and discusses
experimental results; finally, Section 6 summarizes <.awu 1csearch and Section 7 concludes the
article with future work.

2. Background

In this section we provide some backgrou.'d avout our baselines, including the GARCH
model, the state-of-the-art VRNN modei, “nu ... - iriants such as NSVM.

2.1. Linear Volatility Modeling

Time-varying variance is a cor mon pht 10menon for financial time series, that is, strong fluc-
tuations are clustered in certain time [ =rioc ,. Constant-variance models, e.g., the Autoregressive
Moving Average (ARMA) mo .el a“e no. suitable for modeling such time series. Consequently,
deterministic linear modelin_ of - olat’ ity is proposed. The GARCH model [4] is one of the
most recognized among th>m, v."ic’ models a time series z; by a Gaussian process and its
time-varying variance o2 , ~s in Eq. (1) and Eq. (2):

p q
oy =00+ Y i+ Y Bioi, (1)
i=1 j=1
zp ~ N(0,02,). (2)

where p is the movi. - av srage order and ¢ is the autoregressive order. Together, they characterize
the number .f para: ~eters a GARCH model would have. Since each variable x; is sampled from
a local Gau sian dis' ibution with zero mean, the residuals will always follow €7 = 22, In this
context, Fn. (1, = ¢ facto an ARMA model of ai’t.

Var ants of ‘he GARCH model include ARCH [17], where autoregressive coefficients 3 are
setto z ro; EG/ RCH [18], where 1og(o§7t) is used instead of afc,t and a bias is imposed on z; to
address as, ._..uetric volatility; GJR-GARCH [19], where asymmetric volatility is expressed by
adc'ng « . . Jicator function of the sign of z;_1, namely adding dz? | I; ; to the right side of
Eq. (») where [;_; =0ifxy_y >0and I;,_; = 1ifz,_1 <O.

3
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We reconsider random variable x; in Eq. (1) by decomposing it to a de* .. ~inistic time-
dependent o, ; and a latent standard Gaussian process z; ~ N(0,1):

Tt = Og,t " Zt- 3)

This decomposition inverses the idea of the reparameterization trick [2( to i .. “uce z;, though
the stochastic item z; is eliminated from the GARCH model by taki.~ quare. However, in
stochastic volatility models z; can be a separate item where x; is dr>- _. Sub., quently, a new set
of parameters v may be introduced. In real-world data, though, f wramete. * & and 3 may have
more complicated form. Therefore, a general form volatility model ~an be - ostracted as Eq. (4),

Ug,t = f[a,,@,'y] (Ug,<t) T<ty % t) 4)

where 03’ <¢ can be further eliminated [8]. In this case, v ~ VOi.aulity is specified from this
process:

1. generation of autoregressive latent process z<;;

2. generation of past observations z«; = g(z<¢);
; 2

3. generation of o ;.

Note that the analytical solution of function f it ... “*» may not be easy to specify as the number
of parameters grows large. Fortunately, recent ac -’ ces in deep learning provide us a new way
to parameterize f.

2.2. VRNN for Sequence Modeling

Suppose we have a sequence of observau."s € = (z1,2,...,2¢), a basic RNN learns the
parameters 6 of a neural network f ard keeps updating its hidden state h; as in Eq. (5):

hy = fe(xnht—l)- (5)

The neural network fy may cc sist ,f any neuron structures, such as the long short-term memory
(LSTM) [21] and gated recw.. > unit (GRU) [22]. In a standard RNN [23], the computation
follows Eq. (6) and Eq. (7

xy - Whohy_1 4+ 1° (6)
hy = tanh(W"h,_ + W%, + bh) @)

where W** are tr .nsition . ~atrices spanning timesteps and b* are biases that define 6. A high-
level illustratior of t+ > cormputation process is provided in Figure 1.

