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Innovations in Software Engineering Education: An Experimental Study of 
Integrating Active Learning and Design-based Learning 

 

ABSTRACT 
Significant advancements have been made in engineering education in recent years.  An important 
outcome of these advancements is the integration and extension of fundamental pedagogies as part of 
engineering curricula, as well as the need for continued research into the effectiveness of these 
pedagogies on students’ learning within engineering knowledge domains.  In this paper, we focus on an 
engineering educational research study in the domain of software engineering.  This study considers the 
important research question of the efficacy of traditional lecture-homework-project teaching approaches 
compared to peer-to-peer active learning when combined with design-based learning approaches. The 
focus of the study is on participants’ qualitative assessment and self-reported motivation for learning 
fundamental programming and software engineering principles when comparing the teaching approaches.  
The participants are divided into a control group focusing on a traditional teaching approach and an 
experimental group where the teaching includes a unique integration of peer-to-peer learning and design-
based pedagogy.  Results from this study demonstrate that software engineering concepts taught in either 
pedagogical framework are well received by the students, and both groups show distinct improved 
performance relative to entering the course.  However, a peer-to-peer active environment and design-
based learning framework are received with much greater interest, engagement, sense of relevance, and 
intrinsic motivation, especially related to particular classroom and lab experiences.   

 

I. INTRODUCTION 

Over the last two decades, significant advancements have been made in the development of 
active learning approaches in many fields of engineering.  These efforts focus on transforming 
course content from passive, traditional classroom environments to modes where the students 
take a much more dynamic and participatory role.  Similar advancements have been made in 
project-based learning (PBL) and design-based learning (DBL).  In these cases, students learn in 
an application-based environment, typically in teams, and, in the preferred mode, directed by 
open-ended problems where no single right answer exists.  
While the literature reports a number of examples of active learning and design-based learning 
approaches within engineering, few investigations are reported regarding their integration.  This 
void especially exists in certain disciplines of engineering, such as software design – typically 
found in computer engineering, electrical engineering, and computer science programs. 
Students in these programs, and in particular Computer Science or Software Engineering 
courses, are often excited at first, but gradually lose interest and motivation while tackling more 
and more difficult theoretical problems. As a result, it is extremely important to explore methods 
to consistently engage students while equipping them with fundamentals, technical skills, 
innovation skills, and learning skills. Research shows that design-based engineering curriculums 
are able to intrigue students’ curiosity in exploring a new area; while an active learning approach 
enables consistent engagement to students through probing discussions and activities. Hence, 
integrating both design-based learning and active learning into Software Engineering curricula 
could potentially deliver an enriching and engaging learning experience to students where they 
exhibit increased motivation, perceive greater relevance of course content, and demonstrate high 
interest in subject matter. 



 

In this paper, we consider a systematic investigation of combining active learning and design-
based learning for the instruction of software engineering content.  The investigation entails an 
experiment based on two scenarios: a control group, focusing on the traditional approaches, and 
an experimental group, focusing on active learning through peer to peer instruction and the 
integration of design project modules.  For the purposes of this study and educational needs of 
the students, the experimental environment is chosen to be an intermediate-level short course on 
objective-oriented programming in Java.  The control group follows a traditional learning 
approach, where content is taught in a combination of lectures, labs, and homework assignments.  
The experimental group, on the other hand, learns content through pre-assigned readings, peer-
peer active presentations and discussions of course content, faculty-led follow-up discussions of 
content at a peer level, connections of provocative and real-life examples to motivate course 
content (i.e., “show and tell”), and design-based problems integrated throughout classroom and 
out-of-class activities. 
Therefore, present research intends to identify if there is significant difference between two 
learning approaches through following metrics: 1) participant’s pre and post-test performance, 
and 2) learning approach feedback about engagement, student interest, and motivation for 
software engineering content. 
 

II. RELATED RESEARCH AND PEDAGOGICAL UNDERPINNINGS 
Engineering education continues to change as we encounter more interdisciplinary learning and 
create access for a wider variety of students to be strive for success within higher-education 
classrooms (Adams, et al., 2004; Anderson and Northwood, 2002). In better understanding the 
intricacies of students’ learning, educators can improve the teaching of engineering concepts.  A 
variety of salient educational theories guide the creation, assessment, and improvement of 
engineering domain content, within an active-learning context.  These learning theories range 
from how information is presented and processed to understanding an individual student’s 
personality and preferences.  Here we focus on developments in active learning approaches 
particularly tailored and found prominently in engineering education curricula and / or research. 

II.1 Active Learning, Interactive Engagement, & Constructivist Theories 
Active learning approaches improve students’ overall learning, a view shared generally by 
faculty teaching engineering education (Aglan, 1996). There is considerable literature that 
addresses the advantages of using active learning in STEM curriculum (Aglan, 1996; Bonwell; 
Dennis, 2001; Eder, 2001; Hsi, 1995; Holzer, 2000; Linsey, 2006, 2007, 2009; Mayer, 2002; 
Meyer, 1994; Prince, 2004; Stice, 1987; Talley, 2007; Welsh, 2007; Wood, 2000, 2001, 2002, 
2004; Barr, 2000; Bean, 2001).  These literature sources show that students’ motivation and 
learning are simultaneously enhanced by the incorporation of active learning into the classroom. 

The foundation of active learning is a constructivist teaching philosophy and, in particular, social 
constructivism.  Through the interaction with ideas, concepts, materials, and other artifacts, 
students construct their knowledge.  This approach seeks to alter the mode of knowledge and 
conceptual understanding through student construction as opposed to passive reception.  
Modules may be framed within a constructivist framework in an effort to create engineering 
education experiences that (1) help students to construct deeper understanding of theoretical 
concepts in connection to practical experiences; (2) facilitate students’ engineering skills; and (3) 



 

develop students’ capabilities and dispositions for engaging in collaborative project-based 
inquiry and critical thinking. To assimilate new information and incorporate it into the existing 
knowledge, students need to restructure their knowledge for themselves, which can be 
accomplished through active learning.  A number of tenants underlie this teaching philosophy, 
including (Knight, 2004):  students take direct responsibility for their knowledge, proactively 
engaging in the study of their texts and reference materials, participation and leadership in course 
activities, completing assignments, laboratories, and exploration in the field; the instructor 
assumes more of a role of a facilitator: “a guide on the side, not a sage on the stage; students 
receive immediate feedback and guidance on their work and class contributions; and students 
invest and spend a significant portion of class time engaged in concrete experiences (doing) and 
reflections, contemplation and critically thinking, and discussing the topic area of the course.  
This approach is opposed to a passive listening of the topic from others. 

Active learning or interactive engagement does not comprise a single approach but many 
approaches may be executed through a variety of modes and media.  Exemplar delivery modes, 
with extensive testing (e.g., in the area of STEM physics (Laws, 1997)), include Cooperative 
Groups (Heller, 1992a, 1992b), Socratic Dialogue Inducing Labs (Hake, 1987, 1992), Interactive 
Demonstrations (Sokoloff, 1997), Peer Instruction (Mazur, 1997), Think/Pair/Share (Van 
Heuvelen, 1999), Tutorials (McDermott, 1994, 1998), and Hands-on Activities (Linsey, 2006, 
2007, 2009). 
Extensive empirical studies have been carried out to understand the role of active learning.  Clear 
evidence exists that the lecture mode of instruction and passive reception by students is not 
effective at leading to student understanding.  Many contributory factors explain this result 
(Knight, 2004): Students are not good listeners in a passive instructional setting.  They simply do 
not know how to listen.  Critical thinking skills cannot be developed or applied to subject matter 
due to the pace of content presentation.  The meaningful attention span of individuals is 10-15 
minutes. Many orally delivered lectures simply reiterate material in the text or references for a 
course or topic area.  Lectures typically focus on abstractions not concrete experiences with a 
subject matter. 

In the area of STEM physics, extensive testing between conventional teaching approaches versus 
active learning modes showed more than a two times (100%) improvement regarding the 
conceptual understanding of students with a Newtonian Force Concept Inventory.  These results 
are striking and correlated closely with students’ abilities to develop and employ good problem 
solving skills (Hake, 1998).  Depending on one’s teaching styles, the intent is to integrate 
interactive engagement throughout innovative initiatives in courses and the cultural setting of the 
students’ educational environment. 

