
Journal of Artificial Intelligence Research 58 (2017) 703-729 Submitted 07/16; published 03/17

A Neural Probabilistic Structured-Prediction Method for
Transition-Based Natural Language Processing

Hao Zhou zhouh@nlp.nju.edu.cn
State Key Laboratory for Novel Software Technology
Nanjing University
Nanjing, Jiangsu, China

Yue Zhang yue zhang@sutd.edu.sg
Information Systems Technology and Design
Singapore University of Technology and Design
Singapore

Chuan Cheng chengc@nlp.nju.edu.cn

Shujian Huang huangsj@nlp.nju.edu.cn

Xinyu Dai daixy@nlp.nju.edu.cn

Jiajun Chen chenjj@nlp.nju.edu.cn

State Key Laboratory for Novel Software Technology

Nanjing University

Nanjing, Jiangsu, China

Abstract

We propose a neural probabilistic structured-prediction method for transition-based
natural language processing, which integrates beam search and contrastive learning. The
method uses a global optimization model, which can leverage arbitrary features over non-
local context. Beam search is used for efficient heuristic decoding, and contrastive learning
is performed for adjusting the model according to search errors. When evaluated on both
chunking and dependency parsing tasks, the proposed method achieves significant accuracy
improvements over the locally normalized greedy baseline on the two tasks, respectively.

1. Introduction

Transition-based methods with global optimization and beam search (Zhang & Clark,
2011b) have been used to solve many structured-prediction problems in natural language
processing. Such method construct outputs by using a sequence of transition actions over
input sentences, adopting a structured model for an action sequence directly instead of
modeling each action individually. As shown in Figure 1a, a greedy POS-tagging model
selects the highest scoring action for each word in a sentence, which may suffer from label
bias (Lafferty, McCallum, & Pereira, 2001). In contrast, a structured POS-tagging model
in Figure 1b directly searches for the best scored action sequence globally, which allevi-
ates the problems of greedy models. As a structured prediction model, global optimization
with beam search yields fast speed and high accuracies, enabled by integrating search and
learning, and the freedom to use arbitrary features. For natural language processing tasks
such as Chinese word segmentation (Zhang & Clark, 2007), dependency parsing (Yamada
& Matsumoto, 2003; Nivre & Scholz, 2004; Zhang & Clark, 2008; Huang & Sagae, 2010;

c©2017 AI Access Foundation. All rights reserved.



Zhou, Zhang, Cheng, Huang, Dai, & Chen

Zhang & Nivre, 2011; Goldberg & Nivre, 2013) and constituent parsing (Zhang & Clark,
2011b; Zhu, Zhang, Chen, Zhang, & Zhu, 2013; Zhang, Zhang, Che, & Liu, 2013), for
which features play a important role, the transition-based method gives highly competitive
accuracies and efficiencies.

Traditional transition-based systems represent context with large amounts of sparse fea-
tures. More complex features can be obtained by combining atomic sparse features such
as word or a POS tag. Chen and Manning (2014) propose a greedy neural dependency
parsing model, which represents atomic features as dense vectors, obtaining feature combi-
nation via non-linear neural networks automatically rather than devising high-order features
manually. The greedy neural parser achieves significant accuracy improvements upon the
greedy discrete Maltparser model (Nivre, 2004), and runs in a very fast speed. The idea of
the transition-based neural parser can be used for other NLP tasks such as part-of-speech
tagging, name entity recognition, chunking and CCG parsing. However, the accuracy of
the greedy transition-based neural parser of Chen and Manning lags behind state-of-the-art
discrete systems with sparse features (Zhang & Nivre, 2011), which adopt global learning
and beam search decoding (Zhang & Nivre, 2012; Huang, Fayong, & Guo, 2012).

The respective advantages of structured learning with beam search and neural network
modeling give rise to the research question whether the two techniques can be combined
for reaping the benefits from each. In this article, we propose a novel structured-prediction
framework for transition-based neural models, which adopts global learning upon action se-
quences instead of local learning on individual actions. Following Zhang and Clark (2011),
beam search is applied for decoding, and global structured learning is integrated with
search (Daumé III, Langford, & Marcu, 2009; Doppa, Fern, & Tadepalli, 2014; Chang,
Krishnamurthy, Agarwal, Daume, & Langford, 2015; Chang, He, Ross, Daume III, & Lang-
ford, 2016; Zhou, Zhang, Huang, Zhou, Dai, & Chen, 2016) using early-update (Collins
& Roark, 2004). Different from Zhang and Clark (2011b), a neural network is utilized to
score transition actions, rather than a linear model with discrete features. Designing such
a framework is challenging for two main reasons:

First, applying global structured-prediction models for transition-based structured task
such as parsing is non-trivial. A direct adaptation of the framework of Zhang and Clark
(2011b) or Huang et al. (2012) under the neural probabilistic model setting does not yield
good results. In the neural case, our systems are probabilistic models, which give each tran-
sition action a probability. Because the actions in a sequence are highly dependent, the log
probability of an action sequence cannot be modeled just as the sum of log probabilities of
each action in the sequence, which is the case of discrete structured prediction models. This
issue can be understood as label bias, since a model with each action being individually nor-
malized does not necessarily give optimal action sequence scores. We address the challenge
by using a softmax function to directly normalize the distribution of action sequences.

Second, for the structured model above, maximum-likelihood training is computation-
ally intractable, requiring summing over all possible action sequences, which is difficult
for transition-based systems. To address this challenge, we take a contrastive learning ap-
proach (Hinton, 2002; LeCun & Huang, 2005; Liang & Jordan, 2008; Vickrey, Lin, & Koller,
2010; Liu & Sun, 2014), using the sum of log probabilities over the action sequences in the
beam to approximate that over all possible action sequences. The larger the beam size is,
the more exact the estimation of the probability mass is. The approximate estimation of
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Figure 1: Example of greedy and structured POS-tagging models for the sentence “John
loves Mary”.

Sentence

Actions

More enemies to be dealt with .

B E-NP B I E-VP S-PP O

Figure 2: Example of chunking outputs: “[NP More enemies] [VP to be dealt] [PP with ] [O .]”
and its transition actions.

the beam contrastive learning is based on the assumption that the probability mass over
the whole search space is concentrated on the limited best search candidates.