S

| A

Figu. .: A basic RNN model that outputs x; (dashed arrow) and keep updating its hidden state h¢_1 (solid arrow).
4
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The RNN computation in Eq. (5) implicitly models a regressor for x; base - _ ~ all past ob-
servations x ., through substituting h,. However, o, ; does not appear. A ne ve volatility
forecasting technique to induce o ; is to estimate o7 with o7_, that is to write = «. (8):

t—1t—-1

og,t = Var(z<) = ﬁ ZZ(% — ;)% (8)

i=1 j>i

However, the expressive power of Eq. (8) is restricted. It will be clr .rer if *ve 100k at the lagged-
form of Eq. (8):

t—2
Ui,t:[l‘*‘(m

The autoregressive coefficients are not learned as in determinustic liv ear volatility models, but
will only be a fixed function of ¢. For this reason, we arguc ‘hat the standard RNN does not
suffice complicated volatility modeling. Or, in other w~rds, the ¢ andard RNN cannot generate
sequences with certain types of time-varying volatility

To solve this problem, a VRNN integrates the arci.“>cture of a variational autoencoder
(VAE) [20]. Using the probabilistic parameteriza’ .. ux we joint distribution of x and the la-
tent variables z, the hidden state h as in RNNSs is by ae. ‘on characterized by mean and variance
information in a Gaussian case. For this reason, w. -~ write the generative model as Eq. (10):

Vloea + =S T ©)

p(x|z) ~ (A", b7 (2)) (10)

where volatility item o, ; is embodied in the hic len state h.
We expand Eq. (10) across time steps.

p(@e|z<e. v 1) ~ N (W7 (g7 (1), he-1)) (11)

p(zelz nwar) - N(W7(gu (@), hio1)) (12)
where g, and g, are neural net vorks . -~ pproximate the non-linear functions. The parameteri-
zation of VRNN is therefore:

t

Pl 2<t) = Hp(xi\zgi,$<i)p(zi|z<i,$<i)- (13)
i=1

where p(x<¢, z<¢) is ,0im probability of all the observations. Like in Eq. (5), hidden state of a
VRNN is updated ai.. = ¢ .neration of z; and z; (see Eq. (11) and Eq. (12)):

hy :f(ﬂ(gv(wt)vg'r(zt)vhtfly (14)

3. Sentime’ « 1ime Series

Our goa. heing ) integrate sentiment signals from social message streams into a volatility
model, - . c drst transform the streams into a sentiment time series. In this section, we discuss how
a senti nent var 1ble s; is defined. We represent the sentiment information for a specific asset A
as a que 'ruple that is, to calculate sentiment polarity and intensity for each relevant message
an = ~-recate them in a discrete-time axis. We have:

s1(A) = (s£(+>>s£(5—>,s¥<+), s/ (=) (15)
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where s{(+), e.g., is the average intensity for all the positive messages, and ;"' —) the count

of negative messages regarding A. One can obtain the polarity score of a aess ge by many
techniques, e.g., training a neural network for sentiment analysis. In the SAV1. *“ - model, how-
ever, we employ a knowledge-based method to embrace high interpretability .. *d briuge the gap
between connectionist models and many other disciplines, such as cognif’vc ‘inguis.cs and com-
monsense reasoning [24, 25].

(acLrelcl)

nsubj
[ ‘

I had a feeling $AAPL would [go dowg b,

Figure 2: Polarity computing via reasoning thrc. ~h a typed « >pendency tree.

3.1. Polarity Computing

We compute the polarity score of each message us.. 2 augmented sentic computing [26].
This approach relies on a group of linguistic ruw < to capdcitly catch the long-term dependency
in texts. Unlike its predecessor [27], which levera_<s polarity algebra, augmented sentic com-
puting implements modificatory functions fc - . “fercat pivot types. A message is first parsed
into multiple relation tuples with the Stanford 1,mea dependency parser [28]. Later, a semantic
parser will look at each uni-gram and bi-g. “m- «..d attempt to acquire the polarity score from a
concept-level sentiment knowledge base. We .. ploy the latest version of SenticNet [29], which
contains 100,000 natural language ¢~ _ ~nts.

Figure 2 provides an example of how “olarity scores of concepts are propagated along the
dependency structure. Two concep. ~o_c own and stupid are identified with polarity score
of —0.07 and —0.93 respectivr .y. The pu.arity of stupid is passed through a nominal subject
relation so that the multi-wor « exr cessi,n this_is_stupid inherits the score of —0.93. Sim-
ilarly, the other high level r lative ~la’ se
feeling_(that) _$A2 . " would_go_down triggers an amplified intensity of —y/| — 0.07| =
—0.27. Note that the twu struc.. -=s are linked by an adversative but-conjunction, the overall po-
larity is thus calculate & «. /[[(—0.27) + (—0.93)]/2] = +0.78 and passed to the root of the
sentence. The comp -ting process is backed-up with a multi-layered perceptron (MLP) network
to solve zero-shot nrob.. m: if no concept is acquired from the knowledge base, the polarity is
derived from sup rvis' d learning. Finally, if a message consists of multiple sentences, the overall
polarity score w."' b . an r verage of each sentence polarity score.