II.2 Integrated Learning Experiences: the Kolb Cycle 

The Kolb model shown in Fig. 1 describes an entire cycle around which a learning experience 
progresses.  The goal is to structure learning activities that will envelope the entire cycle, 
providing the maximum opportunity for full comprehension and self-learning.  Increasing 
engineering educators are wielding this model to evaluate and enhance engineering teaching.  
Software engineering models may be designed to provide learning experiences motivated by the 
Kolb cycle that are not well met with traditional course instruction.  Specifically, software 
engineering learning modules may be developed with need-based, service learning, or industry or 
research relevant problems.  This provides the “Concrete Experience” component of the cycle in 



 

a similar manner as a case study.  The “Reflective Observation” part of the cycle may be 
accomplished by providing key times for student questions, critique, and assessment questions 
throughout the learning modules.   These observational opportunities may be designed to 
encourage the students to reflect on the innovation history, processes, problem, theoretical 
frameworks, ideas, and / or decisions.  The “Abstract Hypothesis and Conceptualization” 
component of the Kolb cycle may be addressed through the use of the course content itself, in 
addition to supporting conceptual course material.  A concept inventory may lead the 
construction and assessment goals of this Kolb component, led by student peer-to-peer 
interactions.  Finally, the “Active Experimentation” part of the cycle may be met when the 
students will be asked to interact and iteratively solve distinct modules, either reproducing 
known concepts in the subject matter, or addressing a building block of course concepts. 

II.3 Design-Based Learning (DBL) 

Significant advancements have been made in design-based learning (DBL), especially in the context of 
active- and hands-on learning (Sheppard, 1992; Dym, 1994, 1999, 2003-2005; Crawford, 1994; Eder, 
1994; Dally, 1993; His, 1995; Dutson, 1997; Otto, 1998, 2001; Barr, 2000; Tavakoli, 2000; Newman, 
2001; Dennis, 2001; Jensen, 2000, 2005; Bilen, 2002; Blessing, 2002; Campbell, 2002; Ulrich, 2004; 
Green, 2004; Charyton, 2009; Linsey, 2010; Markman, 2011; White, 2011; Wood, 2000, 2001, 2002, 
2005, 2012).  These advancements, in various direct and indirect ways, provide frameworks for learning 
through open-ended problems, creative problem-solving, and engagement in service-learning and society-
based projects.  The work reported in this paper builds upon these foundations and advancements. 
 

 
Figure 1. Kolb cycle for integrated learning experiences in assimilating and processing information 



 

II.4 Performance assessment design 

Performance assessments are used to examine the quality of studies (Messick, 1994). Depending on the 
nature of the studies, performance assessment can be product-driven or performance-driven. Product-
driven assessment evaluates the outcome of the domain whereas performance-driven assessment focuses 
on the quality of performance in the process. In cases where evaluation of the product or performance is 
the focus, replicability and generalizability are negligible. In the performance assessment of competencies, 
performance-driven assessment design has to consider generalizability and replicability in order to 
measure how consistent the meaning of the issue is likely to be.  In this work, we build on Messick’s 
contributions to develop assessment instruments. 

III.  EXPERIMENTAL STUDY DESIGN 

Building on the related research and pedagogical underpinnings in Section II, we consider here 
the design of the experimental study.  The primary hypothesis of the research study is as follows: 
“There exists significant improvement in the engagement, student interest, and motivation for 
software engineering content using an integrated approach of active and deign-based learning 
compared to traditional teaching approaches.”   Traditional approaches refer to a combination 
of lectures, tutorials and lab sessions for a software engineering course.  

To test this hypothesis, the experimental study included the design of software-engineering 
course content, coordination of the study’s control (traditional) and experimental (active-DBL) 
groups, and development of the assessment and evaluation instruments. 

III.1 Course Design 

Content Framework. For the purposes of this study, a five-day short course, offered during 
independent activity periods (IAPs) as vacation period where the students do not take curriculum 
courses, is chosen as the venue to carry out the experimental study.  This venue provides a 
number of advantages to carry out the study, namely: (i) new courses may be offered with 
relative ease compared to core curriculum courses or electives; (ii) greater experimental control 
may be obtained relative to consistency in instructor talents and skill set, environmental 
conditions across the experiment, and the availability of student time and resources; (3) 
participants in the study are volunteers, with personal choice and interests as the motivation to 
enroll in the course; and (4) significant contact hours, in this case approximately seven hours per 
day for three to five days, exist with the students in a relatively short overall timeframe.   

The software engineering topic chosen tor the five-day short course is object-oriented 
programming (OOP), where the focus language is Java.  The learning objectives for the students 
focus on gaining intermediate mastery of OOP concepts and apply these concepts in a designette 
project (Wood, 2012).  The course concepts are explored during the first three days of the short 
course, followed by two days of designette project work and presentation of the results.  In view 
of the course timeframe, a balance is sought between breadth and depth of the course content 
while designing the course framework. While obtaining programming expertise is one of the 
learning objectives of the course, we expect the students to be familiar with some basic 
knowledge of Java programming, such as its syntax and the use of Integrated Development 
Environment (IDE).   This expectation is based on the type of students typically interested in 
such IAP software engineering experiences and validated by the volunteer students that enrolled 
in the course.  In spite of this expectation, instructors still devoted a minimum amount time in 



 

reviewing basic background knowledge. This review served as a bridging session from the basics 
to intermediate level (and even some advanced) OOP concepts.  

The main course framework consists of three sections. They are Fundamental Object-Oriented 
Concepts, Java Libraries, and Integrated Techniques.  The Object-Oriented Concepts section 
seeks the study of Objects, Classes, Encapsulation, Inheritance and Polymorphism. These 
concepts are crucial for students to design and engineer interactive, effective and reusable codes 
to build sustainable system architecture.  
Java Libraries refers to pragmatic Java’s packages and functions that are pre-developed and 
integrated with the Java Development Kit (JDK). In the designed course, we introduce the basic 
packages and functions such as the Collection frameworks and Java I/O (Input/Output). 
Although these libraries belong to the Java language, other object-oriented languages, such as 
Microsoft’s C#, too have similar libraries. As a result, familiarizing with the built-in classes and 
interfaces is very helpful for software engineers to tackle problems while building on well-
known modules. 

Last but not least, the Integrated Techniques section introduces the use of Generics and 
Enumerations. These topics strengthen the flexibility developing software. By acquiring skills 
with these two techniques, students are able to better tackles uncertainties, such as receiving 
ambiguous object types in various situations.  

Figure 2 shows the organization and breakdown of this course content framework.  This 
framework, while specifically designed for the experimental study and short course, relates and 
overlaps significantly with semester-level courses on object-oriented programming. 
Concept Inventory.  In creating the course content framework as shown in Fig. 2, we developed 
a concept inventory for the focus area of object-oriented programming.  Concept inventories 
have been developed in a number of fields, such as mechanics, geosciences, physics, signals and 
systems, astronomy, statistics, computer engineering (CECI, 2012), and chemistry.  To the best 
of our knowledge, a software or computer engineering concept inventory has not been developed 
for object-oriented programming.   
We systematically developed an object-oriented programming concept inventory to support the 
course and experimental study design.  The concept inventory was formed based on OOP 
literature and text books in the field.  In particular, it was developed with reference to six 
textbooks we used in concert with the course development. These six textbooks are (a) Thinking 
in Java Fourth Edition (Eckel, 2003), (2) Head-First Java Second Edition (Sierra, 2005), (3) The 
Object-Oriented Thought Process Third Edition (Weisfeld, 2009), (4) Java – How To Program 
Ninth Edition (Deitel, 2012), (5) Effective Java Second Edition (Bloch, 2008), and (6) The Sun-
Certified Java Programmer 6.0 (SCJP 6.0 or 310-065) Exam Study Guide (Manning, 2009).  
Other supporting references include (Winblad, 1990; Budd, 1991; Martin, 1992).   

The concept inventory includes key object-oriented theories, principles, and practical problems.   
It includes both theory and application approaches on each topic. It then formed the basis of 
designing the course content framework, as shown in Fig. 1, in addition to pre- and post-test 
assessment and evaluation instruments for the course and study.  Though we developed the 
concept inventory systematically as the intersection of noted key concepts and student 
conceptual misunderstandings, the concept inventory, shown by Fig. 1 and our pre- and post-test, 
may be evolved and improved significantly. One needed evolution is to solicit experts across 



 

software engineering, and object-oriented programming and design in particular, to 
collaboratively develop a meaningful and long-lasting inventory.  We could collect questions 
through surveys and long-distance collaborations, gather relevant comments and suggestions, 
and then systematically verify and validate the resulting concept inventory.  The concept 
inventory developed in this work, as exemplified by Fig.1 and our pre- and post-test, represents a 
significant step toward a robust concept inventory for OOP. 