We evaluate the beam contrastive learning method on two fundamental NLP tasks:
chunking and dependency parsing. For each task, both English and Chinese corpora are
used. In the standard CoNLL 2000 data set for chunking (Tjong Kim Sang & Buchholz,
2000), our method obtains 0.39% and 0.99% accuracy improvements over a strong neural
chunking baseline for English and Chinese, respectively. In standard dependency parsing
evaluation (Marcus, Marcinkiewicz, & Santorini, 1993; Xue, Xia, Chiou, & Palmer, 2005),
our method achieves accuracies of 93.31% and 85.01% for English and Chinese, respectively,
which are significantly higher than the greedy neural parser of Chen and Manning (2014).
The accuracy improvements achieved by the structured-prediction models show the effec-
tiveness of the proposed beam contrastive learning framework, which could also be used for
other structured-prediction tasks. This article is a much extended version of a conference pa-
per (Zhou, Zhang, Huang, & Chen, 2015), which describes the neural structured-prediction
model for dependency parsing.

2. Transition-Based Systems

Most structured prediction problems can be described using a transition-based framework,
which constructs outputs by using sequences of incremental actions. In this section, we show
how transition systems are defined for chunking and dependency parsing, respectively.

705



Zhou, Zhang, Cheng, Huang, Dai, & Chen

QueueStack

John loves Mary

John loves Mary

S

John loves Mary

S

John

loves Mary

L

Mary

S
John

loves

MaryJohn

loves

R

Figure 3: Example for processing the sentence “John loves Mary”.

2.1 Transition System for Chunking

Given an input sentence, transition-based chunking employs a sequence of actions to gener-
ate a chunking output. The chunker maintains a state {qc, qw}, where qc is the chunk queue
for predicted chunks and qw is the word queue for the incoming words to be processed. At
each step of chunking, the chunker pops a word off qw and chooses one action, determining
the relationship between the word and the processing partial chunk. Denoting the front
word of qw as wj , the chunker chooses one of the following transition actions at each step:

• Begin (B): mark wj as the beginning of a chunk, which contains multiple words.

• End (E-l): mark wj as the last word of the current partial chunk in qc, with the
syntactic chunking label l.

• Outside (O): mark wj as an out-of-chunk word.

• Inside (I): mark wj as an internal word of the current partial chunk in qc.

• Single (S-l): mark wj as the only word of a chunk with the syntactic chunking label
l.

Given the sentence “More enemies to be dealt with .”, the gold action sequence is <B,
E-NP, B, I, E-VP, S-PP, O> as shown in Figure 2.

2.2 Transition System for Dependency Parsing

Transition-based dependency parsers scan an input sentence from left to right, performing
a sequence of transition actions to predict its parse tree (Nivre, 2008). In this article, we
employ the arc-standard system (Nivre, Hall, Nilsson, Chanev, Eryigit, Kübler, Marinov,
& Marsi, 2007), which maintains partially-constructed outputs using a stack, and orders the
incoming words in the input sentence in a queue. Parsing starts with an empty stack and a
queue consisting of the whole input sentence. At each step, a transition action is taken to
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input : w0 . . . wn−1

axiom : 0 : 〈0, φ, φ, 0〉

goal : 2n− 1 : 〈n, s0, L〉

Shift
k : 〈j, S, L〉

k + 1 : 〈j + 1, S|wj , L〉

Left-Arc(l)
k : 〈j, S|s1|s0, L〉

k + 1 : 〈j, S|s0, L ∪ {s1
l←− s0}〉

Right-Arc(l)
k : 〈j, S|s1|s0, L〉

k + 1 : 〈j, S|s1, L ∪ {s1
l−→ s0}〉

Figure 4: Deductive system for arc-standard dependency parsing.

consume the input and construct the output. The process repeats until the input queue is
empty and the stack contains only one dependency tree.

Formally, a parsing state is denoted as 〈j, S, L〉, where S is a stack of subtrees [. . . s2, s1,
s0], j is the head of the queue (i.e. [ q0 = wj , q1 = wj+1 · · · ]), and L is a set of dependency
arcs. At each step, the parser chooses one of the following actions:

• Shift (S): move the front word wj from the queue onto the stacks.

• Left-Arc (L-l): add an arc with label l between the top two trees on the stack (s1 ←
s0), and remove s1 from the stack.

• Right-Arc (R-l): add an arc with label l between the top two trees on the stack (s1

→ s0), and remove s0 from the stack.

The arc-standard parser can be summarized as the deductive system in Figure 4, where k
denotes the current parsing step. For a sentence with size n, parsing stops after performing
exactly 2n − 1 actions. Figure 3 shows an example of transition-based parsing. Given the
sentence “John loves Mary”, the parsing system employs 5 transition actions to generate
the output parsing tree.

3. Greedy Models

A greedy transition-based model generates structured outputs by employing a sequence of
independent transition actions. At each step, the greedy model selects one optimal action
with the locally highest score. The score of actions could be computed by using discrete
and neural models.

707



Zhou, Zhang, Cheng, Huang, Dai, & Chen

 

 

x h o
W1 W2

State

Feature 
Extraction

Figure 5: Neural network for greedy transition-based models .

3.1 Discrete Model

Many transition-based chunking and parsing systems use a discrete model for scoring tran-
sition actions at each step. In general, given an input x, the discrete model generates an
output y by a multi-step action classification process. At each step, the action is:

ai = arg max
a∈GEN(x,i)

score(a) (1)

Here ai is the action at the ith step, and GEN(x, i) returns all possible actions at the ith
step. score(y) is computed by a local classifier such as the support vector machine (SVM).

score(y) = φ(y) · ~θ (2)

Here ~θ ∈ Rd is the parameter vector of the classifier. φ(ai) is the local feature vector,
extracted using manually defined feature templates (Zhang & Clark, 2011b).

As a greedy transition-based example, Kudo and Matsumoto (2001) first propose to use
SVM (Cortes & Vapnik, 1995) for syntactic chunking, which obtains the highest reported
result in the CoNLL 2000 shared task for chunking. SVM is also adopted in greedy de-
pendency parsing (Yamada & Matsumoto, 2003; Nivre, 2004). Their greedy discrete model
runs in linear time, and obtains competitive performance by employing large numbers of
manual sparse features.