Messag' s arrive continuously with a timestamp 7;. Discrete-time operations, e.g., trading,
will entail a ily sent ment quantization. Taking market closure into consideration, we aggregate
market ¢~ ‘imew. ..om the previous trading day to one hour before the closing time. Algorithm 1
elabor: ces the | “ocess for sentiment time series construction.

Only ... :ngful part-of-speech tag pairs, such as ADJ+NOUN, VERB+NOUN, and VERB+ADV are considered and
lemma 7 .d.




Algorithm 1: Constructing sentiment time series.

Data: message stream of a specific asset {m;, T; }
Result: sentiment time series s:(A)

1 fori:=1,2,...do

2 if T; < t then

3 C(m;) < parse concepts from m;;
4 if C(m;) U KB # () then

5 ‘ s(m;) +—augmented sentic computing m;;
6 else

7 | s(mi) «-MLP(m;, ©);

8 end

9 if s(m;) > 0 then

10 st(+) < 2=Lst(4) 4+ Ls(my);
1 sy (4+) < sV (+) + 1

12 else if s(m;) < 0 then

13 si(—) « =Lst (=) + Ls(my);
14 sV (=) < s) (=) +1;

15 n+<n+1;

16 else

17 |t t+1; [s:(A),n] + 0;

18 end

19 end

20 return s;(A4) < (s{(+), 57 (=), s} (1) si ()

4. Sentiment-Aware Volatility F wrecastir 3

We describe the three type , of variacie operations (generation-recurrence-inference) in the
SAVING model with the prr enc . of - :ntiment variable s; (see Figure 3). To incorporate s,
130 the latent variables will be ,hare. “v ¢; and s;, and the hidden state will be a concatenation of
dimensions including ret . ~ @, sentiment s and latent variables z. In this sense, we use bold
notation z; and h; slighuy dific. ~nt from that in VRNN. In VRNN, the bold notations z; and h;
denote vector represer .au ns for each time period ¢, whereas in the SAVING model, for example,

z denotes the full hi' ‘ory o z¢, 21, 2¢—2, . ...
Our goal is to 'earn . = complicated dynamics of variable interactions with an implicit func-

tion F of Eq. (1€ ,:

‘/—"(O't,.f<t,5<t,2§t) =0. (16)

135 With the sha ca fatent variables and their autoregressive nature, namely p(z¢|z<¢) ~ N (f2,<t, 03’ <t)
two symme ric caus: | chains s;—1 — 2z — x; and ;1 — 2z — s; are built up to model the
bi-directiona, ‘nter- _tion between movements of asset price and market sentiment. Although
this int’ cactior has been justified by Granger causality test from both sides [30, 14, 15], the SAV-
ING n »del is tl 2 first deep RNN architecture to elegantly capture this feature to the best of our

10 knowlea, ~ ‘e~ _ Figure 4).



(a) Generation (b) Recurrence () Inference

Figure 3: Graphical illustration of the SAVING model: 3(a) joint generating ocr , for sset return and sentiment from
hidden state and latent variables; 3(b) updating hidden state of neurons; 3(c) u.crencir ; posterior distribution of latent
variables using time-lagged items. The hidden variables are denoted by diai. "ds a... observable variables by circles.

Figure 4: The full architecture ¢ the SAVING model expanding on the time arrow. Generation operations are denoted
by dashed arrows; recurrence ¢ .era. s are denoted by dotted arrows; inference operations are denoted by solid arrows.

