Abstract

Cross-domain NER is a challenging yet practical problem. Entity mentions can be highly different across domains. However, the correlations between entity types can be relatively more stable across domains. We investigate a multi-cell compositional LSTM structure for multi-task learning, modeling each entity type using a separate cell state. With the help of entity typed units, cross-domain knowledge transfer can be made in an entity type level. Theoretically, the resulting distinct feature distributions for each entity type make it more powerful for cross-domain transfer. Empirically, experiments on four few-shot and zero-shot datasets show our method significantly outperforms a series of multi-task learning methods and achieves the best results.

1 Introduction

Named entity recognition (NER) is a fundamental task in information extraction, providing necessary information for relation classification (Mooney and Bunescu, 2006), event detection (Popescu et al., 2011), sentiment classification (Mitchell et al., 2013), etc. NER is challenging because entity mentions are an open set and can be ambiguous in the context of a sentence. Due to relatively high cost in manual labeling, cross-domain NER has received increasing research attention. Recently, multi-task learning methods (Yang et al., 2017; Wang et al., 2018, 2019; Zhou et al., 2019; Jia et al., 2019) have achieved great success for cross-domain NER. Other methods such as fine-tuning (Rodriguez et al., 2018), share-private (Cao et al., 2018; Lin and Lu, 2018) and knowledge distill (Yang et al., 2019) also show effectiveness for cross-domain NER.

There are three main source of challenges in cross-domain NER. First, instances of the same type entities can be different across domains. For example, typical person names can include “Trump” and “Clinton” in the political news domain, but “James” and “Trout” in the sports domain. Second, different types of entities can exhibit different degrees of dissimilarities across domains. For example, a large number of location names are shared in the political news domain and the sports domain, such as “Barcelona” and “Los Angeles”, but the case is very different for organization names across these domains. Third, even types of entities can be different across domains. For example, while disease names are a type of entities in the medical domain, it is not so in the biochemistry domain.

We investigate a multi-cell compositional LSTM structure to deal with the above challenges by separately and simultaneously considering the possibilities of all entity types for each word when processing a sentence. As shown in Figure 1, the main idea is to extend a standard LSTM structure by using a separate LSTM cell to model the state for each entity type in a recurrent step. Intuitively, the model differs from the baseline LSTM by simultaneously considering all possible entity types. A compositional cell (C cell) combines the entity typed cells (ET cells) for the next recurrent state transition by calculating a weighted sum of each ET cell, where the weight of each ET cell corresponds to the probability of its corresponding entity type. Different from naive parameter sharing on LSTM (Yang et al., 2017), source domain and target domain in our multi-task learning framework share only the ET cells corresponding to the same entity types and the same C cell, but not for the domain-specific ET cells. In this way, our model learns domain-invariant in the entity level.

Intuitively, our model addresses the above challenges by modeling entity type sequences more explicitly, which are relatively more robust across domains compared with entity instances. For example, the pattern “PER O PER O LOC” can exist in both the political and sports domains, despite
that the specific PER instances can be different. In addition, thanks to the merging operation at each step, our method effectively encodes multiple entity type sequences in linear time by having a sausage shaped multi-cell LSTM. Thus it allows us to learn distributional differences between entity type chains across domains. This effectively reduces the confusions of different entities when source domain and target domain have different entity types in few-shot transfer, where the target domain has a few training data. In zero-shot transfer where the target domain has no training data, a target-domain LM transfers source-domain knowledge. This knowledge transfer is also in the entity level thanks to the compositional weights which are supervised by gold-standard entity type knowledge in source-domain training.

Theoretically, our method creates distinct feature distributions for each entity type across domains, which can give better transfer learning power compared to representation networks that do not explicitly differentiate entity types (§3.4). Empirically, experiments on four few-shot and zero-shot datasets show that our method gives significantly better results compared to standard BiLSTM baselines with the same numbers of parameters. In addition, we obtain the best results on four cross-domain NER datasets. The code is released at https://github.com/jiachenwestlake/Multi-Cell_LSTM.