Part%1: 1.1 Objects*insight
1.1.1 Object%consists%of%States%and%Behaviors
1.1.2 Class%consists%fields,%Methods%and%Arguments
1.1.3 Object%is%an%instance%of%Class;%Class%is%the%blueprint%of%object.
1.2 Encapsulation
1.2.1 Minimize%the%accessibility%of%classes%and%members%(Why%encapsulating/hiding%data)
1.2.2 Getter%and%Setter
1.3 Inheritance
1.3.1 IsLa%vs%HasLa%relationship%(Inheritance%vs%Composition)
1.3.2 Favour%composition%over%inheritance
1.3.3 Interfaces%vs%abstract%base%types
1.3.4 Favour%interfaces%over%abstract%base%types
1.3.5 When%and%how%to%create%inheritance%hierarchy
1.3 Polymorphism
1.3.1 Why%Polymorphism%L%OO%design,%extensibility
1.3.2 User%object%as%its%own%type%and%its%base%type
1.3.3 How%to%construct%polymorphism

Part%2: 2.2 Containers
2.1.1 Idea%of%a%container
2.1.2 Collections
2.1.3 BuildLin%Collections:%Set,%List,%Map
2.3 Java*i/o
2.3.1 Object%Serialization:%syntax%and%application
2.3.2 Java.io.File:%buffer,%writer%and%reader
2.3.3 Introduction%to%XML

Part%3: 3.1 Enum
3.1.1 Introduction%to%enum:%custom%value%type
3.1.2 When%and%how%to%use%enum
3.1.3 Add%methods%to%enum
3.1.4 Using%enum%with%switch
3.2 Generics
3.2.1 Why%generics%L%containers%that%hold%multiple%types
3.2.2 How%to%construct%Generic%types

ObjectL
Oriented%
Concepts

Java%
Libraries

Integrated%
Techniques

 
Figure 2. Object Oriented Programming Course Content Framework for Experiment Study 

III.2 Coordination: Course and Experimental Study 
Participants.  The short course was offered to students from a variety of educational and 
experiential backgrounds. Recruitment included senior students from Singapore Polytechnic, a 
secondary-level engineering diploma granting institution, and freshmen from Singapore 
University of Technology and Design (SUTD). Figure 3 lists relevant demographic data 
regarding the participants.  The background of the students from these institutions was viewed to 
be commensurate because of the engineering diploma emphasis of Singapore Polytechnic.  Of 



 

course, some age differences exist in the students, which we attempted to control through the 
distribution of students amongst control and experimental groups. 

As the short course was designed to be intermediate level, participation of the course required 
students to have basic object-oriented programming background or experience in other 
programming practices. While registering for the course, students completed a pre-survey to 
indicate their programming background. These data were used, in part, as an indicator to 
distribute participants across a control group and experimental group for the experimental study. 
All students from Singapore Polytechnic completed at least one object oriented programming 
module as part of their curriculum. Some have experience in other programming modules such 
as Java programming, data structures, and algorithm and systems development.  

All students from SUTD are first freshmen. All except one student had object oriented 
programming experience in either Java or C++.  The remaining student had limited programming 
experience.   

Participant Gender Prior Programming Experience Year Institution
1 Male Java, C#, Data Structures and Algorithms Year 2 SP
2 Male Java, C++, PHP, HTML Year 1 SUTD
3 Male C++ and Java Year 1 SUTD
4 Male C++, Objective C, Cocoa,Carbon Year 1 SUTD
5 Male Java, C# and ActionScript Year 1 SUTD
6 Female Java, JavaScript, ActionScript 3, ASP.NET, C#, SQL, HTML Year 2 SP
7 Male Java Year 2 SP
8 Male TI-basic Year 1 SUTD
9 Male JAVA, Data Structures and Algorithms, C#, ASP.NET, PHP Year 2 SP
10 Male Limited Year 1 SUTD
11 Male C++ Year 1 SUTD
12 Male Java, C, C++. PHP, JSP, action script 3.0 Year 1 SUTD
13 Male Objective C, Javascript, Java Year 1 SUTD
14 Male Java, C++, Objective C, Python Year 1 SUTD
15 Male Octave, Python, Javascript, C Year 1 SUTD
16 Female Java,Data Structure and algorithm, c#, HTML Year 2 SP  

Figure 3. Participants’ background and relevant demographics 
Students that volunteered for enrollment are brought together for a course orientation. The 
students are told that the short course would include a pedagogical experiment, based on 
voluntary participation. However, information such as how both classes would be conducted and 
their curriculums were not disclosed to students.  
At the end of the orientation, all students are given a pre-test based on the concept inventory 
developed as part of the project. Upon completion, the students are then assigned to either the 
control or experimental groups, where they are evenly distributed according to educational level 
and skills in software programming based on the data in the pre-survey.  

After separating the participants into control and experimental groups, the short course was 
implemented over a one-week period.  The participant groups remained segregated for course 
content instruction and course exercises until the final day of the course where the students 
presented results of a final designette project (Wood, 2012). Faculty members teaching the short 
course were recruited to have similar expertise, enthusiasm, and content knowledge, independent 



 

of the control and experimental group structure.  They instructors were given the same content 
material, but were not informed about the pedagogical structure being implemented in the other 
instructor’s group. 
Control Group: The control group uses a traditional approach in teaching. It includes lectures, 
lab sessions and homework. On the other hand, the experimental group uses active learning 
through peer-to-peer instruction and the integration of design project modules. Figure 4 shows 
the mapping of the course content framework, Fig.1, to both the control group and experimental 
group pedagogical structures. 

The structure for the control group includes a combination of lecture, lab and homework, carried 
out in five consecutive days. In the morning session of each day, the students receive two 3-hour 
lectures with a 15-minute break in between. The instructor gives the lectures using whiteboards 
and markers.  

Item Duration Content Time.(min) Item Duration Content Time.(min)

1 9:00510:30 Lecture 90 1 9:00510:00
Peer5to5peer.

Interactive.Discussion
60

2 10:30510:45 Tea.Break 15 2 10:00510:15 Tea.Break 15

3 10:45512:15 Lecture 90 3 10:15512:00
Peer5to5peer.

Interactive.Discussion
45

4 12:15513:00 Lunch.Break 45 4 12:00512:45 Lunch.Break 45
5 13:00516:00 Lab 180 5 12:45516:00 Colaborative.Lab 195

1 9:00510:30 Lecture 90 1 9:00510:00
Peer5to5peer.

Interactive.Discussion
60

2 10:30510:45 Tea.Break 15 2 10:00510:15 Tea.Break 15

3 10:45512:15 Lecture 90 3 10:15512:00
Peer5to5peer.

Interactive.Discussion
45

4 12:15513:00 Lunch.Break 45 4 12:00512:45 Lunch.Break 45
5 13:00516:00 Lab 180 5 12:45516:00 Colaborative.Lab 195

1 9:00510:30 Lecture 90 1 9:00510:00
Peer5to5peer.

Interactive.Discussion
60

2 10:30510:45 Tea.Break 15 2 10:00510:15 Tea.Break 15

3 10:45512:15 Lecture 90 3 10:15512:00
Peer5to5peer.

Interactive.Discussion
45

4 12:15513:00 Lunch.Break 45 4 12:00512:45 Lunch.Break 45
5 12:45513:30 Colaborative.Lab 45
6 12:45516:00 Designette 150

Day.4 1 9:00516:00 Designette 540 1 9:00516:00 Designette 540

1 10:00512:00
Presentation
(15min/team)

120 1 10:00512:00
Presentation
(15min/team)

120

2 12:00512:45 Lunch 45 2 12:00512:45 Lunch 45
3 12:45513:30 Post5test 45 3 12:45513:30 Post5test 45
4 13:30513:45 Survey 15 4 13:30513:45 Survey 15
5 13:45514:00 Debrief 20 5 13:45514:00 Debrief 20

Day.5

Course.Implementation.Framework
Experimental.Group

Day.1

Day.2

Control.Group

Day.3

5 13:00516:00 Designette 180

 
Figure 4. Mapping of course content framework (Fig. 1) to course pedagogy (Course Implementation 

Framework) 
In the afternoon session, the students work in the lab, where they are given a problem set 
selected from “Thinking in Java” (Eckel, 2003), and a reading assignment that is relevant to the 
topics of the next day. A post-doctoral research associate works in the lab to assist the students 
and answer questions. The students are expected to complete half to two-thirds of the problems 



 

within the 3-hour lab session, leaving the remaining work and reading assignment to be 
completed as homework. 

The contents of the lectures are organized as follows. A general overview of programming is 
given in the beginning, which includes an introduction of the purpose and essence computer 
programming, and a brief history of programming languages. Java is identified in a taxonomy of 
programming languages. A key concept introduced in this lecture is that programming is a means 
by which humans control computers, and hence the human model and the computer model are 
two sides of the story about computer programming. 

For object-oriented programming, and in particular Java, the human model is object oriented 
programming (OOP) and the computer model is the Java virtue machine on an abstract computer 
architecture. The remainder of the lecture series is given by telling both sides of the story, and 
how Java syntax and concepts are designed to connect them. 