3.2 Neural Model

Different from discrete models, a greedy neural model extracts n features from a state
item, and represents the extracted features as embeddings, each of which is represented
as a d-dimensional vector ei ∈ R. Chen and Manning (2014) propose to use a greedy
neural model for transition-based parsing, which exploits the strong representation ability
of neural networks, and achieves higher accuracy than discrete counterparts. Therefore, the
full embedding matrix is E ∈ Rd×V , where V is the number of distinct features (Figure
5). A projection layer is used to concatenate the n input embeddings into a vector x =
[e1; e2 . . . en], where x ∈ Rd·n. The purpose of this layer is to fine-tune the embedding
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Algorithm 1: Beam Search Decoding Algorithm.

Input: problem; agenda; candidates; B
Output: best
candidates ← StartItem(problem)
agenda ← Clear(agenda)
while true do

foreach candidate ∈ candidates do
agenda ← Insert(Expand(candidate, problem), agenda)

best ← Top(agenda)
if GoalTest(best) then

return best
candidates ← Top-B(agenda, B) agenda ← Clear(agenda)

features. Then x is mapped to a dh-dimensional hidden layer by a mapping matrix W1 ∈
Rdh×d·n and an activation function σ:

h = σ(W1x+ b1) (3)

Finally, h is mapped into a softmax output layer for modeling the probabilistic distribution
of candidate transition actions:

p =softmax(o) (4)

where

o = W2h (5)

Here W2 ∈ Rdo×dh and do is the number of actions. Each dimension of the output layer o
corresponds to the probability of a next action. The greedy neural model selects the most
probable action at each step and performs the transition process until chunking or parsing
finishes.

Given a set of training examples, the training objective of the greedy neural model is to
minimize the cross-entropy loss, plus a l2-regularization term:

L(θ) = −
∑
i∈A

log pi +
λ

2
‖ θ ‖2 (6)

θ is the set of all parameters (i.e. W1, W2, b, E), and A is the set of all gold actions in
the training data. AdaGrad (Duchi, Hazan, & Singer, 2011) with mini-batch is adopted for
optimization.

4. Structured-Prediction Using Global Discrete Model and Beam-Search

As mentioned in introduction, drawbacks of the greedy transition system include label bias
and error propagation. An incorrect action will have a negative influence to its subsequent
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actions, leading to an incorrect output. To address this issue, Zhang and Clark (2011b)
propose to use a globally optimized model for transition-based methods, learning a sequence
of transition actions as a unit, rather than each action individually, which alleviates the
label bias and error propagation problems of greedy discrete models by combining a global
discrete model with a beam-search decoding algorithm, giving results competitive with the
state-of-the-art on various tasks.

4.1 Beam-Search

The global discrete model uses beam search to obtain the highest scored output heuristically,
where an agenda is employed to keep the K-best partial outputs at each incremental step,
and the partially built outputs are represented as state items. For a shift-reduce parser, a
state item includes the stack structure for the shift-reduce process and the queue of incoming
unanalyzed words.

The agenda is initialized as empty, and the state item that corresponds to the initial
structure is put onto it before decoding starts. At each step during decoding, each state
item from the agenda is extended with one incremental step. When there are multiple
choices to extend one state item, multiple new state items are generated. The new state
items are ranked by their scores, and the B-best are put back onto the agenda. The process
iterates until a stopping criterion is met, and the current best item from the agenda is taken
as the output.

Pseudocode for the generic beam-search algorithm is given in Algorithm 1, where the
variable problem represents a particular task, such as chunking or dependency parsing, and
the variable candidate represents a state item, which has a different definition for each task.
For example, for the dependency parsing task, a candidate is a state item, consisting of a
stack of partially parsed tree structures and a buffer of remaining words to be parsed. The
agenda is an ordered list, used to keep all the state items generated at each stage, ordered
by score. The variable candidates is the set of state items that can be used to generate new
state items, that is, the B-best state items from the previous stage. B is the number of
state items retained at each stage.

StartItem initializes the start state item according to the problem; for example, for the
dependency parsing task, the start state item is a pair consisting of an empty stack and the
complete sequence of words and its corresponding POS-tags waiting to be parsed. Clear
removes all items from the agenda. Insert puts one or more state items onto the agenda.
Expand represents an incremental processing step, which takes a state item and generates
new state items from it in all possible ways. For example, for the dependency parsing
task, Expand takes the partially parsed tree structure in a state item, and extends it with
all valid shift-reduce actions. Top returns the highest scoring state item on the agenda.
GoalTest checks whether the incremental decoding process is completed; for example, for
the dependency task, the process is complete if the stack contains only one tree and the
queue is empty. Top-B returns the B-highest scoring state items on the agenda, which are
used as candidates for the next incremental step. State items in the agenda are ranked by
their scores.
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Algorithm 2: Global Online Learning Algorithm.

Input: training examples (xi, yi)
Output: ~θ
~θ ← 0;
for r = 1..P, i = 1..N do

y′i = Decode(xi);
if y′i 6= yi then

~θ = ~θ + Φ(yi) - Φ(y′i);

4.2 Model

The key difference between structured-prediction models and greedy models is that, given an
input, a structured-prediction model searches for the highest scored structural output (which
corresponds to an action sequence), instead of obtaining the optimal action at each step
as in the greedy case. Given an input x, the goal of a global discrete model is to find the
highest-scored action sequence globally.

y′ = arg max
y∈GEN(x)

score(y), (7)

where GEN(x) denotes all possible action sequences on x. For the problem of dependency
parsing, x is a sentence with POS-tags and y′ is highest scored chunking or parsing output.

To compute score(y), the output structure y is mapped into a global feature vector
Φ(y) ∈ Nd. Each dimension of Φ(y) represents a sparse feature, and discrete model always
extracts billion of sparse indicator features from the output according to a set of feature
templates (Zhang & Clark, 2011b). Note that Φ(y) is a global feature vector, which includes
all feature vectors for the whole action sequence instead of one action in the sequence. Given
the feature vector Φ(y), score(y) is computed using a linear model:

score(y) = Φ(y) · ~θ, (8)

where ~θ ∈ Rd is the parameter vector of the model.