4.1. Generation

The major dif':rence . ~*ween the SAVING model and the VRNN [7] is that for both return
and sentiment v .iab] .s, th= conditional distribution of z; is no longer an autoregressive Gaussian
distribution, but 1. s in* ) consideration the past input observations. For instance, generation of
x4 involves t'.ice arguin.ents:

p(xele<s, zt) ~ Nt 07 ), (17)
where [:um,tv J:B,t] = QSSC(SOI (xtfl)v QOZ (zt)v htfl)a (18)
[z, ana - . < _note the parameters of the Gaussian distribution where z; is sampled, ©* and ©*

ar¢ w.. ' networks that extract information from x;_; and z;. Decoder ¢, maps the dimension
back o dim(p, + 04).
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Similarly, s; is synchronized with z;, denoting the sentiment accumulated ’ . veen the cur-
rent and the previous market closing time:

P(stls<t, 26) ~ N (s, 03 1), (19)
where [Ms,m Us,t] = ¢s(§0.s(3t71)7 ©*(2¢), hi—1) (20)

st and o denote the parameters of the Gaussian distribution where . is sampled, ¢® is a
neural network that extracts information from s;_; and ¢ is a decr uer. To inidalize the genera-
tion process, we assume the first pair of observation (z;, s;) is dr: ¥n from 1 standard Gaussian
distribution.

4.2. Recurrence

The recurrent process updates the hidden state. In the . AVII.Z model, h; is a concatena-
tion of three heterogeneous memories for the latent variables, re. rn series and sentiment series
respectively. Since z; already contains joint information, ‘*s upr ate is independent from other
parts of the model:

hy = [hF, b 1)
hi = fo(@™( - ) hiy). (22)

However, observed z; and s; are not integre*~d in . ‘e generation phase. Consequently, the hid-
den state will be shared by return and sentin.>u. var.ables to facilitate forecasting through the
completeness of z;:

hy® = fote “(xe), 0% (st), h{™). (23)

where fy is the neural network to join the new observations and the previous model (see Eq. (5)).

4.3. Inference

After the hidden state is ur sated by .. latest x; and s;, the joint distribution of observable
variables will be used to infe cor .itior al distribution of z,, ;. Variational inference [31, 20] is
employed to stochastically  ptin.. = ar approximation ¢(z¢|z¢, s¢) for the posterior p(z¢|z<t, S<t),
because of the difficulties -~ calculating the joint marginal distribution. According to Bayes’ the-
orem, the conditional prubabiu. ' distribution of z; is

P($<ta s<t|z)p(z)
p($<t7 3<t)

P(Zt\$<t75<t) = s (24)

where the integ’ d p( o<y, <¢) = [ p(x<t, s<¢|2)p(z)dz is computationally intractable since z
is unknown. Therc. ‘e, ", e learn parameters (i, ; and o ;, such that

q(ze|e, 50) ~ N(pzg, 02 ), (25)
where [/’Lz,tv UZ,t] = w(@z (zt—l)7 (pr,s(a./,, S)a ht—l)- (26)

Encod. ¢ map the dimension to dim(u, + o).
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4.4. Learning

Parameters of the encoding and decoding neural networks, i.e. ¢, ¢4, ar t @ - .e co-trained
using stochastic gradient descent. Recall that our objective is to minimize *he k. 'hack-Leibler
divergence between q(z:|xt, s¢) and p(z¢|T<t, S<t):

t

KL(gt|lp) = — Zp(xgu s<i)In

i=1

q(zi|zi, i’ 27)
p(r<i, 8<i- 2i)
Since the integral of joint distribution [ p(z<;, s<;)dads is fixed vith a sc 1ies of observations,
minimizing the Kullback-Leibler divergence is equivalent to maxin. == _ the Evidence Lower
Bound (ELBO). After independent factorization of the gene atior _.°d inference processes by
substituting conditioning variables with time-lagged items, th. ' ss fu .ction can be written as a
negative ELBO [32]:

t

Uq) = Z[KL(%'H}%) —Inp(csife <y zi)]. (28)

i=1
Then we apply gradient descent until convergence 1. °

¢w — ¢x Y v":‘,\ /a¢x
d)s — (753 — F g Q)/a¢s (29)
Y oy 00 7)/0Y

1

where gradients over the variational dist "-*ion ¢, is actually intractable. However, we can elim-
inate ¢ via Monte Carlo sampling [33]. We (-aw .S samples of the latent variables z to approxi-
mate the gradient of the loss function:

p(l ;ia5§i7zi)
C\ZilTis si)

ol =

L‘n Olnq(z;|z;, s;). (30)
b=t
In the SAVING model, «." t: sar .ples are assumed to be Gaussian. Due to its recursive
nature, the forecasting hor zon ca. V¢ arbitrarily set once the learning phase is accomplished.
Nevertheless, it is alwav, . ~ommended to re-train the model once new observations are re-
ceived. In our experiment settin, 3, the volatility forecasting is one-step-forward. This setting
also ensures that the est1, g is strictly out-of-sample and over-fitting is reduced to a minimum
level.