2 Method

Given a sentence $x = [x_1, \ldots, x_m]$, the vector representation w_t for each word x_t is the concatenation of its word embedding and the output of a character level CNN, following Yang et al. (2018). A bi-directional LSTM encoder is used to obtain sequence level features $h = [h_1, \ldots, h_m]$. We use the forward LSTM component to explain the details in the following subsections. Finally, a CRF layer outputs the label sequence $y = l_1, \ldots, l_m$.

2.1 Baseline LSTM

We adopt the standard LSTM (Graves and Schmidhuber, 2005) for the baseline. At each time step $t \ (t \in [1, \ldots, m])$, the baseline calculates a current hidden vector $h(t)$ based on a memory cell $c(t)$. In particular, a set of input gate $i(t)$, output gate $o(t)$ and forget gate $f(t)$ are calculated as follows:

$$
\begin{align*}
&i(t) = \sigma(X_{i(t)} + c(t-1) \odot h(t-1) + b) \\
o(t) = \sigma(X_{o(t)} + c(t)) \\
f(t) = \tanh(X_{f(t)} + c(t-1))
\end{align*}
$$

where $[X; b]$ are trainable parameters. σ represents the sigmoid activation function.

2.2 Multi-Cell Compositional LSTM

As shown in Figure 1 (b), we split cell computation in the baseline LSTM unit into l copies, each corresponding to one entity type. These cells are shown in black. A compositional cell (shown in red) is used to merge the entity typed LSTM cells into one cell state for calculating the final hidden vector. In this process, a weight is assigned to each entity type according to the local context.

Entity typed LSTM cells (ET cells). Given $w(t)$ and $h(t-1)$, the input gate $i_k(t)$ and the temporary memory cell state $c_k(t)$ of the k-th $(k \in [1, \ldots, l])$ entity typed cells (ET cells) are computed as:

$$
\begin{align*}
&i_k(t) = \sigma(X_{i_k(t)} + c_k(t-1) \odot h(t-1) + b_k) \\
c_k(t) = \tanh(X_{c_k(t)} + c_k(t-1) \odot h(t-1))
\end{align*}
$$

where the $[X_k; b_k]$ represent the trainable parameters specific to the k-th ET cell.
Then a copy of the compositional memory cell state \(\hat{c}^{(t-1)} \) of the previous time step \((t-1) \) is used to update the temporary memory cell state.

\[
c_k^{(t)} = \tilde{i}_k^{(t)} \odot \hat{c}_k^{(t)} + (1 - \tilde{i}_k^{(t)}) \odot \hat{c}^{(t-1)}
\]

(3)

The above operations are repeated for \(l \) ET cells with the same \(\hat{c}^{(t-1)} \). We finally acquire a list of ET cell states \(\hat{c}_1^{(l)}, \ldots, \hat{c}_l^{(l)} \).

Compositional LSTM cell (C cell). For facilitating integration of ET cells, a input gate \(\tilde{i}_k^{(t)} \) and a temporary cell state \(\tilde{c}_k^{(t)} \) of the compositional cell (C cell) are computed similarly to those of the ET cells, but another output gate \(\tilde{o}_k^{(t)} \) is added, which are computed as follows:

\[
\begin{bmatrix} \tilde{i}_k^{(t)} \\ \tilde{o}_k^{(t)} \\ \tilde{c}_k^{(t)} \\ \tilde{c}^{(t)} \end{bmatrix} = \begin{bmatrix} \sigma \\ \sigma \\ \tanh \end{bmatrix} \left(W [\tilde{h}^{(t-1)}; \tilde{w}^{(t)}] + b \right),
\]

(4)

where \([W; b] \) are trainable parameters of the C cell.