4.3 Training

Zhang and Clark (2011b) adopt the on-line perceptron algorithm (Collins, 2002) with early-
update (Collins & Roark, 2004) for model training. Given a training instance (xi, yi) ∈
(X,Y ), a beam search decoder produces a highest scored output y′i according to the param-

eter vector ~θ. Here, xi is the input sentence and yi is its corresponding output. For each
instance, the output y′i is compared with the gold structure yi. If y′i is correct, no update is
performed. If y′i is incorrect, the parameter vector is updated by adding the global feature
vector of yi and subtracting the global feature vector of y′i. Intuitively, the training process
effectively coerces the decoder to produce the correct output.

As shown in Algorithm 2, the training process is performed iteratively, guiding the
search algorithm by correcting search errors. Here, P is the iteration numbers and N is the
total size of training data (X,Y ). The early-update strategy of Collins and Roark (2004)
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Figure 6: Example global neural model with beam size = 3. Here the action set is {a1, a2, a3}
and 3 actions are performed for each state item in the example.
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(Nivre

et al., 2007)
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(Zhang and
Nivre, 2011)
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dense

Section 3.2
(Chen and

Manning, 2014)
this work

Table 1: Correlation between different parsing models.

is adopted in the on-line learning process. At any step during incremental decoding, if all
the partial candidates in the agenda are incorrect, decoding is stopped and the parameter
vector is updated immediately, according to the current best candidate in the agenda and
the corresponding gold-standard partial output.

5. Structured-Prediction Using Neural Networks and Beam Search

The global discrete model introduced in Section 4 obtains better performance compared to
the greedy discrete model (Zhang & Clark, 2011b), which shows the strength of structured-
prediction. We propose a globally normalized neural model, which combines the advantages
of structured learning and neural network modeling over greedy discrete models.

A direct adaptation of the framework of Zhang and Clark (2011b) under the neural
probabilistic model setting does not yield good results. We propose a neural probabilis-
tic structured-prediction model, which finds the distribution of action sequences directly,
instead of computing probability of action sequences by multiplying the probabilities of
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each individual action in the sequence. Following Zhang and Clark (2011), beam search is
applied to decoding, and global structured learning is integrated with beam search using
early-update (Collins & Roark, 2004). As shown in Table 1, for dependency parsing, the
model can be seen as a neural probabilistic alternative of Zhang and Clark (2011b), or a
structured-prediction alternative of Chen and Manning (2014).

5.1 Model

Given a sentence x and a set of neural network parameter θ, the probability of the action
sequence yi is given by the softmax function:

p(yi | x, θ) =
ef(x, θ)i∑

yj∈GEN(x)

ef(x, θ)j
, (9)

where

f(x, θ)i =
∑
ak∈yi

o(x, yi, k, ak) (10)

Here GEN(s) is the set of all possible valid action sequences for a sentence x and
o(x, yi, k, ak) denotes the neural network score for the action ak given x and yi. We use
the same neural network as Chen and Manning (2014) to calculate o(x, yi, k, ak) (Equation
5). The beam search algorithm described in Algorithm 1 is used to obtain the most probable
action sequence, according to Equation 9.

5.2 Tranining

Given the training data as (X, Y ), our training objective is to minimize the negative log-
likelihood:

L(θ) = −
∑

(xi, yi)∈(X,Y )

log p(yi | xi, θ) (11)

= −
∑

(xi, yi)∈(X,Y )

log
ef(xi,θ)i

Z(xi, θ)
(12)

=
∑

(xi, yi)∈(X,Y )

logZ(xi, θ)− f(xi, θ)i , (13)

where

Z(x, θ) =
∑

yj∈GEN(x)

ef(x, θ)j (14)

Here, Z(x, θ) is called the partition function. Following Chen and Manning (2014),
we apply l2-regularization for training. AdaGrad (Duchi et al., 2011) with mini-batch is
adopted for optimization.
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Algorithm 3: Training Algorithm for Global Neural Model with Neural Networks.

Input: training examples (X, Y)
Output: θ
θ ← pretrained embedding
for i ← 1 to N do

x, y = RandomSample(X, Y)
δ = 0
foreach xj, yj ∈ x, y do

beam = φ
goldState = null
notEnd = true
beamGold = true
while beamGold and notEnd do

beam = decode(beam, xj, yj)
goldState = goldMove(goldState, xj, yj)
if not isGold(beam) then

beamGold = false

if isEnd(beam) then
notEnd = false;

δ = δ + update(goldState, beam)

θ = θ + δ;

For optimization, we need to compute gradients for L(θ), which includes gradients of
exponential numbers of negative examples in the partition function Z(x, θ). However, beam
search is used for transition-based parsing with non-local features, and no efficient optimal
dynamic program is available to estimate Z(x, θ) accurately. We adopt a novel contrastive
learning approach to approximately compute Z(x, θ). As an alternative to maximize the
likelihood on some observed data, contrastive learning (Hinton, 2002; LeCun & Huang,
2005; Liang & Jordan, 2008; Vickrey et al., 2010; Liu & Sun, 2014) is an approach that
assigns higher probabilities to observed data and lower probabilities to noisy data.

We adopt contrastive learning by assigning higher probabilities to the gold action se-
quence compared to incorrect action sequences in the beam. Our new training objective is
approximated as:

L′(θ) = −
∑

(xi, yi)∈(X,Y )

log p′(yi | xi, θ) (15)

= −
∑

(xi, yi)∈(X,Y )

log
ef(xi,θ)i

Z ′(xi, θ)
(16)

=
∑

(xi, yi)∈(X,Y )

logZ ′(xi, θ)− f(xi, θ)i (17)

714



Beam Contrastive Learning

where

Z ′(x, θ) =
∑

yj∈BEAM(x)

ef(x, θ)j (18)

p′(yi | x, θ) is the relative probability of the action sequence yi, computed over only
the action sequences in the beam. Z ′(x, θ) is the contrastive approximation of Z(x, θ).
BEAM(x) returns the predicted action sequences in the beam. Intuitively, this method
only penalizes incorrect action sequences with high probabilities.