5. Experiment

We empi .cally investigate the effectiveness of the SAVING model over a range of baselines
in the litera 1re usin; historical stock price data and social media streams.

5.1. Dr .u Preparation

A 1 igh-qual ty source for constructing sentiment time series is crucial to the performance of
the SAV. "7~ .odel. We employ StockTwits?, a social media platform for sharing ideas between

Zhtty. /stocktwits.com/

10
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investors, traders, and entrepreneurs. We believe that the professional platfo ... ~ontains less
noisy information compared to general-purpose venues, such as Twitter. J ve t the limited
accessibility of historical data, we test the SAVING model on 10 US stocks w.." relatively big
market capitalization for over one year (from August 14, 2017 to August 2. 201o0). In total,
82.2MB of textual data are collected, out of which a small portion ic us, r-labe.ed. Table 1
lists the stock tickers, user-labeled numbers of positive and negative m ssag s, p.sitive/negative
ratios, and the total numbers of messages in this period.

The messages associated with one specific company are filtered vy cashtags’. To align senti-
ment time series and return series, we cut off the messages after 3:0 P.M. foi the next trading day.
This configuration allows for one hour of trading operations beforc ™ark ¢ closure in practice.
The price series are transformed to daily log returns z; = log/ price nrice;—;) and normalized
before feeding into the SAVING model. For both return sei =< .nd ¢ :ntiment time series, the
missing values are filled by the closest previous record.

5.2. Model Settings

In our experiments, hyperparameters are set as folic “ing: wne dimension of sentiment vari-
able is set to dims; = 4 to include both intensitv »»- =~ ne of daily message streams [9];
return variable is univariate and stock-specific, thoug™ 10 stock pairs (x4, ;) are concatenated
for training to allow for modeling relationships ¢ © ~onnected stocks; GRU cells are used for RNN
function fy with 20% dropout and other neural 1. *tw ,rks such as ¢, ¢s, ¥, ©*, ©*°, and ©* are
implemented with two-layered MLPs, wherr ~ach 1. ver has 10 neurons.

Table 1: Basic data statistics. 201 /-08-14 to 2018-08-22.

Ticker #Pos. #Ney  Pos./Neg. ratio Total
AAPL 28,4, 12,040 2.37 130, 425
AGN 1, 132 592 242 8,622
AMZN 27,90- /, 029 397 97,580
BABA 35,607 4,488 793 97,253
GOOG 53824 1,684 346 23,371
GS 3,070 1,177 3.07 19, 142
PFE 1,414 115 12.30 8, 946
SBUX 2,618 1,461 1.79 14,873
STr .P 485 112 4.33 3,202

TS, A 44,398 28, 882 1.54 153,060

The embedr ng » imer sion for hidden state is set to 15: equally partitioned for return, senti-
ment, and latent vai. bl¢ , to create a bottleneck for the input dimension. Adagrad optimizer [36]
is found to ".e exce ~tional for training of the SAVING model parameters, whereas when using
other popul r optinv ‘ers such as Adam or stochastic gradient descent the converged NLLs are
much higher. 7~ - _( learning rate to [r = 5 x 10~ and save the trained model each 10 epochs
for 507 epoch. in sum. The final model is empirically chosen with NLLs on the training set

as the riterion Then, this final model is used for one-step-forward forecasting only. As the

3A - ntag combines a dollar sign and some catchy word, in our context usually a stock ticker, e.g., SAAPL.
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Table 2: Performance of the SAVING model and other compared benchmarks measured by NLI - ~nly the SAVING
model and s+LSTM employ sentiment information, other models are autoregressive.

