
Computational Intelligence, Volume 33, Number 3, 2017

IMPROVING SHIFT-REDUCE PHRASE-STRUCTURE PARSING WITH
CONSTITUENT BOUNDARY INFORMATION

WENLIANG CHEN,1,2 MUHUA ZHU,3 MIN ZHANG,1,2

YUE ZHANG,4 AND JINGBO ZHU3

1School of Computer Science and Technology, Soochow University, Suzhou, China
2Collaborative Innovation Center of Novel Software Technology and Industrialization, Jiansu, China

3Natural Language Processing Lab, Northeastern University, Shenyang, China
4Singapore University of Technology and Design, Singapore

Shift-reduce parsing enjoys the property of efficiency because of the use of efficient parsing algorithms like
greedy/deterministic search and beam search. In addition, shift-reduce parsing is much simpler and easy to imple-
ment compared with other parsing algorithms. In this article, we explore constituent boundary information to
improve the performance of shift-reduce phrase-structure parsing. In previous work, constituent boundary infor-
mation has been used to speed up chart parsers successfully. However, whether it is useful for improving parsing
accuracy has not been investigated. We propose two different models to capture constituent boundary information,
based on which two sets of novel features are designed for a shift-reduce parser. The first model is a boundary pre-
diction model that uses a classifier to predict the boundaries of constituents. We use automatically parsed data to
train the classifier. The second one is a Tree Likelihood Model that measures the validity of a constituent by its
likelihood which is calculated on automatically parsed data. Experimental results show that our proposed method
outperforms a strong baseline by 0:8% and 1:6% in F-score on English and Chinese data, respectively, achieving
the competitive parsing accuracies on Chinese (84:8%) and English (90:8%). To our knowledge, this is the first
time for shift-reduce phrase-structure parsing to advance the state-of-the-art with constituent boundary information.

Received 3 April 2015; Revised 25 February 2016; Accepted 15 March 2016

Key words: natural language processing, phrase-structure parsing, semi-supervised learning, shift-reduce
parsing..

1. INTRODUCTION

In the field of phrase-structure parsing (aka constituency parsing), transition-based
shift-reduce parsing is attractive because of its efficiency and simplicity. Specifically, shift-
reduce parsing generally uses decoding algorithms such as greedy/determinisic search
and beam search which have time complexity O.n/ and O.nk/, respectively. In addition,
compared with complex parsing algorithms, shift-reduce parsing is easy to implement.
Pioneering models of shift-reduce parsing rely on local classifiers and greedy search (Sagae
and Lavie 2005; Wang et al. 2006). To advance shift-reduce phrase-structure parsing,
Sagae and Lavie (2006) employed a best-first search strategy to expand search space, and
Zhang and Clark (2009) proposed a global learning algorithm to replace local classifiers.
More recently, Zhu et al. (2012) enriched feature representations of shift-reduce parsing by
exploiting lexical dependencies extracted from large-scale automatically parsed data.

Zhu et al. (2012) summarized the types and ratios of action conflicts that were made by
a shift-reduce parser (Table 2)1 and found that the major type of action conflicts was whether
a partial parse tree should be a complete constituent (i.e., the shift/reduce conflicts, account-
ing for 65:9% of all errors). In this article, we propose to resolve this type of action conflicts

Address correspondence to W. Chen, Soochow University; e-mail: chenwenliang@gmail.com
1 By action conflict we refer to the phenomenon that plausible actions compete in the same state of shift-reduce parsing.

© 2016 Wiley Periodicals, Inc.



CONSTITUENT BOUNDARY INFORMATION 429

by introducing constituent boundary information into shift-reduce parsing. In addition, con-
stituent boundary information is also useful in resolving other types of action conflicts (see
details in Section 2).

The idea of modeling constituent boundaries has been previously explored in (Roark
and Hollingshead 2008; Bodenstab et al. 2011), where boundary information was used to
help improve the efficiency of chart parsers (Charniak 2000; Collins 2003; Petrov and Klein
2007). But so far, the boundary information has not been optimized toward improving accu-
racy of a constituent parser. This article focuses on the problem of integrating boundary
information into shift-reduce parsers and the goal is to improve parsing accuracy. To this
end, we further propose different ways to model constituent boundary information.

We propose two models that are designed from distinct perspectives. The first one is a
constituent boundary prediction model, which directly predicts whether a text span should
be any constituent in the parse tree of a sentence. Intuitively, such a model can help to judge
whether a single word can be a constituent or not (Table 10 for the error type of single
word phrase). The second one, a tree likelihood model, models the constituent boundary
with tree structure information, which has effect on disambiguating attachment problems
(refer to the error types of PP, NP, VP attachment in Table 10. The tree likelihood model
is similar to syntactic language model (Charniak et al. 2003). The novelty of the proposed
model is that it incorporates boundary information. It models the likelihood of a constituent
by its context. In addition, to address the problem of data sparseness, we utilize in both
models additional large-scale automatically parsed data, which are generated by a baseline
shift-reduce parser on unlabeled data.

Based on the two models that capture constituent boundary information, we design two
sets of novel features specifically for shift-reduce parsing. We compare the effects of two
sets of features, and also the effect of using them jointly. Experimental results on benchmark
data show that using the two sets of new features together improves the baseline parser
significantly, by 0:8% and 1:6% on English and Chinese data, respectively. The final parsing
accuracy of our new parser is 90:8% on English and 84:8% on Chinese, respectively.

In summary, we make the following contributions in this article:

(1) We utilize constituent boundary information to advance shift-reduce parsing. To the
best of our knowledge, there is no previous work of using constituent boundary
information to improve parsing accuracy, especially for shift-reduce parsing.

(2) With the help of our proposed methods, our parser achieves the state-of-the-art
performance on English and Chinese.

The rest of this article is organized as follows. Section 2 introduces the shift-reduce
constituency parsing model and the action conflicts. Section 3 describes how to capture
the constituent boundary information and defines a set of new features for the parsing
model. Sections 4 and 5 describe the experiment settings and report the experimental results.
Section 6 discusses related work. Finally, in Section 7, we summarize the main points and
suggest several possible extensions of this research.

2. BACKGROUND

2.1. Shift-Reduce Parsing

The basic idea of shift-reduce parsing is to scan an input sentence (word-POS pairs)
from left to right, and construct binary-branching parse trees by using a stack and a sequence
of shift-reduce actions (Aho and Ullman 1972). Given an input sentence, a possible parse



430 COMPUTATIONAL INTELLIGENCE

tree of the sentence can be translated into one transition sequence of states. Formally speak-
ing, each state in the sequence is denoted by hS;Qi, where S is a stack containing partial
parses that have been recognized so far and Q is a queue of word-POS pairs that remain
unprocessed. The initial state is h�;w1 : : : wni, where S is empty and Q contains the entire
input sentence. The final state is hS; �i, where S contains a single parse tree with a pre-
designated root label andQ is empty. The shift-reduce parsing process is a transition process
from the initial state to the final state by performing a sequence of the following actions.