We assume that the probability mass concentrates on a relatively small number of action
sequences, which allows the use of a limited number of probable sequences to approximate
the full set of action sequences. The concentration may be enlarged dramatically with an
exponential activation function of the neural network (i.e. a > b⇒ ea � eb ).

5.3 Integrating Search and Learning

As shown in Algorithm 3, the proposed model also adopts the beam-search (Section 4.1)
algorithm for decoding, integrating search and learning (Figure 6). At each training iteration
i, we randomly sample a set of training instances, and perform on-line learning with early
update (Collins & Roark, 2004). In particular, given a training example, we use beam-
search to decode the sentence. At any step. if the gold action sequence falls out of the
beam, we take all the incorrect action sequences in the beam as negative examples, and
the current gold sequence as a positive example for parameter update, using the training
algorithm of Section 5.2. In this way, the distribution of not only full action sequences (i.e.
complete parse trees), but also partial action sequences (i.e. partial outputs) are modeled.
Due to the model integrating search and learning, early update is triggered frequently when
the model is not well learned, and our model pays more attention to correct the partial
outputs in search and learning. With the increasingly in-depth training, the global model is
trained well on the partial outputs, and will begin to focus on the complete outputs. This
process shows the effectiveness of integrating search and learning.

6. Features

One advantage of Chen and Manning (2014) is that neural networks has strong power in
feature representation and can achieve feature combination automatically. In this article,
we use the same feature templates in both greedy neural baseline model and the global
neural model.

6.1 Chunking

Following previous work (Zhou, Qu, & Zhang, 2012; Huang, Xu, & Yu, 2015; Lyu, Zhang,
& Ji, 2016), we divide chunking features into 5 types. As shown in Table 2, Fw, Ft, Fl,
Fc, Fa represent word, POS-tag, action, word capital and affix features, respectively. q0

c .w
represents the first word in q0

c ; q
1
w.t represents the POS-tag of the second word in qw; q0

c .l
represents the transition action for q0

c ; q
0
c .c represents capitalization information for q0

c .w,
namely whether the word is all in lower case, all in upper case, with the first letter in upper
case or with at least one letter in upper case. prefixi(w), suffixi(w) return the i-th prefix or
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Type Templates Size

Fw q1
c .w; q0

c .w; q0
w.w; q1

w.w; q2
w.w 50

Ft

q1
c .t; q

0
c .t; q

0
w.t; q

1
w.t; q

2
w.t; q

1
c .t ◦ q0

c .t;

50
q0
c .t ◦ q0

w.t; q
0
w.t ◦ q1

w.t; q
1
w.t ◦ q2

w.t;
start(qc.C

2).t; end(qc.C
2).t; head(qc.C

2).t;
start(qc.C

1).t; end(qc.C
1).t; head(qc.C

1).t
start(qc.C

0).t

Fl
q1
c .l; q

0
c .l; start(qc.C

0).l; end(qc.C
2).l;

50
end(qc.C

1).l

Fc q1
c .c; q

0
c .c; q

0
w.c; q

1
w.c; q

2
w.c 5

Fa
prefix1(q0

w.w); prefix2(q0
w.w); suffix2(q0

w.w);
20

prefix3(q0
w.w); suffix1(q0

w.w); suffix3(q0
w.w)

Table 2: Feature templates for chunking, where Size denotes the dimension size of the
corresponding feature embedding.

suffix letters of given a word w. qc.C0 is the first chunk in a chunk queue. start(C), end(C)
and head(C) return the start word, the end word and the head word1 for a chunk C.

6.2 Dependency Parsing

The atomic features are defined by following Zhang and Nivre (2011). As shown in Table
3, the features are categorized into three types: Fw, F t, F l, which represent word features,
POS-tag features and dependency label features, respectively. For example, s0w and q0w
represent the first word on the stack and queue, respectively; lc1(s0)w and rc1(s0)w rep-
resent the leftmost and rightmost child of s0, respectively. Similarly, lc1(s0)t and lc1(s0)l
represent the POS-tag and dependency label of the leftmost child of s0, respectively. In
detail, Fw contains nw = 18 elements: The top 3 words on the stack and buffer: s1w,
s2w, s3w, b1w, b2w, b3w; the first and second leftmost / rightmost children of the top two
words on the stack: lc1(si), rc1(si), lc2(si), rc2(si), i = 1, 2. (3) The leftmost of the left-
most / rightmost of the rightmost children of the top two words on the stack: lc1(lc1(si)),
rc1(rc1(si)), i = 1, 2. For the POS-tagging feature Fp, we use the corresponding POS tags
for Fw (nt = 18), and the corresponding arc labels of words excluding those words on the
stack/buffer (nl = 12).

7. Experiments

We conduct chunking and parsing experiments on both English and Chinese corporaa.

7.1 Data and Evaluation

7.1.1 Chunking

For English chunking, we evaluate the systems using the CoNLL 2000 dataset (Tjong
Kim Sang & Buchholz, 2000), which consists of the Wall Street Journal (WSJ) corpus

1. We use manual head rules to extract the head word of chunks (Collins, 1999; Zhang & Clark, 2009).
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Type Templates Size

Fw

s0w, s2w, q0w, q1w, q2w, lc1(s0)w, lc2(s0)w

50
s1w, rc2(s0)w, lc1(s1)w, lc2(s1)w, rc2(s1)w
lc1(lc1(s0))w, lc1(lc1(s2))w
rc1(s1)w, rc1(rc1(s0))w, rc1(rc1(s1))w

F t

s0t, s2t, q0t, q1t, q2t, lc1(s0)t, lc2(s0)t

50
s1t, rc2(s0)t, lc1(s1)t, lc2(s1)t, rc2(s1)t
lc1(lc1(s0))t, lc1(lc1(s2))t
rc1(s1)t, rc1(rc1(s0))t, rc1(rc1(s1))t

F l
rc1(s0)t, lc1(s1)t, lc2(s1)t, lc1(lc1(s0))t

50lc1(s0)t, lc1(lc1(s1))t, rc2(s0)t, lc2(s0)t
rc2(s1)t, rc1(rc1(s0))t, rc1(rc1(s1))t, rc1(s1)t

Table 3: Feature templates for dependency parsing. Size denotes the dimension size of the
corresponding feature embedding.

and is widely used for chunking evaluation. Following previous work on CoNLL, we use
sections 15–18 of WSJ for training, section 21 for development (Sha & Pereira, 2003) and
section 20 for testing. The training set consists of 8936 sentences, and the test set consists
of 2012 sentences. The part-of-speech tags of the chunking data are derived using the Brill
tagger.