One lecture is given on the basic concepts of OOP, including encapsulation, inheritance and 
polymorphism. An example is used to explain the above concepts, with pseudocode represented 
in UML. The difference between composition and inheritance is discussed, highlighting the 
differences and possible design choices. Multiple inheritance is explained after the introduction 
of single inheritance, and parameterized types are introduced at the end of this lecture. 
On the other side of the story, one lecture is given on the basic computer architecture and the 
Java virtual machine. A computer word is explained after a brief review of binary numbers. 
Computer architecture is discussed in terms of a CPU and registers, memory, I/O devices and the 
central bus. A reflection of the first lecture is given by explaining why this architecture can 
achieve what computers do today, including robotics, multimedia and others. Chip instruction 
sets were discussed during the introduction of a CPU, and simple instructions of the Intel X86 
chipset were reviewed. The organization of a program in the memory is discussed, with the split 
of the data section into a stack and a heap explained in elaboration.  
The remainder of the lectures consists of two main topics, including Java Syntax, OO concepts 
and libraries. The syntax of Java is introduced in three main sections. The first section includes 
primitive types and values, expressions, statements, control flow, functions, classes, garbage 
collection, code compilation, packages and comments. The basic concepts were organized in the 
sequence of a traditional textbook, so that after all concepts were introduced, the students could 
write a complete Java program. Special classes such as String and Array are introduced when 
Classes are introduced. Boxing and Enum are also introduced in this section. Programming 
concepts are always discussed with their JVM behavior. 
The second section consists of access control, inheritance, polymorphism, interface, inner class 
and generics. These concepts were introduced in correspondence with the Java Syntax 
introduced previously. For example, interface and inner class are introduced as implementations 
of multiple inheritances. On the machine side, JVM behavior of each syntax type is discussed. 
The third section consists of language features including exceptions, reflection and annotations. 
Again both the design of programming paradigms and the implementation on the Java virtual 
machine are explained. The second main topic is Java libraries, where containers and file I/O are 
highlighted. 
The philosophical basis for the traditional lecturing includes the laying out of a big picture and 
consistency in storytelling. The lecturer puts all relevant knowledge under a broad theme, and 



 

discusses each topic with regard to the theme. The students have a comparatively uninterrupted 
reception of the whole flow of concepts from a single consistent point of view. 

During our control group lectures, questions were encouraged, and the students were engaged. 
The lecturer asked relevant questions to the students after the introduction of each concept to 
make sure that most students understood the concepts. Missing of particular concepts by a small 
portion of students was deemed as understandable and acceptable by the instructor, while the 
lecturer always made sure that the students knew the big picture so that they would be 
encouraged to learn by themselves the missing content, knowing their position in the broad 
lecture theme.  
A potential disadvantage of the control group was that the lectures and lab sessions were given 
completely separately, without extensive communication between the lecturer and the teaching 
assistant. For future experiments we would make the lab sessions more closed linked to the 
lectures by having the lecturer design the lab work, and increasing communication between the 
lecturer and the RA.  

Experimental Group.  The course framework for the experimental group consists of four main 
components: pre-reading, peer-to-peer interactive discussion, collaborative lab, and integrated 
design-based learning designettes (Wood, 2012).  Figure 5 shows an experimental group setting 
where students are paired into teams of peer-to-peer learners, and students initially direct the 
content in a given session. 

 
Figure 5. Experimental group setting 

Pre-reading Materials.  The students are given a set of pre-reading material one day before the 
actual lessons. Each set consists of topics that are related to the next day’s lesson. From pre-
reading, the students are expected to develop an overview of the topics before attending the class 
on the following day. These pre-readings provide background knowledge to the students in order 



 

to actively participate in the peer-to-peer interactive discussions. The pre-reading materials also 
serve as a reference library when students have questions or meet obstacles during the 
collaborative lab sessions and integrated designettes. As a result, the pre-reading material is 
designed to have simple presentation, comprehensive information and understandable language. 

The sets of pre-reading material are developed based on the concept inventory. We composed 
these topics based on related daily interactive discussions, initially led by student peer-to-peer 
teams.  Figure 6 show exemplar pre-reading materials based on selected course inventory topics, 
Figure 7 shows exemplar practical exercises included as part of the pre-reading materials, and 
Figure 8 shows sample codes as part of the pre-reading materials that express OOP concepts. 

 
Figure 6. Exemplar excerpts of pre-reading materials (Sierra, 2005; Weisfeld, 2009) 

 

 
Figure 7. Pre-reading materials: examples of embedded, practical exercises 

(a)	  Underlined	  important	  OOP	  concepts

(b)	  Summaries	  of	  key	  concepts	  integrated	  in	  the	  peer-‐to-‐
peer	  pre-‐reading	  materials

(c)	  Theoretical	  explanations



 

 

 
Figure 8. Pre-reading materials: sample codes expressing OOP concepts (Sierra, 2005) 

 

Peer-to-Peer Interactive Discussions. On the first day, the first interactive discussion section 
pairs the students as two-person teams. The two-person teams interact with real-world devices 
and creations, i.e., show-n-tell, relating the topics of the course to everyday life.  The instructor 
leads the discussion on how programming / algorithms play a role in devices and creations with 



 

the groups for 15 minutes. The devices and creations include phones, mobile apps, electronic 
devices and web programs on the Internet.  

The second interactive discussion section is the daily topic discussion. It consists of two parts. 
During the first part, the instructor spends 15 minutes introducing the software design process in 
general according to personal experience. Subsequently, the instructor introduces a design 
problem and its settings (designette). Collaboratively with the class, the instructor decomposes 
the design problem into five modules. These five modules are to be used in the Lab sections 
everyday – two modules on the first two days and one on the third day.  

The second part of the topic discussion is a peer-to-peer interactive discussion on the first days’ 
course content: Object Oriented Concepts. In the first 30 minutes, students share what they learn 
from the pre-reading materials in groups and to the class (Fig. 9). In the next 45 minutes, the 
instructor presents a personal understanding on the same set of material with the aid of 
PowerPoint slides, with ad hoc examples, that are programmed interactively and collaboratively 
with the students (Fig. 10).  

 

 
Figure 9. Peer-to-Peer interactive discussion and class presentation 



 

 

 
Figure 10. Instructor sample code developed and used during the interactive discussion sessions 

 

Collaborative DBL Lab.  The collaborative lab sessions are driven by a design problem, i.e., 
design-based learning via designettes (Wood, 2012). As an example designette and collaborative 



 

lab experience, students work in groups of two persons to develop a Fab Lab Management 
System to manage booking, training and schedule viewing of various equipment, processes and 
facilities as part of a university prototyping shop. Below is a detailed description of the 
designette provided to the students as part of the experimental study. 

Design Problem - Fab Lab Management System (FLMS): 
A software system is needed with the following characteristics.  All characteristics described 
below must be included in the Fab Lab Management software system. 
System Description: 

The Fab Lab Management System (FLMS) is to be designed as part of the lab safety 
authentication. It automates the process of authenticating students’ access to the lab and its 
machines and processes. In order to gain the access, students will need to use FLMS to complete 
a safety test. By obtaining the safety certificate, students are then able to use the other features. 

The usage or each machine or process in the lab is also restricted by licenses. Students will have 
to attend training sessions and complete the certificate tests to obtain various licenses in order to 
use the respective machines. Using FLMS, students can view the training schedule and make 
appointments subjected to availability. 

Once the licenses are obtained, students can activate the respective machines by scanning the 
student identification card on the card reader attached the machine.  

Key Features: 
1. System Architecture: The system architecture of FLMS allows effective communication 
among various entities such as user, certificate, and appointment. Each of these entities has 
concrete entities, such as student and admin are derived entities of user, and safety certificate and 
various machine licenses are entities of certificate.  
2. Log in: The system requires users to log in before using any other features. The users 
(student/admin) log in with their id and password. The system is able to distinguish between 
students and admin, and direct them to respective pages. 

3. Certificate Test: The system allows students to check and book slots for training and 
examination of the certificates. Upon passing a test, students will obtain the respective license. 
With the license, students can then activate the machine by scanning the student identification 
card on the card reader attached to each machine. In this process, the student’s id number will be 
passed to the system to check if the license is already obtained to operate the machine.  
4. Simulation on Machine Activation: Using the identification number and password, students 
can activate the machines in the Fab Lab. During authentication, the system checks if the student 
has obtained the license of the machine. Once the authentication passes, the students will be 
given 30 minutes to run the machine. 
5. Machine Booking: The system also allows the student to check the calendar for the 
availability of the machines, and book a time slot to use the available machines. (More 
descriptions may be written. These may be used for parallel programming topic.) 

6. Data Centre: The system has an entity to store the data which is shared among all other 
entities. Common Data such as user info, machine info and machine schedules will be stored in 



 

the data center. The data center does not allow any other entity to create a copy or instantiate it at 
any point of time. The data will not be erased by system restart.  