(1) shift: move a pair of word and POS tag from the front end of the (non-empty) queue
Q onto the stack S .

(2) reduce-unary-X: extend the top item on the stack S by applying a unary rule and
then replacing the top item with the newly generated constituent. Here X represents
a treebank phrase label, such as NP, which is to be used as the root label of the new
constituent.

(3) reduce-binary-¹L/Rº-X: move the top two items off the stack S and push a new
item onto the stack. The new item has X as its root label and consists of two children
with the first popped item being the right child and the second popped item being
the left child. The switch L/R indicates whether the left (L) or the right (R) child is
the head child.

Given the input sentence “ (Brown) (visits) (Shanghai)”, its syntactic struc-
ture can be constructed using the sequence of shift-reduce action shown in Figure 1. One
implementation of the aforementioned shift-reduce parsing process is to employ a classifier
to choose a shift-reduce action at each state transition (Sagae and Lavie 2005, 2006). In the
decoding phase, either greedy or best-first search can be applied.

An alternative implementation is to replace local classifiers with a global online learning
algorithm (Zhang and Clark 2011), where beam search is used for both training and decod-
ing. In the training phase, the “early-update” strategy (Collins and Roark 2004) is used:
whenever the gold partial parse is pruned from the beam, parameters are updated immedi-
ately. We adopt this method because of its relatively high accuracy. More details are given in
Section 2.2. Binarization of training data and debinarization of parsing output are required
if the training sentences are not binary-branching.

2.2. Baseline Parser

Our baseline parser is an extension of the beam-search shift-reduce parser proposed in
Zhang and Clark (2009).2 To score an action A with respect to a state Y D hS;Qi, we
choose to use a linear model, defined as follows:

Score.hA; Y i/ D �!w �ˆ.hA; Y i/

D
X

i

�ifi .hA; Y i/

where fi .hA; Y i/ are features extracted jointly from the action A and the state Y and �i are
the parameters.

2 http://faculty.sutd.edu.sg/~yue_zhang/doc/.

http://faculty.sutd.edu.sg/~yue_{z}hang/doc/


CONSTITUENT BOUNDARY INFORMATION 431

FIGURE 1. An example of shift-reduce parsing process.

Beam-search decoding is applied to find the globally highest-scored sequence of
actions. A beam with size K is used to maintain the highest scored K states at each step.
At initialization, the beam contains only the initial state. At each step, each state in the
beam is extended by applying all possible actions, resulting in a set of new states. Each new



432 COMPUTATIONAL INTELLIGENCE

state is rescored by considering the latest action, and theK highest scored states are used to
replace the content of the beam, before the next step starts. The same process repeats until
the highest-scored state in the beam is a final state, which is then used as the output structure.

Online learning based on the decoding process is used to train the parameter vector
�!w D< �1; :::; �i ; :::; �Nw >, where Nw is the number of parameters. In particular, �!w is
initialized to all zeroes and used to decode the training sentences. For each sentence, if the
decoder gives the correct answer, training continues to the next sentence without changing
the model. Otherwise the model is updated when the first search error is made. Here a search
error happens when the gold-standard sequence of actions is pruned off the beam. A search
error can happen at an intermediate step. In this case, the gold-standard output cannot be
constructed, because there is a one-to-one correspondence between the action sequence and
the output structure. As a result, search is stopped with the model parameters updated by
using the gold-standard sequence of actions till this step as the positive example, and the
highest-scored sequence of actions in the beam at this step as the negative example.

To learn the parameters �i , we employ the passive-aggressive algorithm (Crammer
et al. 2006) rather than the averaged perceptron (Collins 2002), which is used in Zhang
and Clark (2011). In our preliminary experiments, the passive-aggressive algorithm outper-
forms the averaged perceptron algorithm. Pseudo code of the search and learning algorithm
is shown in Algorithm 1, where INITIALSTATE() sets the initial state, POSSIBLEAC-
TIONS() returns all possible actions for a state, EXPAND() applies an action to a state and
derives a new state, TOP() returns the highest-scored state in the agenda (agenda is gen-
erally implemented as a priority queue which sorts states according to their scores.), and
CORRECT() checks whether a state is the gold-standard state.

We adopt the feature set of Zhang and Clark (2009) but remove the Chinese specific
features. The baseline features used in this article are summarized in Table 1. The symbol w
means the lexical head of an item; the symbol c denotes the constituent label; the symbol t
is the POS of a lexical head.

2.3. Shift-Reduce Action Conflicts

The research of this article is directly inspired by the error analysis conducted in Zhu
et al. (2012), which investigates first mistakes made by a shift-reduce parser on the English

TABLE 1. A Summary of Baseline Features, where Si
Denotes the i th Item in the Stack S andQi Denotes the i th Item
in the Queue Q from the Front end.

Description Templates

Unigrams S0tc, S0wc, S1tc, S1wc, S2tc
S2wc, S3tc, S3wc, Q0wt , Q1wt
Q2wt , Q3wt , S0lwc, S0rwc
S0uwc, S1lwc, S1rwc, S1uwc

Bigrams S0wS1w, S0wS1c, S0cS1w, S0cS1c,
S0wQ0w, S0wQ0t , S0cQ0w, S0cQ0t ,
Q0wQ1w, Q0wQ1t , Q0tQ1w, Q0tQ1t ,
S1wQ0w, S1wQ0t , S1cQ0w, S1cQ0t

Trigrams S0cS1cS2c, S0wS1cS2c, S0cS1wQ0t
S0cS1cS2w, S0cS1cQ0t , S0wS1cQ0t
S0cS1wQ0t , S0cS1cQ0w

Regarding tree nodes that have two children, l and r refer to the
left and right child respectively. u refers to the child of tree nodes
that have a single child.



CONSTITUENT BOUNDARY INFORMATION 433

Algorithm 1 The search and learning algorithm
function SearchAndTrain(Sentence, isTraining)
candidates ¹INITIALSTATE()º
agenda []
step 0
while true:
for each candidate in candidates:
for each action in POSSIBLEACTIONS(candidate):

agenda Insert(EXPAND(candidate, action), agenda)
if isTraining and not ANY CORRECT(candidates):
positive GOLDATSTEP(step)
negative TOP(agenda)
PASSIVEAGGRESSIVE(positive, negative)
return NULL

best TOP(agenda)
if IsFinalState(best); break
candidates TOP_K(agenda, K)
step step+1

if isTraining and not CORRECT(best)
positive GOLDATSTEP(step)
negative TOP(agenda)
PASSIVEAGGRESSIVE(positive, negative)
return NULL

return best

development set. By first mistake, we mean the position that a shift-reduce parser choose a
wrong action for the first time during the parsing process. We are concerned with first mis-
takes because future mistakes are often caused by previous ones. Table 2 reports the analysis,
which lists the types and ratios of first mistakes. From the analysis, we can see that action
conflicts between shift and reduce-binary are the major cause of parsing errors, which cover
nearly half (47.8%) of first mistakes. This type of first mistakes is attributed to the ambiguity
about whether the combination of the top two stack items S1 and S0 is a constituent. There-
fore, incorporating constituent boundary information is helpful to resolving such ambiguity.
Specifically, if the concatenation of the spans of S1 and S0 is predicted to be a constituent,
we will prefer reduce-binary actions to the shift action. Similarly, such information is also
useful in resolving the conflicts between reduce-binary-L/R-X and reduce-binary-L/R-X�,
that is, incorrect choices between a treebank label X and its corresponding temporary label
X�, which is introduced during the tree binarization process. If the concatenation of S1 and
S0 is a constituent, the reduce-binary-L/R-X action is preferred.