Ticker  SAVING GARCH[4] EGARCH[IS] TARCH [34] GIR([19] GP-vol[35] VRNN[7] NSV'1[8] r "M [21] s+LSTM

AAPL -3.2798 -3.1010 -3.1041 -3.1280  -3.1255 -3.1184 -2.9900 -2.956. -0.7271  -2.1504
AGN -3.0387 -3.0113 -3.0113 -3.0102  -3.0129 -3.0158 -3.0296 "321 12.9030  -1.2742
AMZN -2.9296 -2.8183 -2.8183 -2.8194  -2.8187 -2.7918 -2.8559 -2.7 £ -0.2887  -2.1488
BABA -3.2003 -2.7253 -2.7253 -2.7228  -2.7292 -2.7229 -2.7240 -2.7 88 -0.4521  -1.6865
GOOG -3.2319 -3.0670 -3.0670 -3.0823  -3.0851 -3.0207 -2.9752 -7 281 -0.4657  -2.1528
GS -3.2609 -3.1267 -3.1267 -3.1245  -3.1333 -3.1160 -3.0121 - 710 -0.4832  -0.6010
PFE -2.8548 -3.4011 -3.4078 -3.3921 -3.4111 -3.3911 -3 o -3.050. -0.3844  -0.0159
SBUX -2.9606 -3.1579 -3.1580 -3.1647 -3.1656 -3.1046 -7 0814 - 9911 -0.5805  -1.5442
STMP -3.1081 -2.3556 -2.3556 -2.4437  -2.4412 -2.3738 -, 3985 -2 883 -0.4343  -1.2197
TSLA -2.7775 -2.1776 -2.3483 -2.3735  -2.3493 -2.3005 -2..°50 -7 J769 -0.2006 0.9380
Average  -3.0642 -2.8942 -2.9122 -2.9261 -2.9272 -2.8956 2.8749 -2.7617 -0.4920  -1.1856

new data come in, the training set is updated and the outdate. moaw 1s discarded with a re-train
procedure.

The SAVING model is trained in an online fashion on.  Nvir ia Tesla M60 GPU. The train-
ing time, in theory, will increase with the growth of hi."~rical data and the number of stocks
considered. Empirically, convergence can be reach~" = °___e-level for one year’s data.

5.3. Compared Methods

Following the previous work [8], we adopt mu ‘r.e benchmarks from different model groups,
including deterministic linear models, stoc. .. *ic v 'atility models, and deep recurrent neural
models optionally equipped with sentiment int\ *m.. ‘on:

1. GARCH(1,1), where only x;—; anl 7;_; are included on right hand side of Eq. (1);
EGARCH(1,1), where the volatility vandoles are in their log form; TARCH(1,1,1) [34],
where the power of o is set to ', Z"R-GARCH(1,1,1), where one lagged asymmetric shock
is added.

2. Gaussian-process volatility mu =l (“sP-vol) [35], where x; is generated from a Gaussian
process parameterized by == 0 and o7.

3. Variational neural moc.'s i .clud ng VRNN [7], where the prior on latent variables is au-
toregressive and can e unde. ** ,0d as a time-varying VAE, and NSVM [8], where the prior
also depends on pz L . “servations.

4. LSTM [21], which consis.. of two layers: a recurrent layer with 10 LSTM cells, 20%
dropout and re .tific 1 linear unit activations (ReLU), and a dense layer of 10 neurons,
summing up tu SOC rainable parameters. Additionally we have s+L.STM, where sentiment
and return - ariable. ~re concatenated to form an input. The naive volatility forecasting
based on - slid"ag window of returns is implemented as with Eq. (8).

5.4. Results .nd Discu.sion

We obst "ve som: interesting facts after a quick pass through Table 1. Generally, people post
far more nos1.” = = cssages than negative ones on social media, at least for the scope of stocks
studied For hr tspot stocks, such as AAPL and TSLA, the ratio is about 2. Less discussed stock
like Pt = has an amazingly high ratio of around 12.