 

 
Figure 11. Example pseudo-code shared with student peer-to-peer teams as part of collaborative labs 

 

There are in total five lab sessions, two sessions each on the first two days and one on the last 
day. For each lab session, students work on one module of the design problem. The level of 
complexity and difficulty increases gradually. In Collaborative Lab 1, students are to complete 
the first module of the design problem, which is discussed in the morning. Students are given the 
basic algorithm, a portion of pseudo-code (Fig. 11) and a test case. In order to complete the 
problem, it requires the students to complete missing portions of provided code and run the test 
case.  Collaborative Lab 2 entails work on the second module of the designette. The instructor 
introduces and describes an algorithm. Students develop the code for the complete code for the 
algorithm and run the given test case to validate the code. In Collaborative Lab 3, students are 
given an algorithm. They are expected to write the complete code and test case to solve the 
problem (design module) and validate the code.  Collaborative Lab 4 entails work on the fourth 
module of the design problem. Students are to design the algorithm to address the problem. 
Students then develop complete code for the module and write the test case to validate the 
algorithm and code. Collaborative Lab 5 entails work on the fifth module of the designette. 
Students are to design the algorithm to address the problem. Subsequently, students develop two 
alternative codes for the algorithm. Lastly, students write the test cases to validate the algorithm 
and codes. 



 

Final Epitome Assignment.  On the afternoon of the third day, both the control and experimental 
groups are given a designette project as the final assignment. A real customer is invited to 
present the design problem separately in both classes (Fig. 12.2). The problem corresponds to a 
real situation where students of an institution need to be sorted into “balanced” teams (according 
to a given set of requirements) to improve their expected results and performance. The 
presentation includes background knowledge, design requirements and expected outcome. The 
students are expected to design an algorithm and associated software for effective design group 
formation based on a set of requirements, including the team members’ personality type (Jensen, 
2000), working style, skill set, gender and nationality.  The resulting software is intended to be 
used to systematically create design teams of a predetermined size range for university courses of 
co-curricular activities, as shown in Fig. 12.1. 
 

 

 
Figure 12.1. Input file, requirements and expected output 

 

The workshop students receive a file with the information recorded in the table shown in Fig 1, 
and resulting software is intended to systematically create design teams (blue header column) of 
a predetermined size range (5-6) for university courses of co-curricular activities. 
 



 

 
Figure 12.2. Dr. Diana Moreno presenting a design problem to the control and experimental groups 

 
The students in the control and experimental groups are assigned to design teams of four or five 
persons to work on the project for one and a half days (half a day on the third day and full day on 
the fourth day). Teams are formed separately for both classes. During this period, the two 
instructors are available in answering questions via email. On the last day, the students are 
brought back together. Each design team presents their solution to the design problem to the 
customer and instructors (Fig. 13).  
 

Upon completion of the final epitome design project, all students in the course complete a post-
test on the object-oriented programming concepts, which is identical to the pre-test taken at the 
beginning of the courses.  All participants also complete a learning experience self-assessment. 
These learning assessment and evaluation instruments provide the experimental data for the 
study, i.e., pre- and post-tests of the course content, a questionnaire on the learning experience by 
both groups, and key demographic information. These data are analyzed statistically to measure 
the learning outcomes of key concepts when comparing the control and experimental groups.  
Self-assessment of learning styles and approaches are also analyzed across the sample sizes for 
both groups and with respect to the pre-knowledge and demographics of the participants.  
 



 

 
Figure 13. Exemplar student presentation of the epitome design project 

 
IV. ASSESSMENT INSTRUMENTS, DATA COLLECTION, AND ANALYSIS 

IV.1 Learning Experience Self-Assessment – Survey  
The survey (Appendix B) is designed as a key quantitative measurement for the experimental 
study.  It is designed to enable participants to rate their experiences with particular classroom and 
lab experiences, in addition to the overall course.  The self-assessment includes three sections.  
Section I gathers demographic information of the student such as gender, age, academic studies 
and programming experience.  Section II gathers quantitative rankings on each course 
component for both the experimental group and control group. Students rank the lecture sessions, 
interactive discussions, labs, relevance between lessons and labs, and overall experience. The 
scale is on the following basis: to what extent the components are interesting, motivating, 
inspiring, engaging and difficult. We likewise gather participant’s self-assessment on efforts, 
focus, successfulness and number of hours students spend outside the class.  Section III gathers 
participants’ qualitative feedback and suggestions for course improvement.  

 

IV.2 Pre- and Post-Tests 

Pre- and post-tests, and their comparison of results, are a key quantitative measurement of this 
pedagogical experiment. Both instructors for the experimental study were informed of the key 
course topics based on the concept inventory. As described above, both the traditional and 
active-DBL frameworks used were structured to focus on these concepts.  However, the pre- and 
post-tests, designed and constructed from the course inventory, were not disclosed to the 



 

instructors until after the course was completed. This process seeks to avoid participants in either 
course from receiving any hints during lectures or interactive discussions, which may affect the 
accuracy of the result of the experimental study and associated statistical analysis. 
While designing the pre- and post-test, the intent is to ensure the quality of the questions, the 
ability of the questions to measure the participants’ understanding of key concepts, and how well 
the participants are able to apply the concepts in problem solving. Hence, all questions are set 
based on the Object-Oriented Programming concept inventory. Both the pre- and post-tests 
contain 35 multiple-choice questions with only one correct answer per question.  In terms of 
question type, the questions include Theory and Application categories. In terms of difficulty, the 
assessment instruments consist of Basic Level and Advanced Level questions. There are thus 
four sub-types of questions, namely Basic Theory, Advanced Theory, Basic Application, and 
Advanced Application. By comparing both the overall categories and sub-categories, we can 
assess the participants’ learning of key concepts and clearly measure the advantages and 
disadvantages between the traditional pedagogy and the active-DBL approach.  

The pre-test was completed by participants in the briefing before the actual course started.  This 
pre-test serves as an indicator and reference of a participant’s programming background and 
prior knowledge and understanding in OOP. On the other hand, the post-test was completed on 
the last day of the course, after the students had completed all lessons and assignments. The post-
test allows us to measure how well the students have learned the key concepts and provide a 
comparison with pre-test conditions. 

Both the pre- and post-tests are designed to be identical. By doing so, we aim to obtain minimal 
error in measuring the quality, effectiveness and efficiency of both classes. Figure 15 shows pre- 
and post-test sample questions, and Appendix A provides a complete pre-/post-test as a concept 
inventory.   The overall difficulty of the assessment instruments is judged to be relatively high. 
Each participant student is given 45 minutes to complete the test. In order to choose the correct 
answer, the students must fully understand the tested concepts. In addition, every question has 4 
– 8 options with only one correct answer.  This design aims to avoid students from scoring 
through guessing.  



 

 
Figure 15. Pre-/Post-Test sample questions 

IV.3 Assessment Data and Analysis 
There are two key assessments and evaluations of the experimental study. The first is the 
learning self-assessment survey. The other is participant performance on the pre- and post-tests.   
The survey aims to measure the qualitative self-assessment and self-reported motivation for 
learning fundamental programming and software engineering principles. All questions expect 
single answers. For all questions except 6.1, there are five categories of answers, ranging 
between two extremes. For coding purposes, we map a Likert scale to the responses, 
corresponding to -2 to 2 to represent the assessment score. Question 6.1 asks participants about 
the number of hours spent in independent study after class.  For this question, we use numbers 
from 0-8 to represent the answers.   

What%is%the%appropriate%data%type%for%this%value:%“Dog”?
A.    int
B.   String
C.    double
D.    boolean
E.   I%don’t%know
Which%of%the%following%statement%is%not%one%of%the%restrictions%in%each%enum%declaration?%
A.    Enum%constants%are%implicitly%final,%because%they%declare%constants%that%shouldn’t%be%modified.
B.   Enum%constants%are%implicitly%static.
C.    Any%attempt%to%create%an%object%of%an%enum%type%with%operator%“new”%results%in%a%compilation%error.
D.    The%keyword%static%must%be%present%while%declaring%the%fields%of%an%enum.
E.   I%don’t%know.
Which%of%the%following%piece%of%code%will%compile?%
A.    ArrayList<Number>%numberList%=%new%ArrayList<Integer>();
B.   ArrayList<?%Extends%Number>%numberList%=%new%ArrayList<Integer>();
C.    ArrayList<?%super%Number>%numberList%=%new%ArrayList<Integer>();
D.    ArrayList<Number>%numberList%=%Arrays.asList(1,2,3,4,5);
E.   None%of%the%above.
F.    I%don’t%know.
public%class%MyClass1%{
%%%%public%void%m1( int%i)%{}
%%%%public%void%m2( int%i)%{}
%%%%public%static %void%m3( int%i)%{}
%%%%public%static %void%m4( int%i)%{}
}
public%class%MyClass2%extends%MyClass1%{
%%%%public%static %void%m1( int%i)%{}
%%%%public%void%m2( int%i)%{}
%%%%public%void%m3( int%i)%{}
%%%%public%static %void%m4( int%i)%{}
}

Which%method%hides%a%method%in%the%superclass?%
A.    m1
B.   m2
C.    m3
D.    m4
E.   All%of%the%above
F.    None%of%the%above
G.   I%don’t%know

Basic%
Theory%
(BT)

Advanced%
Theory%
(AT)

Basic%
Applicati
on%(BA)

Advanced%
Applicati
on%(AA)



 

A power analysis for sample size shows a minimum sample size of approximately eight 
participants per group to obtain a power of 80% for a difference in survey scores between 0.5 
and 1.0, and an expected standard deviation of 0.5.  Of course, a higher sample size is desired to 
assure this power level and avoid significant biases that may exist due to such factors as 
participant background.   
Based on the voluntary enrollment during IAP, there are a total of 16 actual participants (out of 
29 registered participants) that attended all lessons, completed the survey and both tests. Nine of 
the participants are in the experimental group, whereas seven are in the control group.  The data 
collected for the experimental study are summarized in Appendix C.   
The data is analyzed by comparing the experimental and control groups using a student-t, two-
tail test.  The average scores and standard deviations are calculated for both the experimental and 
control groups, followed by the statistical test.  Table 2 summarizes the results of this analysis.  
Two of the questions have clear statistical significance with p-values less than 0.05.  One 
question is in the p-value range of 0.05 to 0.10.  And two questions have p-values very near 0.10.  
All other questions may be used to analyze common trends, when agreement exists in positive or 
negative Likert scores. 