TABLE 2. The Types and Ratios of First Mistakes Made by
a Shift-Reduce Parser on the English Development Set.

ID Mistake type Ratio % (count)

1 Shift versus reduce-binary 47:8 (451)
2 Shift versus reduce-unary 18:1 (171)
3 Reduce-binary versus reduce-unary 5:4 (92)

4 Reduce-binary-L/R-{X versus X�} 16:5 (156)
5 Reduce-unary-{X1 versus X2} 5:7 (54)



434 COMPUTATIONAL INTELLIGENCE

3. CAPTURING CONSTITUENT BOUNDARY INFORMATION

Here, we describe two models that capture constituent boundary information, based
on which constituent boundary features are designed. In the following sections, we first
introduce the approach to obtaining automatically parsed data, then describe in detail the
two models. Finally, we list the set of new features that we propose.

3.1. Auto-Parsed Data Preparation

Both the boundary prediction model and tree likelihood model utilize information
extracted from large-scale automatically parsed data. We run the baseline parser on the unla-
beled data to obtain a set of automatically parsed trees. Because the shift-reduce parser used
in this article requires POS tags as input, POS tagging should be applied to the unlabeled
data before performing syntactic parsing.

3.2. Boundary Prediction Model

Given a sentence wn1 , the constituent boundary prediction model seeks a function
f .w

j
i / 2 ¹C1;�1º that tells whether a text spanwji is a valid constituent (omitting treebank

grammar labels). We formalize such a boundary prediction task as a binary classification
problem. Training data for building the model is collected from human-labeled parse trees
that are used for training syntactic parsers. Formally, given a sentence wn1 , we denote the
set of all the spans of the sentence by I.wn1 /. For each wji 2 I.w

n
1 /, we use it as a positive

instance if the wji matches a constituent in the corresponding gold parse tree, and a negative
instance otherwise. Based on the training data, a maximum entropy classifier is used to learn
model parameters.3 After building the classification model, we use it in both the training
and decoding phases of shift-reduce parsing. Note that the integration of the classification
model does not increase time complexity of the parsing model, because the classification
model only processes candidates generated in the shift-reduce parsing, instead of I.wn1 /.

Table 3 lists the feature templates used in the boundary prediction model, which can
be separated into two subsets. Supervised features are extracted solely from human-labeled
training data, while semi-supervised features are defined on automatically parsed data. To
get semi-supervised features, we first parse unlabeled data with our baseline parser, and
then extract two lists from auto-parsed data, based on which semi-supervised features are
designed. To the best of our knowledge, previous work on boundary prediction (Roark and
Hollingshead 2009; Bodenstab et al. 2011) does not consider semi-supervised features.

Supervised Features for Building BPM
Our supervised features for BPM are similar to the features used in (Bodenstab et al.
2011). The supervised features are defined on the surface of the input span wji and its
surrounding contexts. These features are generated from manually labeled data and used in
the baseline model. The symbol w refers to word tokens and the symbol t represents POS
tags. Subscripts of the symbols denote indices of word tokens in the whole input sentence
wn1 . Besides word and POS tags, we also have three feature functions that encode the length
information of wji . The first function (F1) returns the length L.wji / of the span if the length
is � 5. The other two functions (F2 and F3) are BIN functions to divide numeric values
into a set of disjoint intervals called bins. The subscripts of the BIN functions (10 and 0.2)
are bin sizes. Note that there is a BIN for each multiple of bin size.

3 http://homepages.inf.ed.ac.uk/lzhang10/maxent_toolkit.html.



CONSTITUENT BOUNDARY INFORMATION 435

TABLE 3. Feature templates of the constituent
boundary prediction model.

Supervised Feature Templates

Unigrams wi , wi�1, wj , wjC1, ti , ti�1
ti�2, tiC1, ttiC2 , tj , tjC1, tjC2

Bigrams ti�1ti , tjC1tjC2
Length F1: L.wji / if L.wji / � 5

F2: BIN10.L.w
j
i // if L.wji / � 10

F3: BIN0:2.L.w
j
i /=L.w

n
1 //

Semi-supervised Feature Templates

Lists.wi�1wi /, Lists.wjwjC1/, Listf .wiwj /

Here, w denotes word tokens, t denotes POS tags,
L.w

j

i
/ denotes the length of the span, and L.wn

1
/

denotes the length of the whole input sentence.

Semi-Supervised Features for Building BPM
Semi-supervised features rely on the use of two lists of records extracted from automatically
parsed data and are used in the semi-supervised models. One list is called the frontier-
word-pair list, which contains pairs that consist of the left-most and right-most frontier
word of a constituent. For example, the words The and market are frontier words of the NP
constituent in the parse tree of Figure 2. The other list is called the separate-word-pair list,
which contains two consecutive words that belong to different constituents. For example,
the words market and does in the example parse tree is a separate-word-pair. For items in
the two lists, we assign tags according to their frequency counts, following the strategy used
in Chen et al. (2009) and Chen et al. (2012a). Specifically, the 10% most frequent items are
assigned to the category of high frequency; or if an item is among top 20%, we assign it to
the category of middle frequency; others are assigned to the category of low frequency. With
the two lists, we design semi-supervised features listed in Table 3, which return a category
tag if a given word pair is found in the specified list (the subscript f = frontier-word-pair; s
= separate-word-pair). To the best of our knowledge, these is no previous work that adopts
such semi-supervised features for the task of boundary prediction.

3.3. Tree Likelihood Model

The constituent boundary prediction model relies on surface information (words and
POS tags) to classify spans. The model has the advantage of simplicity, but it ignores
underlying syntactic structures of spans. In contrast, the tree likelihood model measures
the validity of a constituent (partial parse tree) by its likelihood, calculated over large
automatically parsed data.

The model first identifies the head of each node in a parse tree by using head-finding
rules. In the example of Figure 2, heads are marked by framed boxes. Sisters of a head are
referred to as modifiers of the head. Second, each nonterminal label is extended with its
head word and head POS which are obtained through propagation from the bottom up to the
tree root. In the example, head words are presented in parentheses. This two-step process is
known as lexicalization (Collins 2003). Hereafter, we write a nonterminal as NT D X.x/,
where x D hwh; thi and X is a grammar label. Thus a lexicalized context-free grammar
rule can be written as

P.h/! Ln : : : L1H.h/R1 : : : Rm



436 COMPUTATIONAL INTELLIGENCE

FIGURE 2. An example parse tree with heads being enclosed with boxes. [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 4. Templates of
Records We Extract.