It alse -~ urs that frequently discussed stocks are more volatile, while stocks without much
ne. s va _ “re have relatively stable returns. To evaluate the performance of different models
we u. > negative log-likelihood (NLL), which assumes the predicted return and volatility form
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the ground truth distribution, and calculate the likelihood of observations. Un~'_. the Gaussian
distribution hypothesis of z;, NLL can also be interpreted as a mean squared ¢ .ror / VISE) with a
volatility-based regularization [37] (see Eq. (31)):

—(’Iz’—ﬂz‘)Q
NLL = —
Z / 3 20?
1 t (i)
:§[t1n2ﬂ+21n03+2ﬁsl} ]. (31)
i=1 i=1

Table 2 reports our experimental results. Furthermore, statistic 1l sigw*ficance analysis is summa-
rized in Table 3. Since the distribution of NLLs is difficult to « \Iv'_, we :onduct paired one-tailed
t-tests to investigate the improvement of using the SAVI. "3 mcJ-" against other benchmark
methods. The tests only require the differences to be roughly -ormally distributed, which is
justified by the Shapiro-Wilk’s W for all the pairs. Tho.-h we s 1l list results of the Wilcoxon
signed-rank test for reference.

Our null hypothesis is that the average performance ot .. ~ SAVING model among different
stocks is identical to or worse than the performanc. of the benchmark method. The hypothe-
sis is rejected for VRNN, NSVM, LSTM and <+LSTM . * a significance level of 0.05 and for
GARCH and GP-vol at a significance level of 0.". N, su.ficient evidence suggest that the SAV-
ING model performs better than modified GARCh ariants, though the relatively small p-values
still encourage to prefer the SAVING model ¢ vc. EG.1\RCH, TARCH, and GJR-GARCH.

Table 3: Pairwise statistical analysis of the perforu. ~cc o> SAVING model against other benchmarks, measured by

NLLs.
Statistic GARCH [4] EGARCH[I8] ~axc. 4] GIR[19] GP-vol[35] VRNN[7] NSVM[8] LSTM[21] s+LSTM
Shapiro-Wilk’s W 0.96 0.96 0.95 0.95 0.96 0.98 0.97 0.90 0.92
p-value 0.78 0.82 70 0.66 0.76 0.96 0.91 0.22 0.37
paired one-tailed t  1.42 1.33 1.28 1.25 151 2.15 2.86 40.44 6.43
p-value 0.09% 0.11 512 0.12 0.08* 0.03++ 0.01%+ 0.00%* 0.00%+*
Wilcoxon’s W 14.0 15.0 15.0 15.0 12.0 8.0 5.0 0.0 0.0
p-value 0.17 0.20 0.2 0.20 0.11 0.05%* 0.02%+ 0.01## 0.01%+

The SAVING mode. outpc. “xrms other compared methods on 8 out of 10 stocks in terms
of NLL. We compare .. “erministic linear models and deep neural models. Unlike previous
studies, we do not fi .d de _p neural models, such as VRNN and NSVM to be superior to linear
models. This mav duc - the use of different datasets and the difficulty of model tuning. In
fact, all the linea mor'el vaiiants exhibit similar and stable behavior, though GJIR-GARCH and
TARCH perfor.. sli;htly oetter than EGARCH and follows the original GARCH. It is worth
mentioning th~t the ~T".-GARCH model even produces better results on two stocks and also
obtained ve y simi. 't results on other five stocks. This observation justifies the necessity of
considering symme ric shock for volatility modeling.

LSTM ana .. ZoTM show very different results because these two models actually forecast
only rr curns, u s a great amount of information is lost. The volatility is later derived using
a naive varianc : estimation based on both observed and forecasted values. Furthermore, the
wav to incu. porate sentiment time series is by simple concatenation. While experiments of the
SA INC w,udel suggest this configuration of simple concatenation is not favored because we
need . simultaneously minimize error for sentiment prediction. In some extreme cases (2 out
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Figure 5: Return and sentiment series of TSLA. (Colors can be better displayc " in the web version of this article.)

—— GARCH
0.00081 — sAVING

0.0007 1

K 1
0.0006 1 [\‘ ; ,/”

0.0005 1 “

I
0.0004 | vu

0 50 10u 10 200 250 300 350

Figure 6: Forecasted volatility of TSL « by t ;0 models. (Colors can be better displayed in the web version of this article)

of 10), introducing sentir . nt increases the error of predictions. This not only happens to the
LSTM/s+LSTM pair bu. also u.> SAVING/VRNN pair. Despite these rare cases, incorporating
sentiment still signific .aw - improves LSTM based naive volatility forecasting, reducing average
NLL by 0.6936.