Chinese chunking experiments were performed on the CTB4 dataset (Chen, Zhang, &
Isahara, 2006), which consists of 838 files. We used the first 728 files (FID from chtb 001.fid
to chtb 899.fid) as the training data, and the other 110 files (FID from chtb 900.fid to chtb
1078.fid) as the test data. The training set consists of 9878 sentences, and the test set
consists of 5920 sentences.

We extract head words using the head rules of Collins (1999) for English, and those of
Zhang and Clark (2011b) for Chinese. The standard evaluation metrics for chunking are
used, which includes the precision p (the fraction of output chunks matching the reference
chunks), the recall r (the fraction of reference chunks returned), and the F-measure given
by F = 2pr/(p + r).

7.1.2 Dependency Parsing

Our English experiments are performed using the English Penn Treebank (PTB Marcus
et al., 1993). We follow the standard splits of PTB3, using sections 2-21 for training,
section 22 for development testing and section 23 for final testing. For comparison with
previous work, we use Penn2Malt to convert constituent trees to dependency trees. We
use the POS-tagger of Collins (2002) to assign POS automatically. 10-fold jackknifing is
performed for tagging the training data. We use the labeled attachment score (LAS) and
the unlabeled attachment score (UAS) to evaluate the parsing accuracy.

7.1.3 Pre-training Word Embeddings

For English, we follow Chen and Manning (2014) and use the set of pre-trained word em-
beddings from Collobert et al. (2011) with a dictionary size of 13,000. The word embeddings

717



Zhou, Zhang, Cheng, Huang, Dai, & Chen

Type Chunking Parsing

embedding size d 50 50
hidden layer size dh 300 300
regularization λ 10−8 10−8

initial learning rate α 0.05 0.01
batch size b 6000 2000

Table 4: Hyper-parameters.

Description Parsing UAS Chunking F1 Score

Baseline 91.78 93.17

structured greedy structured greedy

beam = 1 78.51 91.78 51.89 93.17
beam = 4 84.04 92.01 93.16 93.25
beam = 8 92.81 92.17 93.72 93.25
beam = 16 93.18 92.29 93.90 93.25
beam = 32 93.40 92.27 93.76 93.25
beam = 64 93.48 92.24 94.84 93.25

Table 5: Accuracies of the structured neural model and the greedy neural model with
different beam sizes.

were trained on the entire English Wikipedia, which contains about 631 million words. For
Chinese, we train 50-dimensional embeddings using word2vec on Wikipedia and Gigaword
corpus for Chinese.

7.2 Hyper-parameters

We tune the hyper-parameters of neural networks on the development set for both chunking
and parsing, setting them as shown in Table 4. In addition to the hyper-parameters, beam
size is also important to the system performance of structured prediction. We tune the
beam sizes for chunking and parsing on the development sets.

7.3 Beam Size

Beam search enlarges the number of search candidates. Typically, the larger the beam
is, the more accurate search algorithm is. Contrastive learning approximates the exact
probabilities of exponential many action sequences by computing the relative probabilities
over action sequences in the beam (Equation 18). Therefore, the larger the beam is, the
more accurate the approximation is. In this section, we evaluate the results of chunking
and parsing with different beam sizes on the English data set.

As shown in the structured columns in Table 5, the performances of the beam contrastive
models improve as the beam size increases. To verify that the accuracy improvements are
not due to the relieved error propagation by the beam search decoding, we also report the
results of the greedy neural baseline with beam search decoding, in the greedy columns in
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System F1 Score

Kudo and Matsumoto (2001) 93.91
Shen and Sarkar (2005) 94.01

Sun, Morency, Okanohara, and Tsujii (2008) 94.34
Collobert et al. (2011) 94.32

Huang et al. (2015) 94.46

baseline greedy model 94.19

beam contrastive learning 94.58

Table 6: English results on CoNLL for chunking.

Table 5. The score of a whole action sequence in the greedy model is computed by the sum
of log action probabilities.

From Table 5, we can find that beam search can improve greedy parsing. With increasing
beam sizes, decoding using a greedy model gives slightly improved chunking (+0.1) and
parsing (+0.5) accuracies. In contrast, by integrating beam search and global learning,
performances of the structured model benefit from larger beam sizes much more significantly.
With smaller beam size (i.e. 4), accuracies of the structured model lag behind of those
of the greedy model. Structured parsing and chunking with beam size 1 give really bad
performances, which is likely because the partition function in the structured model is
estimated poorly. With increasing beam sizes, accuracies of chunking and parsing improve
significantly. When the beam size is set as 64, the structured models outperform baselines
by 0.4% and 1.48% on chunking and parsing, respectively.

Zhang and Nivre (2012) find that global learning and beam search should be used jointly
for improving parsing using a discrete transition-based model. In particular, by increasing
the beam size, the accuracy of ZPar (Zhang & Nivre, 2011) increases significantly, but that
of MaltParser does not. For structured neural models, our finding is similar: integrating
search and learning is much more effective than using beam search only in decoding. For
neural parsing, we also obtain slight accuracy improvements with beam search decoding.
We speculate that the neural parser benefits from a softmax layer, which serves as a form
of normalization. If we remove the softmax layer in testing with beam search, the accuracy
of the structured system drops to 60%.

7.4 Results on English

In this section, we compare chunking and parsing performances using our neural structured-
prediction framework with a line of previous work on English data.