(1) hLi ;H.h/;Lefti
(2) hH.h/;Ri ;Righti
(3) hLi ; Li�1;H.h/;Lefti
(4) hH.h/;Ri ; Ri�1;Righti

whereH is the head; L1 : : : Ln and R1 : : : Rm are modifiers of the head. Eitherm or n may
be zero.

After lexicalization, we can acquire a phrase structure S D .Ln : : : L1H.h/R1 : : : Rm/
from each lexicalized grammar rule whose likelihood probability is defined as follows:

P.S/ D PL.S/ � PR.S/

where PL.S/ can be defined as

PL.S/ � P.L1jH.h//

� P.L2jL1;H.h/

� : : :

� P.LnjLn�1; : : : ; Ln�kC1;H.h//

Here, we make a kth order Markov assumption. PR.S/ can be defined similarly.
We incorporate tree likelihood information into a shift-reduce parser using a similar

method as Chen et al. (2012b), which incorporates a dependency language model into a
graph-based dependency parser. Specifically, we decompose phrase structures into compo-
nents by setting k to different values. Here, we consider two cases: k D 1 (bigram) and
k D 2 (trigram), but ignore higher-order dependency structures because of data sparseness.
Table 4 shows the templates of records that we extract.

Here, Left/Right indicate the location of modifiers relative to the head. The first two
templates denote bigram records, while the latter two templates denote trigram records.
Moreover, we group records into one of the categories {Outer, Inner} depending on whether
Li (Ri / is the leftmost (rightmost) modifier; note that this is where we encode boundary
information, and such boundary information is what make difference between Tree Likeli-
hood Model and dependency language models (Chen et al. 2012b). We finally obtain four

http://onlinelibrary.wiley.com/


CONSTITUENT BOUNDARY INFORMATION 437

separate lists: Bigram-Outer (BO), Bigram-Inner (BI), Trigram-Outer (TO), and Trigram-
Inner (TI). For example, hLn;H.h/;Lefti and hH.h/;Rm;Righti are contained in the BO
list, while hLi Wi¤n;H.h/;Lefti and hH.h/;Ri Wi¤m;Righti are contained in the BI list. In
each record list, we map records into discrete categories according to their probabilities
P.Li jHIS/ or P.Ri jHIS/, where HIS refers to the head and zero or one immediate pre-
vious sister. The strategy used here is similar to the one used previously in Section 3.2,
with the difference that we use probabilities instead of frequencies: a record is assigned
to high probability (HP) if it is among the 10% most probable records; or if it is among
the top-20%, we use the category middle probability; otherwise we use the category of
low probability.

3.4. Constituent Boundary Features

Based on the BPM and TLM model described in the aforementioned text, we design
two sets of novel features for syntactic parsing, as listed in Table 5. These features are used
together with the baseline features in the semi-supervised models.

Boundary Prediction Model Features
The boundary prediciton model (BPM) features are defined on the base of the output of
BPM. The symbol Sib is an indicator function which returns 1 if Si is predicted to be a
constituent by the BPM, and 0 otherwise. Remember that Si refers to the i th stack item in
the stack of beam-search process. S1 ı S0 represents a concatenation of the spans of S1 and
S0. We also consider the combination of Sib with the head tag t or constituent label c of Si .

Tree Likelihood Model Features
The TLM features are defined on the four lists extracted by the tree likelihood model. Non-
terminals in the extracted lists consist of grammar labels, head words, and head POS, but in
this article, we use only head words. Thus, the extracted lists are simplified to encode rela-
tionship between words. The basic idea of TLM features is to check whether a word is at the
boundary. Therefore, we check all the possible combinations. In Table 5,Bl=r.�; �/means the
use of a bigram list, either the Bigram-outer list or the Bigram-inner list, and the subscript (l
or r) refers to the direction of a dependency relation. For example, Bl.S1w; S0w/ is instan-
tiated into feature functions BOl.S1w; S0w/ and BIl.S1w; S0w/, which check whether
hS1w; S0w;Lefti can be found in BO and BI. Tl=r.�; �; �/ can be explained in a similar way.
Si ldw (Sirdw) means the left (right) most dependent word of Si .

TABLE 5. New Features Based on the Boundary Prediction
Model and the Tree Likelihood Model.

Feature templates

BPM S0b, S0bS0t , S0bS0c
S1b, S1bS1t , S1bS1c, .S1 ı S0/b

TLM Bl .S1w; S0w/, Br .S1w; S0w/, Bl .S1w;Q0w/
Bl .S1w; S0w/S1tS0t , Br .S1w; S0w/S1tS0t
Bl .S1w;Q0w/S1tQ0t , Br .S1w;Q0w/S1tQ0t
Bl .S0w;Q0w/S0tQ0t , Br .S0w;Q0w/S0tQ0t
Bl .S0w;Q0w/, Br .S0w;Q0w/, Br .S1w;Q0w/
Tr .S1w; S0ldw; S0w/, Tr .S1w; S0ldw; S0w/S0tS1t
Tl .S1w; S1rdw; S0w/, Tl .S1w; S1rdw; S0w/S0tS1t

BPM, boundary prediction model; TLM, tree likelihood model.



438 COMPUTATIONAL INTELLIGENCE

3.5. Parsing with the Proposed Features

To use the proposed new features, we update the scoring function defined in Section 2.
The new scoring function is shown as follows:

Score0.hA; Y i/ D
X

i
�ifi .hA; Y i/

C
X

j
�Pj f

P
j C

X
k
�Lk f

L
k

where fi .hA; Y i/ are the baseline features listed in Table 1, and f Pj and f L
k

denote the
BPM and TLM features in Table 5, respectively. Here, indices j and k go through all the
features in Table 5, so the size of j is 7 and the size of k is 16. We can see that incorporating
boundary information increases the cost of extracting parsing features, but does not change
the time complexity of the parsing model.

4. EXPERIMENTAL SETUP

4.1. Data Preparation

For the English experiments, the Wall Street Journal (WSJ) corpus of the Penn Tree-
bank (Marcus et al. 1993) was used as labeled data. We used the standard divisions as
Charniak and Johnson (2005), that is, trained on sections 2–21 and evaluated on section 23.
Section 24 was used for system development. With regard to English unlabeled data, we
used WSJ articles from the TIPSTER corpus (LDC93T3A).

For the Chinese experiments, we used the Chinese Treebank (CTB) version 5.1 (Xue et
al. 2005) as labeled data. Specifically, articles 001–270 and 440–1151 were used for training,
articles 271–300 for evaluation, and articles 301–325 were development data. For Chinese
unlabeled data, we utilized the Chinese Gigaword corpus (LDC2003T09) with some
basic cleanups.