The SAVING mode., 7n the other hand, takes advantage of both sentiment information and
the expressive p- wer of a VRNN. Figure 5 shows the log returns of TSLA, where sentiment
time series are . 2lr 4 to it into the chart. Although some movement segments are seemingly
aligned, this ~~mplic.  d relation between sentiment and asset prices is hard to capture with
linear modr is. Fig. ve 6 provides forecasted volatility of the SAVING model and a GARCH
model. We ~bserve .hat the SAVING model can swiftly adapt to the current fluctuation level
whereas ~ ARU.. suffers from a long recovery time from previous shocks, consistent with [8].
For th'; reasor. the SAVING forecasting exhibits some desired properties, e.g., stationary, so
that ma ‘v finar cial models assuming a latent volatility still apply. The forecasting also shows
pserdo-cycucal fluctuation, which is the case for returns as markets close regularly on weekends
ana “oli .ays.
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The recent peak on day 358 (August 7, 2018) corresponds to the drastic .. ~p after Elon
Musk announced his take-private plan on Twitter. We observe that the price ¢ sick] fell back in
the following days after the news sentiment faded away. It is arguable that in .. elatively long
term the stock’s volatility has really been influenced. However, the GARCh ~recas.ing, based
on the observed results from day 240 to day 290, seems to need mon‘..> o digest this shock
without considering market sentiment (see Figure 6).

6. Related Work

Volatility is a fundamental concept which many financial applic *ion< ouild on, such as as-
set/derivative pricing, hedging, and portfolio optimization [? (, 387 A group of deterministic
linear models [4, 18, 19] pioneered time-varying volatility 1 ‘o7 .iing However, these models
can be disputed by noise-contaminated data, which is un.>rtuna*=’; common in the financial
world. Stochastic models, e.g., [39, 35] are thus developed to n.. ‘gate this weakness. In studies
of computational intelligence, fuzzy logic and fuzzy time ~eries ar : also widely used to to model
time-varying volatility [40, 41].

Recent developments of RNN provided us the possibiln. ~f analyzing time series with mod-
els having usually hundreds or thousands times of pa. ~meters than classical models. Specifically,
VRNN models that encode variance with model variabic. [7, 8] are suitable for volatility mod-
eling. Other approaches, such as reinforcemem ‘'ear’ u.., are explored to implicitly model risk
aversion from simulated portfolio performance [4. . These models are powerful but pure data
mining on past observations.

Since the relation between market sentime *t and price movement has been widely testi-
fied [14, 15, 9], it would be more mean. *otu: .. seek for additional predictive power by in-
corporating this external information. More bi. ~dly speaking, the community witnessed a trend
of grounding knowledge to connecti- ‘-t models in recent years, thanks to the progress in text
mining [43], text categorization | 4], ana text clustering [45] techniques. For instance, Ding
et al. [10] extracted events from u. s an- incorporated event embedding vectors into a deep
convolutional neural network “JCNN) . r stock price prediction; Luo et al. [46] incorporated
manually-designed query-dri- en 2 enti ,n to employ expert knowledge for RNN-based financial
sentiment analysis; Xing e’ al. | 71 v ;ed the business classification knowledge to model stock
relationships with applic7 . " to porifolio construction. We believe this idea can produce more
fruitful results in many scenari.

7. Conclusion

In this work, ~e 1 oposed the SAVING model to incorporate market sentiment as a form of
external knowlc 've or v fatility forecasting. The model inherits the expressive power of deep
VRNNSs, and #rther v ,lore effective ways to align data from two different sources. The gen-
eralized mc «el not . nly provides an interface to external knowledge bases but also captures the
bi-direction. ! interar ;ion between market sentiment and asset price movements. Experiments
show th~* “he ... «NG model outperforms many state-of-the-art volatility forecasting models,
such a GJR-U ARCH, GP-vol, VRNN, and NSVM. Future work includes quantification and
visuali. ~tion of sentiment-volatility interaction. We also plan to leverage sentiment knowledge
bases speciue to the finance domain and integrate non-Gaussian distribution hypotheses of asset
retu Ms ¢ wstribution agnostic models.
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