Merging. We use the temporary cell state of the C cell \(\tilde{c}^{(t)} \) to weight the internal representations of ET cells \(\left[c_1^{(l)}, \ldots, c_l^{(l)} \right] \) for obtaining a compositional representation. To this end, additive attention (Dzmitry et al., 2015) is used, which achieves better results in our development compared with other attention mechanism (Vaswani et al., 2017). The temporary memory cell state of the C cell \(\hat{c}_k^{(t)} \) is a weighted sum of \(\left[c_1^{(l)}, \ldots, c_l^{(l)} \right] \):

\[
\hat{c}_k^{(t)} = \sum_{k=1}^{l} \alpha_k^{(t)} c_k^{(t)} \quad \text{s.t.} \quad \sum_{k=1}^{l} \alpha_k^{(t)} = 1
\]

(5)

The weight \(\alpha_k^{(t)} \) reflects the similarity between \(\tilde{c}^{(t)} \) and the \(k \)-th ET cell state \(c_k^{(t)} \). \(\alpha_k^{(t)} \) is computed as:

\[
I_k^{(t)} = v^\top \tanh(P \tilde{c}^{(t)} + Q c_k^{(t)}),
\]

\[
\alpha_k^{(t)} = \frac{\exp(I_k^{(t)})}{\sum_{j=1}^{l} \exp(I_j^{(t)})},
\]

(6)

where \([P; Q; v] \) are trainable parameters. The memory cell state of the C cell is updated as:

\[
\hat{c}^{(t)} = \tilde{i}^{(t)} \odot \hat{c}_k^{(t)} + (1 - \tilde{i}^{(t)}) \odot \hat{c}^{(t-1)}
\]

(7)

Finally, we obtain the hidden state \(\tilde{h}^{(t)} \):

\[
\tilde{h}^{(t)} = \tilde{o}^{(t)} \odot \tanh(\hat{c}^{(t)})
\]

(8)

2.3 Training Tasks

Below we discuss the two auxiliary tasks before introducing the main NER task. The auxiliary tasks are designed in addition to the main NER task in order to better extract entity type knowledge from a set of labeled training data for training ET cells and C cell. Formally, denote a training set as \(D_{ent} = \{(x^n, e^n)\}_{n=1}^{N} \), where each training instance consists of word sequence \(x = [x_1, \ldots, x_m] \) and its corresponding entity types \(e = [e_1, \ldots, e_m] \). Here each entity type \(e_i \) is a label such as [PER, O, LOC, ...] without segmentation tags (e.g., B/I/E).

Entity type prediction. Given the ET cell states of \(x_t \): \(c^{(t)} = [c_1^{(t)} \odot \tilde{c}_1^{(t)}, \ldots, c_l^{(t)} \odot \tilde{c}_l^{(t)}] \), we define the aligned entity distribution for \(x_t \):

\[
p(e_k|x_t) = \frac{\exp(w_k^t \tilde{c}_k^{(t)} + b_k)}{\sum_{j=1}^{l} \exp(w_j^t \tilde{c}_j^{(t)} + b_j)}.
\]

(9)

Where \([w_k; b_k] \) are parameters specific to the \(k \)-th entity type \(e_k \). The negative log-likelihood loss is used for training on \(D_{ent} \):

\[
\mathcal{L}_{ent} = \frac{1}{|D_{ent}|} \sum_{n=1}^{N} \sum_{t=1}^{m} \log(p(e^n_t|x^n_t))
\]

(10)

Attention scoring. Similar to the entity type prediction task, given the attention scores between the temporary C cell and ET cells in Equation 6:

\[
\tilde{I}^{(t)} = [(\tilde{T}_1^{(t)} + \tilde{T}_1^{(t)})/2, \ldots, (\tilde{T}_l^{(t)} + \tilde{T}_l^{(t)})/2],
\]

we convert the attention scores to entity aligned distributions for \(x_t \) using softmax:

\[
p(e_k|x_t) = \frac{\exp(\tilde{I}_k^{(t)})}{\sum_{j=1}^{l} \exp(\tilde{I}_j^{(t)})}
\]

(11)

Similar to the loss of entity type prediction:

\[
\mathcal{L}_{atten} = \frac{1}{|D_{ent}|} \sum_{n=1}^{N} \sum_{t=1}^{m} \log(p(e^n_t|x^n_t))
\]

(12)

While entity type prediction brings supervised information to guide the ET cells, attention scoring introduces supervision to guide the C cell.