We conducted necessary preprocessing on English and Chinese unlabeled data before
feeding the data to the baseline parser. Specifically, we removed from the English unlabeled
data all the sentences of the WSJ corpus and then applied OpenNLP for English sentence
boundary detection and tokenization.4 For English POS tagging, we adopted SVMTool,
which has a per-token accuracy of 97:1% on section 23 of the WSJ corpus.5 For the Chinese
unlabeled data, we conducted sentence boundary detection simply according to sentence
ending punctuations (i.e., ı , ! , and ? ). Raw sentences were automatically segmented with
a CRF-based word segmenter, which achieves an accuracy of 97:2% on the CTB5.1 testing
data. For automatic Chinese POS tagging, we utilized the Stanford POS tagger.6 We trained
the tagger on the CTB5.1 training data which has the accuracy of 95:4% on the CTB5.1 test
data. Table 6 contains detailed data statistics of all the data sets.

4.2. Parameter Configurations

In all the experiments, we follow the previous work of Zhang and Clark (2009) to set
the beam size of our parser to 16 in both training and decoding phases. The optimal iteration
number of passive-aggressive training was obtained on the development sets. In addition,

4 http://incubator.apache.org/opennlp/.
5 http://www.lsi.upc.edu/�nlp/SVMTool/.
6 http://nlp.stanford.edu/software/tagger.shtml.



CONSTITUENT BOUNDARY INFORMATION 439

TABLE 6. Data Statistics Including the Numbers of
Sentences and Words (in Parentheses).

Lang. Train Dev Test Unlabeled

English
39.8k 1.7k 2.4k 3,139.1k

(950.0k) (40.1k) (56.7k) (76,041.4k)

Chinese
18.1k 350 348 9,870.2k

(493.8k) (8.0k) (6.8k) (282,361k)

we used ten-way jack-knifing (Collins and Koo 2005) to assign POS tags to labeled (English
and Chinese) training data. Maximum Entropy (Berger et al. 1996) was used as the classifier
in the boundary prediction model.

4.3. Evaluation Metrics

For performance evaluation, we employed EVALB to provide bracket scoring.7 For
significance tests, we adopted the comparator developed by Daniel Bikel to compute
p-values.8

5. EXPERIMENTAL RESULTS

5.1. Effect of Constituent Boundary Features

We examined the effect of our proposed new features on the English and Chinese test
sets, respectively. The results are reported in Table 7, where we compared three different
settings: (1) adding the BPM features alone to the baseline; (2) incorporating the TLM
features only into the baseline; (3) including all the new features (BPM and TLM features).

As the results show, the BPM features and the TLM features improve parsing accuracy
on both English and Chinese data when used separately. Specifically, on the English data,
the BPM features achieve an absolute improvement of 0:4% F-score, while the improve-
ment achieved by adding the TLM features is 0:6% F-score. On the Chinese data, the BPM
features and the TLM features achieve improvements of 0:4% F-score and 1:3% F-score,
respectively. We can see that the tree likelihood model performs better than the boundary
prediction model, especially on the Chinese data. One reason is that the tree likelihood
model provides dependency information in addition to boundary information. Note that the
BPM classification models used in the aforementioned experiments were built with both
supervised and semi-supervised features (all the features in Table 3). It is informative to
show the necessity of using semi-supervised features. To this end, we built a BPM classifi-
cation model with supervised features only. Parsing features designed on the base of such a
BPM model achieved a limited improvement of 0:15% over the baseline on the English test
set, whereas Base+PBM in Table 7 achieved an improvement of 0:4%.

Using all the new features (BPM and TLM features) together further improves perfor-
mance: an overall improvement of 0:8% on English and 1:6% on Chinese over the baseline.
This suggests that the BPM and TLM features provide complementary information. Signif-
icance tests show that the improvements on English and Chinese are significant on the level
of p < 10�5 and p < 10�4, respectively.

7 http://nlp.cs.nyu.edu/evalb.
8 http://www.cis.upenn.edu/�dbikel/download/compare.pl.



440 COMPUTATIONAL INTELLIGENCE

TABLE 7. Main Results on the English and Chinese
Test Sets, with the BPM and/or TLM Features Added to
the Baseline Parser.

Lang. System LR LP F1

English Baseline 89.7 90.3 90.0
Base+BPM 90.0 90.7 90.4
Base+TLM 90.3 90.8 90.6
Base+BPM+TLM 90.6 91.0 90.8

Chinese Baseline 81.9 84.4 83.2
Base+BPM 82.2 84.9 83.6
Base+TLM 83.3 85.6 84.5
Base+BPM+TLM 83.7 86.1 84.8

5.2. Performance Comparison

The aforementioned section reports the performance of our methods against the base-
line, showing the effectiveness of our methods. In this section, we further compared our
work with a large body of related work empirically. We grouped all the parsers into thee
categories: single parsers (SINGLE)9, reranking parsers (RE), and semi-supervised parsers
(SEMI). Table 8 and Table 9 report the comparison on the English and Chinese test sets,
respectively.

From the results, we see that our baseline parser is at the state-of-the-art performance
level on both English and Chinese: very close to Petrov and Klein (2007), which is generally
regarded as a representative state-of-the-art parser. On the English test set, the accuracy
of our parser is 90:8%, which is significantly higher than the Berkeley parser (Petrov and
Klein 2007). In addition, the accuracy of our parser is comparable with the performance of
self-trained parsers. In the future, we will combine techniques such as reranking to further
improve accuracies. On the Chinese test set, the accuracy of our parser reaches 84:8%.
This is one of the best results on the Chinese data (CTB5.1). Zhu et al. (2013) give higher
accuracy. However, their semi-supervised information is different from ours, which can be
incorporated into our parser. Wang et al. (2015) is another parser that outperforms our one,
but note that their parser builds on a joint model of POS tagging and syntactic parsing.

5.3. Analysis

We analyzed the parsing results on the English test set, with two perspectives: (1) we
examine how the distribution of first mistakes made by the baseline parser is changed with
our parser (first mistakes are critical due to error propagation) and (2) we classify parsing
errors into several specific categories and compare the occurrences of errors in the baseline
and our parser.

5.3.1. First-Mistake Reduction. The baseline parser made 1,534 first mistakes on the
English test set. Changes of first mistakes made by our parser fall into four categories. In
the following, the numbers in parentheses are instance counts in the corresponding cate-
gories. No-change (1,081) refers to the category that the baseline and our parser made the

9 Our baseline is an extension of the parser from Zhang and Clark (2009) by replacing perceptron with passive-aggressive
algorithm. Zhu et al. (2013) (SINGLE) is also an extension from Zhang and Clark (2009) by introducing the IDLE action and
padding method.



CONSTITUENT BOUNDARY INFORMATION 441

TABLE 8. Comparative results of our parser and related work on
the English test set.