 

Table 2. Statistical Analysis of Learning Self-Assessment Survey Results 

 
 

Pre-/Post-Test.  In both of the pre- and post-tests, all questions have only one correct answer. In 
coding the responses, a zero (0) is used to represent a wrong answer and a one (1) is used to 



 

represent a correct answer.  The pre-test scores and the post-test data are listed in Appendix D.  
Because of a lower power for sample size the pre- and post-test, and because of no valid 
statistical significance between the experimental and control groups, only raw data are chosen for 
the answers to concept inventory questions, in addition to the differences in pre- and post-test 
performance across participants.  The distributions of performance on the pre- and post-tests, 
listed in the “Sum” rows and summarized as means and standard deviations, are compared across 
all participants, as shown in Table 3, using a two-tailed student-t test.  Statistical significance 
between the pre- and post-test performance exists, where the p-value is 0.00000132, i.e., << 
0.01. 

Table 3. Statistical analysis of performance difference across participants 

Pre-‐test Post-‐test Pre-‐test Post-‐test
15.69 22.44 3.24 3.10 0.00000132

Mean Standard	  Diviation
Student-‐t

 
 

V. DISCUSSION AND CONCLUSIONS 
Section IV presents the assessment and evaluation instruments for the experimental study, the 
raw data collected with these instruments, and a basic statistical analyses of the results.  
Considering, first, the participants’ self-assessment of learning, the experimental-study results 
show a range of implications.  Based on the survey data, we conclude as follows (referring to 
Tables 2):  

For Interactive Discussion / Lecture sessions: (i) both groups find these sessions of the course 
capture their interest; (ii) both groups are motivated within these sessions of the course, on 
average, with a higher variance in the control group; (iii) both groups are inspired, on average, 
with a higher variance for the control group; (iv) both groups find these sessions to be engaging; 
and (v) both groups are neutral regarding the level of difficulty, i.e., the level of difficulty is 
neither too high or too low.   
For Lab sessions: (i) the experimental group finds the lab sessions to be more interesting; (ii) 
both groups are positive about the lab sessions in general; (iii) both groups are relatively positive 
in finding the lab sessions to be inspiring; (iv) the experimental group has a clearly engaging lab 
experience, greater than that of the control group; and (v) both groups find the labs to be 
difficult, with higher variance by the active learning group.   

For relevance between Interactive Discussion / Lecture and Lab: (i) both groups are indicate that 
the sessions show relevant connectivity, with the active learning group having a significantly 
higher rating and the control group having a higher variation; (ii) both groups find the sessions to 
be helpful, with the experimental group having higher rating and the control group having higher 
variation; (iii) both groups devoted significant, but with the control group having higher 
indicated effort.   

For Overall Self-Assessment: (i) both groups exhibited focus, but with higher indicated focus by 
the control group; (ii) the control group indicates more personal success, where the focus is on 
homework and homework-like labs as opposed to more open-ended design-based labs; (iii) both 
groups feel challenged by quantity of work for the given time; (iv) the experimental group, on 
average, dedicates more time to the sessions, but there does not exist a statistically significant 



 

difference; and (v) both groups find the course very interesting; (vi) both groups find the course 
motivating; (vii) both groups find the course inspiring; (viii) both find the course engaging; and 
(ix) both groups find the course engaging. 
Overall, based on a self-reported assessment, the active learning - DBL group finds the course 
elements to be more interesting, engaging, and with much higher connectivity than the control 
group.  However, even with these clear distinctions, the control group feels they achieve more 
personal success than the active-learning group. We interpret that their response may be based on 
their experience with a more homework-based course content, or, alternatively, active learning 
was potentially more challenging, especially the design-based laboratories and peer-to-peer 
interactive discussions. Both groups find the overall experience to be interesting, motivating, 
inspiring and engaging, indicating the careful design of each pedagogical approach. 
In addition to the self-assessment surveys, the pre- and post-test results show a clear finding 
(Tables 4-6).  Even though there exists no statistically significant differences in performance 
between the experimental and control groups, both groups showed a marked improvement in 
learning the course content.  This result, as measured by a systematically developed concept 
inventory, is reasonable for a short course with purely volunteer participants.  But it also 
provides credence to the experimental findings.  Because of the distinct learning by both groups, 
the experimental study is not biased by poorly designed course content or course implementation 
frameworks.  Instead, participants learned a range of desired concepts, where the implication is 
that either course framework could be used in future software engineering courses, but with 
higher likelihood of successful in student performance for integrated active learning and DBL 
due to the higher degree of interest, engagement, and connectivity perceived by the participants 
through various course elements. 
Contributions. Returning to the stated hypothesis of the experimental study, i.e., “There exists 
significant improvement in the engagement, student interest, and motivation for software 
engineering content using an integrated approach of active and deign-based learning 
compared to traditional teaching approaches,” the experiment results provide clear positive 
support for this hypothesis. Thus, a key contribution of this paper is the potential shown for 
combining active-learning and DBL approaches, especially in adapting and extending recent 
engineering education research findings, such as designettes.  This contribution extends to the 
particular elements developed for object-oriented programming courses, and, more generally, 
software engineering.  Other significant contributions of the study include the development of an 
initial concept inventory for object-oriented programming concepts, a self-assessment instrument 
for student learning, and course frameworks demonstrating a spectrum for teaching engineering 
subject matter. 
Limitations and Future Work.  While the results of the experimental study are very encouraging 
regarding active learning and design-based learning, there are a number of limitations in the 
current study.  These limitations include a relatively low sample size, especially for the pre- and 
post-test data; evolutions and validation needed for the concept inventory; the use of different 
instructors to teach courses for the control versus experimental groups; and the use of a short-
course format and setting as opposed to full term courses.  Future work will address approaches 
to overcome these limitations and may include a hybrid of teaching approaches, higher sample 
size studies, factor studies on different types of peer-to-peer discussions and designettes, and 
refinements of the concept inventory. Moving forward, we will seek opportunity to implement 
the model in a semester-long course, with students who are not volunteers.  
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APPENDIX A – PRE-/POST-TEST CONCEPT INVENTORY 
 
The questions are categorized into Basic/Advanced, and Theory/Application. The four cross-
categorizations are Basic Theory (BT), Basic Application (BA), Advanced Theory (AT) and Advanced 
Application (AA). The questions are in randomized order. The categorizations are not disclosed to the 
students.  

1. [BT] Choose the best definition of a Class.  
A. A special type of object 
B. A group definition, containing the data and function elements necessary to create an object 
C. An action for a program 
D. A group of students in a room 
E. I don’t know 

 
2. [BT] Choose the best definition of an object  

A. A thing 
B. An instance of a class 
C. Something you wear 
D. A class 
E. I don’t know 

 
3. [BT] What is the appropriate data type for this value: “Dog”  

A. int 
B. String 
C. double 
D. boolean 
E. I don’t know 

 

4. [BT] Which of the following item(s) can be considered object(s)?  
A. A circle 
B. A dog 



 

C. A string of text 
D. All of the above 
E. I don’t know 

 

5. [BT] Which of the following statements best describes the relationship between an object and a class?  
A. The term Object is used to describe the memory allocation whereas class is used to describe the 

data structure. Both of them refer to an identical concept in Object-Oriented Programming. 
B. An object is a template of a class and a class is an instance of an object. The state and behaviors of 

an object define the attributes and methods of a class respectively. 
C. An object is a template of a class and a class is an instance of an object. The attributes and 

methods of an object define the state and behaviors of a class respectively. 
D. A class is a template of an object and an object is an instance of a class. The state and behaviors of 

an object define the attributes and methods of a class respectively. 
E. A class is a template of an object and an object is an instance of a class. The attributes and 

methods of a class define the state and behaviors of an object respectively. 
F. I don’t know 

 

6. [AA] In Addendum 1, what is the output？ 
A. Nike 10 0 1 2 3 4 5 6 7 8 9 
B. Nike 11 0 1 2 3 4 5 6 7 8 9 
C. Nike 10 0 10 20 30 40 50 60 70 80 90 
D. Adidas 10 0 1 2 3 4 5 6 7 8 9 
E. Adidas 11 0 1 2 3 4 5 6 7 8 9 
F. Adidas 10 0 10 20 30 40 50 60 70 80 90 
G. Compilation error 
H. I don’t know 

 
7. [BT] What is the role of a constructor?  