7.4.1 Chunking

We compare a set of related chunking methods in Table 6. Our model achieves an accuracy of
94.58. To our best knowledge, this is the best reported result achieved by a single chunking
model on this data set. The method of Kudo and Matsumoto (2001) gives the highest result
in CoNLL 2000, which adopts the SVM training and dynamic programming decoding. The
most related work includes Collobert et al. (2011) and Huang et al. (2015). Collobert et al.
use neural networks to model the chunking context. With a CRF based training objective,
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System UAS LAS

SUP

Huang and Sagae (2010) 92.10 -
Zhang and Nivre (2011) 92.90 91.80

Choi and McCallum (2013) 92.96 91.93
Ma, Zhang, and Zhu (2014a) 93.06 -

SEMI
Suzuki, Isozaki, Carreras, and Collins (2009) 93.79 -

Koo, Carreras, and Collins (2008) 93.16 -
Chen, Zhang, and Zhang (2014) 93.77 -

NEURAL

Andor et al. (2016)† 94.61 92.79
Weiss, Alberti, Collins, and Petrov (2015)† 93.99 92.05

Dyer, Ballesteros, Ling, Matthews, and Smith (2015)† 93.20 90.90
baseline greedy model 91.67 90.62

beam contrastive model 93.31 92.37

Table 7: Results on WSJ. SUP denotes the parsing methods with supervised models, SEMI
denotes methods with semi-supervised models and NEURAL denotes neural parsing models.
Results with † are reported on Stanford Dependencies.

it obtains an accuracy of 94.43%. Huang et al. extend Collebert’s work with a bi-direction
LSTM, and achieved further accuracy improvements. However, accuracies of their neural
models are lower than ours, and the main reason is that their neural CRF method makes a
Markov assumption on the label sequence, while our beam contrastive learning method is
a global learning model, extracting arbitrary features from the context.

7.4.2 Parsing

Table 7 shows the results of our parser and previous work on the test set. Our structured
parser achieves an accuracy of 93.31%, with s a 0.41% improvement over Zhang and Nivre
(2011), which employ millions of high-order binary indicator features. The model size of
ZPar (Zhang & Nivre, 2011) is over 250 MB on disk. In contrast, the model size of our
structured neural parser is only 25 MB.

Bohnet and Nivre (2012) obtain an accuracy of 93.67%, which is higher than our parser.
However, their parser is a joint model of parsing and POS-tagging, and they use external
data in parsing. We list the result of Chen et al. (2014), Koo et al. (2008) and Suzuki
et al. (2009) in Table 7, which make use of large-scale unannotated text to improve parsing
accuracies. The input embeddings of our parser are also trained over large raw text, and in
this perspective our model is correlated with the semi-supervised models.

We also compare our parser with parsing models using neural networks. Dyer et al.
(2015) propose a locally normalized transition-based dependency parser, which gives higher
parsing accuracies than Chen and Manning (2014) by using three stack LSTMs to repre-
sent the parsing features more effectively. Weiss et al. (2015) propose a structured neural
transition-based parser, which uses a greedy parsing process for pre-training, and fine-tunes
an additional perceptron layer consisting of the pre-trained hidden and output layers us-
ing structured perceptron updates. The main difference is that they adopt deeper neural
networks and perform much carefully hype-parameter tuning. Compared to Dyer et al.,
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System F1 Score

Chen et al. (2006) Memory-based 87.88
Chen et al. (2006) Transform-based 89.95

Chen et al. (2006) CRF 90.74
Chen et al. (2006) SVM 91.46

Zhou et al. (2012) 92.11

baseline greedy model 91.0

beam contrastive model 91.99

Table 8: Chinese chunking results. Result with † is given by a semi-supervised model.

our parser adopts a structured-prediction model, which models the whole action sequence,
reducing the error of label bias. Our proposed model can be used to further enhance the
performance of Dyer et al., which is orthogonal to our method. Different to our model,
Weiss et al. build a structured-prediction parsing model by only updating the parameters
of the perceptron layer and employing a perceptron-based objective. Andor et al. (2016)
use the same globally normalized networks as ours, except adopting deeper networks and
careful hyper-parameters tuning. The theory behind our approach was further developed
by Andor et al., who verify the effectiveness for the beam contrastive learning model in a
variety of NLP tasks, giving a detailed proof that the structured-prediction neural model is
strictly more expressive than the greedy neural model.

The improvements indicate that chunking and dependency parsing using neural networks
can achieve state-of-the-art performances without devising high-order features manually.
The results show that our parser combines the benefits of structured models and neural
probabilistic models, offering high accuracies and slim model size.

7.5 Results on Chinese

7.5.1 Chunking

As shown in Table 8, Chen et al. (2006) surveyed a line of chunking methods over the
Chinese data. Zhou et al. (2012) proposed to utilize chunking level data, and achieved
an accuracy of 92.11%, which is the best reported result on this data set. The structured
chunker obtains 0.99% improvement over the greedy baseline, which shows the effectiveness
of the beam contrastive learning.

7.5.2 Parsing

On Chinese Treebank, our parser achieves a 1.13% accuracy improvement over the greedy
baseline parser of Chen and Manning (2014). Our parser obtains higher accuracies compared
with the discrete structured-prediction transition-based parser of Zhang and Clark (2011b),
which is consistent with the parsing results on English PTB. The parsing accuracy of our
parser still lies slightly behind the parser of Huang and Sagae (2010), which adopts dynamic
programming for decoding and searches much more tree candidates than ours.
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System UAS LAS

Duan, Zhao, and Xu (2007) 83.88 -
Zhang and Clark (2011b) 84.33 -
Huang and Sagae (2010) 85.20 -

baseline greedy model 83.88 82.36

beam contrastive model 85.01 82.89

Table 9: Chinese Parsing results.

8. Related Work

Neural network methods have been widely applied in the natural language processing, ob-
taining state-of-the-art results for tasks such as part-of-speech tagging (Ma, Zhang, & Zhu,
2014b; Conti, Di Pietro, Mancini, & Mei, 2009; Ling, Lúıs, Marujo, Astudillo, Amir, Dyer,
Black, & Trancoso, 2015), syntactic parsing (Chen & Manning, 2014; Dyer et al., 2015;
Ballesteros, Dyer, & Smith, 2015) and machine translation (Devlin, Zbib, Huang, Lamar,
Schwartz, & Makhoul, 2014; Bahdanau, Cho, & Bengio, 2014).