Type Parser LR LP F1

SINGLE Ratnaparkhi (1997) 86.3 87.5 86.9
Collins (2003) 88.1 88.3 88.2
Charniak (2000) 89.5 89.9 89.5
Sagae and Lavie (2005)� 86.1 86.0 86.0
Sagae and Lavie (2006)� 87.8 88.1 87.9
Wang et al. (2015)� � � 89.4
Our Baseline� 89.7 90.3 90.0
Petrov and Klein (2007) 90.1 90.2 90.1
Roark and Hollingshead (2009) 89.9 90.4 90.2
Zhu et al. (2013)� 90.2 90.7 90.4
Watanabe and Sumita (2015) � � 90.7
Carreras et al. (2008) 90.7 91.4 91.1
Shindo et al. (2012) � � 91.1

RE Charniak and Johnson (2005) 91.2 91.8 91.5
Huang (2008) 92.2 91.2 91.7

SEMI Zhu et al. (2012)� 90.4 90.5 90.4
Wang et al. (2015)� � � 90.7
Our Improved Parser� 90.6 91.0 90.8
Huang and Harper (2009) 91.1 91.6 91.3
Zhu et al. (2013)� 91.1 91.5 91.3
Huang et al. (2010)� 91.4 91.8 91.6
McClosky et al. (2006) 92.1 92.5 92.3

� Shift-reduce parsers. � The results of self-training with a single latent
annotation grammar.

same first mistake at the same position of action sequences. Positive (282) means our parser
either postponed the positions of first mistakes or parses correctly on the sentences that
were parsed incorrectly by the baseline parser. Negative means that our parser made first
mistakes earlier than the baseline (119) or made first mistakes on the sentences that were
correctly parsed by the baseline (83). Finally, Others (52) refers to the case that our parser
and the baseline parser make different first mistakes at the same position. We are especially
interested in the details of the Positive category. We find that 77:3% (218/282) are related to
reduce-binary actions (shift vs. red-binary or red-binary vs. red-binary). In addition, 53:1%
reduce-binary-related first mistakes made by the baseline parser were postponed or resolved
by incorporating boundary information. This suggests that boundary information is useful
in differentiating these actions.

5.3.2. Error Breakdown. We are also interested in breaking down parsing errors into
specific types. To this end, we utilized the Berkeley error analyzer (Kummerfeld et al. 2012)
to classify parsing errors into 12 types (see the error types in Table 10).10 Refer to Kummer-
feld et al. (2012) for detailed descriptions of the error types. Table 10 shows the occurrence

10 http://code.google.com/p/berkeley-parser-analyser/.



442 COMPUTATIONAL INTELLIGENCE

TABLE 9. Comparison with Related Work on the CTB5.1 Test Set.

Type Parser LR LP F1

SINGLE Charniak (2000)� 79.6 82.1 80.8
Bikel (2004)� 79.3 82.0 80.6
Zhu et al. (2013)� 81.9 84.3 83.2
Wang et al. (2015)� � � 83.2
Our Baseline� 81.9 84.4 83.2
Petrov and Klein (2007) 81.9 84.8 83.3
Watanabe and Sumita (2015) � � 84.3
Roark and Hollingshead (2009) 83.4 86.1 84.7

RE Charniak and Johnson (2005)� 80.8 83.8 82.3

SEMI Zhu et al. (2012)� 80.6 81.9 81.2
Our Improved Parser� 83.7 86.1 84.8
Zhu et al. (2013)� 84.4 86.8 85.6
Wang et al. (2015)� � � 86.6

� Shift-reduce parsers. � Huang (2009) adapted the parsers to CTB5.1.
� We run the parser on CTB5.1 to get the results.

counts of parsing errors in the baseline and the improved parsers: Base+BPM, Base+TLM,
and Base+BPM+TLM. The table also reports absolute and relative error reductions of the
improved parsers over the baseline. By comparing the baseline and Base+BPM+TLM, we
can see that boundary information is beneficial to resolving the following attachment errors:
PP attachment, clause attachment, and VP attachment. These are the three types that have
the biggest relative error reduction. In addition, boundary information is also helpful in rec-
ognizing structures of noun phrase (NP Internal Structure) and single word phrases. We
notice that the attachment problem and single word phrase problem are closely related with
recognition of phrases. This is constituent with our intuition that boundary information can
help. Moreover, we can see BPM-based features and TLM-based features have different bias
at reducing different types of parsing errors. For example, BPM-based features perform bet-
ter at reducing single word phrase and clause attach errors, whereas TLM-based features
perform better regarding the types of PP attach and NP attachment.

5.3.3. Effect of Unlabeled Data Size. Our method is semi-supervised parsing in
essence, so it is interesting to show the effect of varying sizes of unlabeled data on parsing
accuracy. For this purpose, we randomly sampled four different subsets from Chinese unla-
beled data by adopting the percentage of 0:1%, 1%, 10%, and 100%, respectively. Then four
parsers were built on the base of the sampled unlabeled data and evaluated on the Chinese
test set. The results are shown in Figure 3. From the results, we can see that the improvement
levels out when more than 1% unlabeled data is used.

6. RELATED WORK

Shift-reduce parsing has been widely studied because of its efficiency. Sagae and Lavie
(2005) proposed a classifier-based approach to shift-reduce parsing, which was extended
by Sagae and Lavie (2006) to expand the search space. Zhang and Clark (2009) proposed
a global learning algorithm to replace local classifiers. All these previous works belong to
the spectrum of supervised parsing. Zhu et al. (2012) and Zhu et al. (2013) for the first



CONSTITUENT BOUNDARY INFORMATION 443

T
A

B
L

E
10

.
B

re
ak

do
w

n
of

Pa
rs

in
g

E
rr

or
s

of
th

e
B

as
el

in
e

an
d

O
ur

Pa
rs

er
on

th
e

E
ng

li
sh

Te
st

S
et

.

B
as

e+
E

rr
or

B
as

e+
E

rr
or

Fi
na

l
E

rr
or

E
rr

or
Ty

pe
B

as
el

in
e

+
B

P
M

R
ed

uc
ti

on
(%

)
+

T
L

M
R

ed
uc

ti
on

(%
)

Pa
rs

er
(%

)
R

ed
uc

ti
on

(%
)

P
P

A
tt

ac
hm

en
t

77
8

76
7

12
(1
:5

)
72

1
57

(7
:3

)
71

0
68

(8
:7

)
S

in
gl

e
w

or
d

ph
ra

se
61

5
58

4
31

(5
:0

)
60

2
13

(2
:1

)
57

5
40

(6
:5

)
U

na
ry

49
7

50
9

�
12

(�
2
:4

)
47

1
16

(3
:2

)
49

7
0

(0
)

D
if

fe
re

nt
la

be
l

36
6

36
6

0
(0

)
36

4
2

(0
:5

)
35

5
11

(3
:0

)
C

la
us

e
at

ta
ch

34
9

30
9

40
(1
1
:4

)
33

5
14

(4
:0

)
31

9
30

(8
:6

)
N

P
In

te
rn

al
st

ru
ct

ur
e

34
1

32
5

16
(4
:7

)
32

4
17

(5
:0

)
31

8
23

(6
:7

)
C

oo
rd

in
at

io
n

27
9

28
5

�
6

(�
2
:1

)
28

6
�

7
(�
2
:5

)
28

7
�
8

(�
2
:9

)
M

od
ifi

er
at

ta
ch

m
en

t
29

7
28

0
17

(5
:7

)
28

5
1
2
4
:0

28
2

15
(5
:1

)
N

P
A

tt
ac

hm
en

t
16

7
16

9
�

2
(�
1
:2

)
15

1
16

(9
:5

)
17

2
�

5
(�
3
:0

)
V

P
A

tt
ac

hm
en

t
71

66
5

(7
:0

)
57

14
(1
9
:7

)
60

11
(1
5
:5

)
U

na
ry

cl
au

se
la

be
l

85
84

1
(1
:2

)
85

0
(0

)
83

2
(2
:4

)
U

nc
la

ss
ifi

ed
55

3
55

6
�

3
(�
0
:5

)
52

0
33

(6
:0

)
49

8
55

(9
:9

)