A. Make the code confusing 
B. Create an instance of a class 
C. Create names for methods 
D. Create some type of change in the state of an object 
E. I don’t know 

 

8. [BA] In Addendum 1, which of the classes practice(s) encapsulation? 
A. Ball 
B. Basketball 
C. Soccer 
D. All of the above 
E. None of the above 
F. I don’t know 

 
9. [BT] Which of the following item(s) can be considered object(s)?  

A. A boolean 
B. A dog 
C. An arraylist of Integers 
D. All of the above 
E. Two of the above 
F. None of the above 
G. I don’t know 

 
10. [AT] What is essential for encapsulation?  

A. It exposes of the data in order to allow efficient access of the data. The common practice of 
encapsulation is to mark instance variables public and mark getters and setters private. 



 

B. It exposes of the data in order to allow efficient access of the data. The common practice of 
encapsulation is to mark instance variables private and mark getters and setters public. 

C. It restricts access to the data in order to protect and prevent unnecessary modification of the data. 
The common practice of encapsulation is to mark instance variables public and mark getters and 
setters private. 

D. It restricts access to the data in order to protect and prevent unnecessary modification of the data. 
The common practice of encapsulation is to mark instance variables private and mark getters and 
setters public. 

E. I don’t know 
 

11. [BT] Which of the following statement are not true?  
A. Encapsulation is a form of data hiding. 
B. Encapsulation typically allows programs to run faster 
C. Encapsulation helps to protect data from corruption 
D. Encapsulation allows for changes to the internal design of a class while the public interface 

remains unchanged. 
E. Encapsulation usually increases the size of the code. 
F. I don’t know 

 

12. [BT] Inheritance allows code  
A. Reusability 
B. Reliability 
C. Usefulness 
D. Correctness 
E. Readability 
F. I don’t know 

 
13. [BT] A java subclass can be defined by using the keyword: 

A. public 
B. private 
C. final 
D. extends 
E. inherits 
F. None of the above 
G. I don’t know 

 

14. [AA] Refer to Addendum 2, which method overrides a method in the superclass?  
A. m1 
B. m2 
C. m3 
D. m4 
E. All of the above 
F. None of the above 
G. I don’t know 

 
15. [AA] Refer to Addendum 2, which method hides a method in the superclass?  

A. m1 
B. m2 
C. m3 
D. m4 
E. All of the above 
F. None of the above 
G. I don’t know 

 
16. [BA] Refer to Addendum 1, which of the following statement is true?  



 

A. Ball is a sub-class of Sport 
B. Basketball is a sub-class of Ball 
C. Soccer is a sub-class of Basketball 
D. BallGame is a sub-class of Sport 
E. I don’t know 

 

17. [BT] Java provides an approach known as _______ as a convenient alternative to implement multiple 
inheritance:  

A. Sandbox 
B. Inheritance 
C. Packages 
D. Interface 
E. Class 
F. None of the above 
G. I don’t know 
 

18. [AT] Which of the following statement is not true?  
A. Polymorphism allows the reference type to be the super class of the actual object 
B. Polymorphism allows you to introduce new sub class types without changing the original code 
C. Polymorphism is a prerequisite of an inheritance hierarchy  
D. With Polymorphism, anything that extends the declared reference variable types can be assigned 

to the reference variable 
E. None of the above 
F. I don’t know 

 
19. [AA] Refer to Addendum 1, which of the following statement will not compile?  

A. Ball ball = new Ball(“MyBrand”); 
B. Basketball basketball = new Basketball(“MyBrand”); 
C. Soccer soccer = new Soccer(“MyBrand”); 
D. Ball ball = new Basketball (“MyBrand”); 
E. Sport sport = new Basketball(“MyBrand”); 
F. All of the above 
G. None of the above 
H. I don’t know 

 

20. [AT] Where is Collection interface from?  
A. java.io 
B. java.lang 
C. java.util 
D. java.awt 
E. java.sql 
F. I don’t know 

 
21. [BT] A container can  

A. Hold water 
B. Hold objects 
C. Change the behaviors of a reference type 
D. I don’t know 

 
22. [BT] Which of the following type belongs to a sub type of Collection?  

A. An array of strings 
B. ArrayList<String> 
C. HashMap<String, String> 
D. Hashtable 
E. All of the above 



 

F. None of the above 
G. I don’t know 

 
23. [AT] Consider the following statements:  

• Each element must be unique. 
• Duplicate elements must not replace old elements. 
• Elements are not key/value pairs. 
• Accessing an element can be almost as fast as performing a similar operation on an array. 

 

Which of these classes provides the specified features?  

A. LinkedList 
B. TreeMap 
C. TreeSet 
D. HashMap 
E. HashSet 
F. LinkedHashMap 
G. Hashtable 
H. None of the above 
I. I don’t know 

 

24. [AT] Which of the following statement is true?  
A. Set allows only one copy of each object. 
B. Set has an auto-assigned index for every element. 
C. Elements in a TreeSet are sorted in descending order. 
D. Elements in a HashSet is sorted in ascending order. 
E. None of the above. 
F. I don’t know. 

 

25. [BT] Which of the following code practices generics?  
A. String[] s1 = {“Hello”, “World”}; 
B. public static void main(String[] args){} 
C. ArrayList<Ineger> intList = new ArrayList<Integer>; 
D. All of the above 
E. I don’t know 

 

26. [BT] Which of the following statement is true?  
A. The use of generics allows you to specify the exact types of objects that a particular data structure 

will store. 
B. The presence of generics provides the means to create general models of methods and classes that 

can be declared once, but used with many different data types. 
C. The generic collections are backward compatible with Java code that was written before generics 

were introduced. 
D. To work with generics, every element of the array must be an object of a class or interface type. 
E. All of the above. 
F. I don’t know 

 

27. [BA] Which of the following piece of code will compile?  
A. ArrayList<Number> numberList = new ArrayList<Integer>(); 
B. ArrayList<? Extends Number> numberList = new ArrayList<Integer>(); 
C. ArrayList<? super Number> numberList = new ArrayList<Integer>(); 
D. ArrayList<Number> numberList = Arrays.asList(1,2,3,4,5); 
E. None of the above. 



 

F. I don’t know. 
 

28. [BT] Enum is:  
A. A special word 
B. A special int 
C. A special String 
D. A special method 
E. A special Class 
F. I don’t know 

 
29. [AT] Which of the following statement is true?   

A. Enum defines a set of constants represented as unique identifiers. 
B. An enum type is a reference type. 
C. Enum allows declaration of methods, constructors and fields. 
D. Enum can have a main method. 
E. All of the above. 
F. None of the above. 
G. I don’t know. 

 
30. [AT] Which of the following statement is not one of the restrictions in each enum declaration?  

A. Enum constants are implicitly final, because they declare constants that shouldn’t be modified. 
B. Enum constants are implicitly static. 
C. Any attempt to create an object of an enum type with operator “new” results in a compilation 

error. 
D. The keyword static must be present while declaring the fields of an enum. 
E. I don’t know. 

 

31. [AP] Refer to Addendum 3. What is the result of compiling and running the following code?  
A. "It is a color type" once followed by "BLUE". 
B. "It is a color type" twice followed by "BLUE". 
C. "It is a color type" thrice followed by " BLUE". 
D. "It is a color type" four times followed by "BLUE". 
E. Compilation fails. 
F. I don’t know. 

 
32. [BT] IO in Java stands for  

A. Inside and Outside 
B. Input and Output 
C. Industrial and Organizational 
D. Interest Only 
E. All of the above 
F. I don’t know  

 

33. [AT] What is required to make a class serializable?  
A. Encapsulate all attributes 
B. Make all methods public or protected 
C. Implement Serializable interface 
D. Explicitly declare SerialVersionUID 
E. All of the above 
F. I don’t know 

 
34. [AT] Which of the following statements describes a feature of Java’s io?  