8.1 Parsing by Neural Networks

Neural models have been very useful for syntax parsing. Socher, Bauer, Manning, and Ng
(2013) propose to use recursive neural networks in constituent parsing reranking, which
achieves adequate accuracy improvements. Vinyals et al. (2015) adopt a sequence to se-
quence model (Sutskever, Vinyals, & Le, 2014) to generate linearized parsing trees, which
achieves competitive parsing performances. Chen and Manning (2014) propose to use the
neural networks for transition-based parsing, which represents atomic parsing features as
dense vectors, obtaining feature combination automatically other than devising high-order
features manually. A line of subsequent work proposes to extend the neural parser by drop-
ping all their linguistic features, using LSTM (Hochreiter & Schmidhuber, 1997) to capture
parsing features completely. Dyer et al. (2015) propose a greedy transition-based depen-
dency parser, using three stack LSTMs to represent the input, the stack of partial syntactic
trees and the history of parse actions, respectively. Based on Dyer et al. (2015). Ballesteros
et al. (2015) further propose to use LSTM to model the relation among characters, leading
to better parsing performances on morphology-rich languages. By modeling more history,
the parser gives significant better accuracies compared to the greedy neural parser of Chen
and Manning. Kiperwasser and Goldberg (2016a) propose to incorporate the hierarchical
tree LSTM into an easy-first framework, and Kiperwasser and Goldberg (2016b) directly
use a bi-direction LSTM for input feature modeling, both of which give state-of-the-art
parsing accuracies.

8.2 Neural Structured-Prediction Parsing Models

Structured prediction approaches can be used to further enhanced the neural model per-
formances. Most previous work uses locally optimized models, which suffer from the label
bias problem and error propagation. Lafferty et al. (2001) propose the conditional random
fields (CRF) model, utilizing a globally normalization to relieve the label bias problem,
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which is introduced into neural model by Do, Arti, et al. (2010). Durrett and Klein (2015)
adopt the neural CRF model in constituent parsing, outperforming its linear counterparts.

The CRF objective (Lafferty et al., 2001) is used in many neural network models. mod-
els (Do et al., 2010; Collobert et al., 2011; Yao, Peng, Zweig, Yu, Li, & Gao, 2014; Zheng,
Jayasumana, Romera-Paredes, Vineet, Su, Du, Huang, & Torr, 2015; Huang et al., 2015)
for structured inference, which leads to significant accuracy improvements over locally op-
timized models. This shows the power of global optimized structured-prediction models,
which are powerful for the strong ability of feature representation. However, the linear-chain
neural CRF has limitations on feature extraction. In particular for dynamic programming
decoding, the feature window is limited due to Markov assumptions. The strong repre-
sentation learning ability of neural networks can be greatly limited from the local feature
extraction.

8.3 Integrating Search and Learning

Weiss et al. (2015) and ourselves (Zhou et al., 2015) concurrently propose to enhance the
parser of Chen and Manning with structured-prediction models. We (Zhou et al., 2015)
use a globally normalized training objective for modeling the whole action sequence, while
Weiss et al. only update the parameters of the perceptron layer by employing a perceptron-
based objective. Watanabe and Sumita (2015), Xu, Auli, and Clark (2016) and Wiseman
and Rush (2016) propose a different structured-prediction neural models with global op-
timization upon a sequence of actions. Watanabe and Sumita use the neural structured
model and beam search on the constituent parsing task. Xu et al. use the same framework
as ours except that their training objective is to maximize the expected F1 score instead
of the probability of the predicted parsing tree. Additionally, Wiseman and Rush adopt a
LaSO-like (Daumé III & Marcu, 2005) paradigm in training a search-based neural struc-
tured prediction model. Andor et al. (2016) adopt the same globally normalized networks
as us (Zhou et al., 2015), except for using deeper networks and carefully tuning hyper-
parameter, which lead to better performances on standard benchmarks. Andor et al. also
verify the effectiveness of the beam contrastive learning in a variety of other NLP tasks, giv-
ing a detailed proof that the structured-prediction neural model is strictly more expressive
than a greedy neural model.

The proposed beam contrastive learning integrates beam search and sentence-level log-
likelihood in a neural transition-based framework, which allows rich global features and is
fit for neural networks. The integrated search and learning approach was first proposed by
Daumé III et al. (2009), the sprit of which is used in solving many other problems (Goldberg
& Nivre, 2013; Doppa et al., 2014; Chang et al., 2015, 2016; Zhou et al., 2016). Combining
heuristic search and approximated learning, the proposed model could obtain significant
accuracy improvements empirically over a greedy baseline. Zhang and Clark (2011b) first
propose to use a global optimized model for transition-based structured prediction task,
using a perceptron algorithm with discrete manual features to solve a range of NLP prob-
lems, achieving high accuracies and efficiency. The correlation between our framework and
neural CRF is the same as the one between the method of Zhang and Clark (2011b) and
discrete CRF (Lafferty et al., 2001).
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8.4 Applications

Our proposed model can also be used in many other tasks such as Chinese word segmen-
tation (Zhang & Clark, 2007), CCG parsing (Zhang & Clark, 2011a; Xu, Clark, & Zhang,
2014), etc, which are structured-prediction tasks, aiming to predict a complex structure and
could be solved by executing a sequence of transition actions. An action sequence corre-
sponds to the resulting structure. For example, Chinese word segmentation can be solved
by predicting a sequence of actions, which indicate whether the current character is the is
an end of a word (Zhang, Zhang, & Fu, 2016).

9. Conclusion

We built a beam contrastive learning framework for transition-based NLP. Compared to
greedy neural transition-based models, our proposed neural structured-prediction model in-
tegrates beam search and global contrastive learning for avoiding label bias. The framework
outperforms the discrete baseline of Zhang and Clark (2011b) thanks to the strong context
representation ability of neural networks, extracting richer context features compared the
neural CRF. In standard evaluation, our proposed chunker and parser achieve average 0.69%
and 1.39% accuracy improvements over a strong neural greedy baseline, respectively, which
shows the effectiveness of combining search and learning. The structured neural probabilis-
tic framework can be used for other incremental structured prediction tasks.
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