444 COMPUTATIONAL INTELLIGENCE

FIGURE 3. The parsing accuracy with varying sizes of unlabeled data on the Chinese test set.

time studied semi-supervised shift-reduce constituency parsing. They enriched feature rep-
resentations of a shift-reduce parser with a set of features that encodes lexical dependency
information extracted from automatically parsed data. Our work is also a case of semi-
supervised shift-reduce parsing. One major difference between the work of Zhu et al. (2012)
and Zhu et al. (2013) and our work is that we integrate constituent boundary information
into shift-reduce parsing. To our knowledge, such information has not been used to improve
parsing accuracy before, especially targeting at shift-reduce parsing.

The idea of integrating boundary information into syntactic parsers has been studied
before. Roark and Hollingshead (2008) classified each word in a sentence into two cate-
gories: starting a multiword constituent and ending a multiword constituent. Such boundary
information was used to prune candidate parses in a chart-based parser. In Roark and
Hollingshead (2009), the idea was extended further to handle single-word spans,and experi-
mental results were reported on both English and Chinese. A similar idea was used in Zhang
et al. (2010) to increase the efficiency of a CCG parser. Zhang et al. (2010) extended the
binary classifier of Roark and Hollingshead (2008) to predicting the maximum size of the
constituents a word can start and end, and found increased pruning effects. In the same direc-
tion, Bodenstab et al. (2011) proposed to classify a text span instead of individual words to
capture boundary information. Our work also focuses on integrating boundary information.
However, compared with the previous work using boundary information, our work has three
major differences. First, we utilize boundary information for shift-reduce parsing instead of
chart parsing. Second, the purpose of integrating boundary information in this article is to
achieve higher parsing accuracy instead of efficiency. Third, the tree likelihood model is our
newly proposed approach to capturing boundary information.

In the direction of semi-supervised parsing, there are closely-related works on depen-
dency parsing. Koo et al. (2008) proposed a simple yet effective word clustering-based
approach to semi-supervised dependency parsing. Intuitively, word clustering information
can be incorporated together with boundary information to achieve further improvements.
Chen et al. (2009) extracted dependency subtrees from automatically parsed data, which
were applied to advance a graph-based dependency parser. Chen et al. (2012b) built a depen-
dency language model on automatically parsed data, which was integrated to improve a
graph-based dependency parser. The tree likelihood model proposed in this article is similar
to the dependency language model in Chen et al. (2012b), with the notable difference that
tree likelihood model contains constituency boundary information.



CONSTITUENT BOUNDARY INFORMATION 445

Recent years have seen application of deep learning techniques in this direction of shift-
reduce constituent parsing. Watanabe and Sumita (2015) propose a new neural network
structure that models the unbounded history of actions performed on the stack and queue in
transition-based parsing. Instead of modeling of the transition process, Wang et al. (2015)
focus on automatic learning of features representations that was conducted by human in
most of previous work. Both of these recent works achieve state-of-the-art parsing accuracy.

7. CONCLUSION

In this article, constituent boundary information is integrated into shift-reduce con-
stituency parsing for the improvement of accuracy. We studied two different models to
capture boundary information, and designed a set of novel features that encode bound-
ary information collected from large-scale automatically parsed data. To our knowledge,
this is the first work that aims to improve shift-reduce parsing performance with con-
stituent boundary information. Experimental results show that boundary features improve
parsing accuracies significantly by 0:8% on English and by 1:6% on Chinese on standard
benchmarks.

For future work, there are several ways in which this research could be extended. First,
we plan to use larger data to build the BPM and TLM models. Second, we could apply
the proposed approach to other languages. Third, it might be possible to generate semi-
supervised features based on the combination of word surfaces and POS tags. Finally, we
could combine our approach with other methods on semi-supervised shift-reduce parsers.

ACKNOWLEDGMENTS

Wenliang Chen, Min Zhang, and Jingbo Zhu were supported by the National Natural
Science Foundation of China (Grant No. 61572338, 61525205, 61272376) and Yue Zhang
was supported by Singapore MOE grant 2012-T2-2-163. This work was partially supported
by Collaborative Innovation Center of Novel Software Technology and Industrialization.
Corresponding author is Muhua Zhu. We would also thank the anonymous reviewers for
their detailed comments, which have helped us to improve the quality of this work.

REFERENCES

AHO, A. V., and J. D. ULLMAN. 1972. The Theory of Parsing, Translation, and Compiling. Prentice-Hall:
Upper Saddle River, NJ.

BERGER, A. L., V. J. D. PIETRA, and S. A. D. PIETRA. 1996. A maximum entropy approach to natural language
processing. Computational Linguistics, 22(1): 39–71.

BIKEL, D. M. 2004. On the parameter space of generative lexicalized statistical parsing models, Ph.D.
dissertation, University of Pennsylvania, Philadelphia.

BODENSTAB, N., A. DUNLOP, K. HALL, and B. ROARK. 2011. Beam-width prediction for efficient context-
free parsing. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies-Volume 1, Portland, OR, pp. 440–449.

CARRERAS, X., M. COLLINS, and T. KOO. 2008. Tag, dynamic programming, and the perceptron for effi-
cient, feature-rich parsing. In Proceedings of the Twelfth Conference on Computational Natural Language
Learning. Association for Computational Linguistics, Manchester, UK, pp. 9–16.

CHARNIAK, E. 2000. A maximum-entropy-inspired parser. In Proceedings of the 1st North American Chapter
of the Association for Computational Linguistics Conference, Seattle, WA, pp. 132–139.



446 COMPUTATIONAL INTELLIGENCE

CHARNIAK, E., and M. JOHNSON. 2005. Coarse-to-fine n-best parsing and maxent discriminative reranking. In
Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, Ann Arbor, MI,
pp. 173–180.

CHARNIAK, E., K. KNIGHT, and K. YAMADA. 2003. Syntax-based language models for statistical machine
translation. In Proceedings of MT Summit IX. Citeseer, New Orleans, LA, pp. 40–46.

CHEN, W., J. KAZAMA, K. UCHIMOTO, and K. TORISAWA. 2009. Improving dependency parsing with subtrees
from auto-parsed data. In Proceedings of EMNLP 2009, Singapore, pp. 570–579.

CHEN, W., J. KAZAMA, K. UCHIMOTO, and K. TORISAWA. 2012a. Exploiting subtrees in auto-parsed data to
improve dependency parsing. Computational Intelligence, 28(3): 426–451.