A. Ability to export objects with their states and behaviors into a plain text file 
B. Provide a uniform set of methods that accept and return File objects 



 

C. Comparability 
D. All of the above 
E. I don’t know 

 

35. [BT] Which of the following statements is true about XML 
A. XML was designed to transport and store data. 
B. XML tags are pre-defined 
C. XML is not human-readable 
D. XML can only be read by applications that are developed using object-oriented programming 

language. 
E. All of the above 
F. None of the above 
G. I don’t know 

 
Addendum 1 
public interface Sport {void play();} 

public abstract class Ball implements Sport { 

 private String brand; 

 public String getBrand() {return brand;} 

 public void setBrand(String brand) {this.brand = brand;} 

 public Ball(String brand) {this.brand = brand;} 

 public void play() {System.out.println("Start playing!");} 

} 

public class Basketball extends Ball { 

 public Basketball(String brand) {super(brand);} 

 public void work() {System.out.println("Throw!");} 

} 

public class Soccer extends Ball { 

 public Soccer(String brand) {super(brand); } 

 public void play() {System.out.println("Kick!"); } 

} 

public class BallGame { 

 public static void main(String[] args) { 

  Ball ballGame = new Basketball("Nike"); 

  int numberOfPlayers = 10; 

  int[] jerseyNumbers = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; 

  changeStats(ballGame, numberOfPlayers, jerseyNumbers);   

System.out.print(ballGame.getBrand() + " " + numberOfPlayers + " "); 

  for(int i : jerseyNumbers){System.out.print(i + " ");} 



 

 } 

 private static void changeStats(Ball firstGame, int numberOfPlayers, 

   int[] jerseyNumbers) { 

  firstGame = new Soccer("Adidas"); 

  numberOfPlayers = 11; 

  for (int i = 0; i<jerseyNumbers.length;i++){jerseyNumbers[i]*=10;} 

 } 

} 

Addendum 2 
public class MyClass1 { 

    public void m1(int i) {} 

    public void m2(int i) {} 

    public static void m3(int i) {} 

    public static void m4(int i) {} 

} 

public class MyClass2 extends MyClass1 { 

    public static void m1(int i) {} 

    public void m2(int i) {} 

    public void m3(int i) {} 

    public static void m4(int i) {} 

} 

Addendum 3 
enum Color { 

 RED, BLUE, GREEN; 

 private AccountType() {System.out.println("It is a color type");} 

} 

class TestEnum { 

 public static void main(String[] args) { 

  System.out.println(Color.BLUE); 

 } 

} 

 



 

Appendix B – Survey 
The survey form serves as the learning self-assessment instrument for the experimental study. 

Name
Please&answer&the&following&survey.&Thank&you&for&your&hard&work!&

SECTION(I Class

1.*******Please*indicate*your*gender.** A.**Male
B.**Female

2.*******Please*indicate*your*age.* Answer:

3.*******Please*indicate*your*academic*studies** Answer:

4.*******How*long*have*you*been*programming? Answer: (Year*/*Month)

SECTION(II

Read(each(sentence(and(please(enter(an("X"(in(the(box(nearest(to(your(response

Uninteresting Interesting
DeLmotivating Motivating

Frustrating Inspiring
Unengaging Engaging

Difficult Easy

Uninteresting Interesting
DeLmotivating Motivating

Frustrating Inspiring
Unengaging Engaging

Difficult Easy

Irralevant* Closely*related
Unhelpful Helpful

Minimal*effort Worked*hard
Unfocussed Focused

Unsuccessful Successful

Time*than*work work*than*time

0 1 2 3 4
5 6 7 8 >8

Uninteresting Interesting
DeLmotivating Motivating

Frustrating Inspiring
Unengaging Engaging

Difficult Easy

SECTION(III

1.********I*would*describe*the*course*as..

2.*******I*would*describe*my*learning*experience*to*be..

3.*******The*things*that*I*like*most*in*the*course*are..

4.*******I*would*suggest*to*the*course*to*improve*in..

I(spent(about(_(hours(in(programming(after(class

I(would(rank(the(overall(experience(for(AJCC

Survey

I(think(the(Lecture/Discussion(sessions(were…

I(think(the(Lab(sessions(were…

I(think(that(the(connection(between(lecture/discussion(and(lab(was…

I(would(describe(my(performance(on(the(course(as…

I(had(more…

	  



 

Appendix	  C:	  Learning	  Self-‐Assessment	  Survey	  Result	  

	  

 
 

	  
E1 E2 E3 E4 E5 E6 E7 E8 E9 C1 C2 C3 C4 C5 C6 C7

Q1.1 Lecture/Discussion:	  Uninteresting	  /	  Interesting 1 2 1 0 1 1 2 1 2 1 1 2 1 1 1 1
Q1.2 Lecture/Discussion:	  De-‐Motivating	  /	  Motivating 0 0 1 0 1 0 1 1 1 0 1 2 0 0 1 1
Q1.3 Lecture/Discussion:	  Frustrating	  /	  Inspiring 0 0 1 1 1 0 1 1 1 0 2 2 0 0 1 0
Q1.4 Lecture/Discussion:	  Unengaging	  /	  Engaging 1 2 2 1 1 1 2 1 1 0 1 2 1 1 2 1
Q1.5 Lecture/Discussion:	  Difficult	  /	  Easy 0 0 0 0 1 0 1 -‐1 2 0 1 0 -‐1 0 1 -‐1
Q2.1 Lab:	  Uninteresting	  /	  Interesting 1 1 0 1 2 1 1 1 1 0 1 1 0 1 0 1
Q2.2 Lab:	  De-‐motivating	  /	  Motivating 1 1 1 1 1 0 0 0 1 0 2 1 0 0 0 0
Q2.3 Lab:	  Frustrating	  /	  Inspiring 0 1 1 1 0 0 0 -‐1 1 0 1 1 0 -‐1 0 0
Q2.4 Lab:	  Unengaging	  /	  Engaging 1 1 0 1 1 1 1 1 2 -‐1 -‐1 0 -‐1 0 1 1
Q2.5 Lab:	  Difficult	  /	  Easy 0 0 -‐2 -‐1 1 -‐1 -‐1 -‐1 1 0 0 0 0 -‐1 0 -‐1
Q3.1 Lecture	  with	  Lab:	  Irralevant	  /	  Closely	  relevant 1 1 0 1 2 1 2 1 2 -‐1 -‐1 0 1 1 0 2
Q3.2 Lecture	  with	  Lab:	  Unhelpful	  /	  Helpful 1 1 1 0 2 1 2 1 2 -‐1 1 0 1 1 0 2
Q4.1 Self-‐accessment:	  Min	  effort	  -‐	  max	  effort 0 0 1 1 1 1 1 0 1 1 2 1 1 1 2 0
Q4.2 Self-‐accessment:	  Unfocussed	  -‐	  Focus 0 -‐1 1 1 1 1 0 0 1 1 1 1 0 1 2 1
Q4.3 Self-‐accessment:	  Unsuccessful	  -‐	  Successful 0 0 -‐1 1 1 0 -‐1 0 1 1 1 1 1 1 2 1
Q5.1 Time	  vs	  Work 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 1
Q6.1 Hr	  spent	  outside	  classroom 2 4 4 6 4 8 6 3 0 5 4 2 5 3 4 2
Q7.1 Overall:	  Uninteresting	  /	  Interesting 1 1 1 1 2 1 2 1 1 1 1 1 1 1 2 1
Q7.2 Overall:	  Demotivating	  /	  Motivating 0 1 1 1 1 0 1 1 0 0 2 1 0 0 2 1
Q7.3 Overall:	  Frustrating	  /	  Inspiring 1 1 1 0 1 0 2 1 1 0 1 1 0 1 2 0
Q7.4 Overall:	  Unengaging	  /	  Engaging 1 1 1 0 1 1 2 1 1 0 1 1 1 1 2 1
Q7.5 Overall:	  Difficult	  /	  Easy 0 0 -‐1 0 0 0 0 0 2 0 1 -‐1 0 0 -‐1 1

Question Content Experimental	  Group Control	  Group



 

Appendix D: Pre- / Post- Test data 
Table 1. Pre-test scores across participants 

 
 

 

 

 

 



 

 

Table 2. Post-test scores across participants; Improvement over Pre-test 

Qn P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1
6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
7 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
8 1 1 1 1 0 1 0 0 0 0 0 1 0 1 1 1
9 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
11 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0 1
12 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1
13 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1
14 0 1 0 1 1 0 1 1 1 0 1 0 0 0 0 0
15 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
16 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1
17 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1
18 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0
19 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0
20 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0
21 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1
22 0 0 0 1 0 1 1 1 0 0 1 0 0 0 0 0
23 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0
24 1 1 0 1 1 1 0 0 0 1 1 0 1 1 1 1
25 1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1
26 1 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0
27 1 0 0 0 0 1 0 0 0 0 1 1 1 0 0 1
28 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0
29 0 0 1 0 0 0 1 0 0 1 1 1 0 1 0 0
30 0 0 1 1 1 0 1 0 0 1 1 1 0 0 1 0
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
33 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
34 1 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0
35 1 0 1 1 1 1 1 0 0 1 1 0 1 0 0 1
SUM 25 24 25 24 25 27 23 21 17 23 27 21 19 18 20 20

Improvement:	  
Sum(Post-‐Test)	  -‐	  
Sum(Pre-‐Test)

5 10 11 7 11 5 7 9 2 5 9 8 0 7 3 9

Post-‐test