CHEN, W., M. ZHANG, and H. LI. 2012b. Utilizing dependency language models for graph-based dependency
parsing models. In Proceedings of ACL 2012, Jeju Island, pp. 213–222.

COLLINS, M. 2002. Discriminative training methods for hidden Markov models: theory and experiments
with perceptron algorithms. In Proceedings of the ACL-02 Conference on Empirical Methods in Natural
Language Processing-Volume 10, Philadelphia, PA, pp. 1–8.

COLLINS, M. 2003. Head-driven statistical models for natural language parsing. Computational Linguistics,
29(4): 589–637.

COLLINS, M., and T. KOO. 2005. Discriminative reranking for natural language parsing. Computational
Linguistics, 31(1): 25–70.

COLLINS, M., and B. ROARK. 2004. Incremental parsing with the perceptron algorithm. In Proceedings of the
42nd Annual Meeting on Association for Computational Linguistics, Barcelona, Spain, pp. 111–118.

CRAMMER, K., O. DEKEL, J. KESHET, S. SHALEV-SHWARTZ, and Y. SINGER. 2006. Online passive-aggressive
algorithms. The Journal of Machine Learning Research, 7: 551–585.

HUANG, L. 2008. Forest reranking: discriminative parsing with non-local features. In ACL, Columbus, OH,
pp. 586–594.

HUANG, L.-Y. 2009. Improve Chinese parsing with Max-Ent reranking parser. Master Project Report, Brown
University, Providence, RI.

HUANG, Z., and M. HARPER. 2009. Self-training pcfg grammars with latent annotations across languages.
In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume
2-Volume 2, Singapore, pp. 832–841.

HUANG, Z., M. HARPER, and S. PETROV. 2010. Self-training with products of latent variable grammars. In
Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, Cambridge,
MA, pp. 12–22.

KOO, T., X. CARRERAS, and M. COLLINS. 2008. Simple semi-supervised dependency parsing. In Proceedings
of ACL-08: HLT, Columbus, OH, pp. 595–603.

KUMMERFELD, J. K., D. HALL, J. R. CURRAN, and D. KLEIN. 2012. Parser showdown at the Wall Street corral:
an empirical investigation of error types in parser output. In Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Processing and Computational Natural Language Learning,
Jeju Island, Korea, pp. 1048–1059.

MARCUS, M. P., B. SANTORINI, and M. A. MARCINKIEWICZ. 1993. Building a large annotated corpus of
English: the Penn Treebank. Computational Linguisticss, 19(2): 313–330.

MCCLOSKY, D., E. CHARNIAK, and M. JOHNSON. 2006. Effective self-training for parsing. In Proceedings of
NAACL, New York City, pp. 152–159.

PETROV, S., and D. KLEIN. 2007. Improved inference for unlexicalized parsing. In HLT-NAACL, Vol. 7,
Rochester, NY, pp. 404–411.

RATNAPARKHI, A. 1997. A linear observed time statistical parser based on maximum entropy models. arXiv
preprint cmp-lg/9706014.

ROARK, B., and K. HOLLINGSHEAD. 2008. Classifying chart cells for quadratic complexity context-free
inference. In Proceedings of the 22nd International Conference on Computational Linguistics-Volume 1,
Manchester, UK, pp. 745–751.



CONSTITUENT BOUNDARY INFORMATION 447

ROARK, B., and K. HOLLINGSHEAD. 2009. Linear complexity context-free parsing pipelines via chart con-
straints. In Proceedings of Human Language Technologies: The 2009 Annual Conference of the North
American Chapter of the Association for Computational Linguistics, Boulder, CO, pp. 647–655.

SAGAE, K., and A. LAVIE. 2005. A classifier-based parser with linear run-time complexity. In Proceedings
of the Ninth International Workshop on Parsing Technology. Association for Computational Linguistics,
Ann Arbor, MI, pp. 125–132.

SAGAE, K., and A. LAVIE. 2006. A best-first probabilistic shift-reduce parser. In Proceedings of the
COLING/ACL on Main Conference Poster Sessions, Sydney, Australia, pp. 691–698.

SHINDO, H., Y. MIYAO, A. FUJINO, and M. NAGATA. 2012. Bayesian symbol-refined tree substitution grammars
for syntactic parsing. In Proceedings of the 50th Annual Meeting of the Association for Computational
Linguistics: Long Papers-Volume 1, Jeju Island, Korea, pp. 440–448.

WANG, M., K. SAGAE, and T. MITAMURA. 2006. A fast, accurate deterministic parser for Chinese. In Coling-
ACL2006, Sydney, Australia, pp. 425–432.

WANG, Z., H. MI, and N. XUE. 2015. Feature optimization for constituent parsing via neural network.
In ACL (1), Beijing, China, pp. 1138–1147.

WATANABE, T., and E. SUMITA. 2015. Transition-based neural constituent parsing. In ACL (1), Beijing, China,
pp. 1169–1179.

XUE, N., F. XIA, F.-D. CHIOU, and M. PALMER. 2005. The Penn Chinese Treebank: phrase structure annotation
of a large corpus. Natural Language Engineering, 11(02): 207–238.

ZHANG, Y., B.-G. AHN, S. CLARK, C. VAN WYK, J. R. CURRAN, and L. RIMELL. 2010. Chart pruning for
fast lexicalised-grammar parsing. In Proceedings of the 23rd International Conference on Computational
Linguistics: Posters, Beijing, China, pp. 1471–1479.

ZHANG, Y., and S. CLARK. 2009. Transition-based parsing of the Chinese Treebank using a global discrimi-
native model. In Proceedings of the 11th International Conference on Parsing Technologies, Paris, France,
pp. 162–171.

ZHANG, Y., and S. CLARK. 2011. Syntactic processing using the generalized perceptron and beam search.
Computational Linguistics, 37(1): 105–151.

ZHU, M., Y. ZHANG, W. CHEN, M. ZHANG, and J. ZHU. 2013. Fast and accurate shift-reduce constituent parsing.
In ACL (1), Sofia, Bulgaria, pp. 434–443.

ZHU, M., J. ZHU, and H. WANG. 2012. Exploiting lexical dependencies from large-scale data for better shift-
reduce constituency parsing. In COLING, Mumbai, India, pp. 3171–3186.


	IMPROVING SHIFT-REDUCE PHRASE-STRUCTURE PARSING WITH CONSTITUENT BOUNDARY INFORMATION
	Introduction
	Background
	Shift-Reduce Parsing
	Baseline Parser
	Shift-Reduce Action Conflicts

	Capturing Constituent Boundary Information
	Auto-Parsed Data Preparation
	Boundary Prediction Model
	Tree Likelihood Model
	Constituent Boundary Features
	Parsing with the Proposed Features

	Experimental Setup
	Data Preparation
	Parameter Configurations
	Evaluation Metrics

	Experimental Results
	Effect of Constituent Boundary Features
	Performance Comparison
	Analysis
	First-Mistake Reduction
	Error Breakdown
	Effect of Unlabeled Data Size


	Related Work
	Conclusion
	Acknowledgments