NER. This is the main task across domains. Standard CRFs (Ma and Hovy, 2016) are used. Given \(h = [\tilde{h}_1 \oplus \tilde{h}_1, \ldots, \tilde{h}_m \oplus \tilde{h}_m] \), the output probability \(p(y|x) \) over labels \(y = l_1, \ldots, l_m \) is:

\[
p(y|x) = \frac{\exp(\sum_{l_t} (w_{CRF}^l \cdot h_l + b_{CRF}^{l_t-l_t}))}{\sum_{y'} \exp(\sum_{l_t} (w_{CRF}^l \cdot h_l + b_{CRF}^{l'_t-l_t}))},
\]

(13)

where \(y' \) represents an arbitrary label sequence, and \(w_{CRF}^l \) is a model parameter specific to \(l_t \), and \(b_{CRF}^{l_t-l_t} \) is a bias specific to \(l_t-1 \) and \(l_t \).
Algorithm 1 Transfer learning

Input: Source-domain NER dataset \(S_{ner} \), target-domain NER dataset \(T_{ner} \) or raw data \(T_{im} \), and entity dictionary \(D_c \).

Output: Target-domain model

1: while training steps not end do
2: for \(d \in \{ \text{Source, Target} \} \) do
3: for \(w^{(t)} \) in \(\{ w^{(1)}, \ldots, w^{(m)} \} \) do
4: \(\{ c_k^{(t)} \}_{k \in \mathcal{E}_d} \leftarrow \{(C_k^{(t-1)}, w^{(t)}(i), c^{(t-1)}_{k \in \mathcal{E}_d})\} \)
5: \(\hat{c}^{(t)} \leftarrow C(h^{(t-1)}, w^{(t)}) \)
6: \(\{ \hat{l}^{(t)}, \hat{c}^{(t)} \} \leftarrow \text{Atten}(\hat{c}^{(t)}, \{ c_k^{(t)} \}_{k \in \mathcal{E}_d}) \) (eq. 2-8)
7: end for
8: end if
9: end for
10: Compute \(\mathcal{L}^d_{ner} \leftarrow \lambda_{attent} \mathcal{L}_{attent} + \lambda_{attent} \mathcal{L}_{attent} \)
11: if \(d = \text{Source} \) then
12: Compute \(\mathcal{L}^a_m \leftarrow \mathcal{L}^a_{ner} \)
13: else if \(d = \text{Target} \) then
14: if do SDA then
15: Compute \(\mathcal{L}^a_m \leftarrow \mathcal{L}^a_{ner} \)
16: else if do UDA then
17: Compute \(\mathcal{L}^a_m \leftarrow \mathcal{L}^a_{ner} \)
18: end if
19: end if
20: \(\mathcal{L} \leftarrow \mathcal{L} + \lambda_{attent} \mathcal{L}^a_m + \mathcal{L}^d_{ner} \)
21: end for
22: Update parameters of networks based on \(\mathcal{L} \).
23: end while

A sentence-level negative log-likelihood loss is used for training on \(\mathcal{D}_{ner} = \{ (x^n, y^n) \}_{n=1}^N \):

\[
\mathcal{L}_{ner} = -\frac{1}{|\mathcal{D}_{ner}|} \sum_{n=1}^N \log(p(y^n|x^n))
\]

(14)

3 Transfer Learning

The multi-cell LSTM structure above is domain agnostic, and can therefore be used for in-domain NER too. However, the main goal of the model is to transfer entity sequence knowledge across domains, and therefore the ET cells and C cell play more significant roles in the transfer learning setting. Below we introduce the specific roles each cell is assigned in cross-domain settings.

3.1 Multi-Task Structure

Following the common cross-domain setting, we use source-domain NER dataset \(S_{ner} \) and the target-domain NER dataset \(T_{ner} \) or raw data \(T_{im} \). The entity type sets of source and target domains are represented as \(\mathcal{E}_d \), where \(d \in \{ S, T \} \), respectively.

As shown in Figure 1 (c), our multi-task learning structure follows Yang et al. (2017), which consists of shared embedding layer and shared BiLSTM layer, as well as domain-specific CRF layers. Our method replaces LSTM with multi-cell LSTM, following we introduce the multi-task parameter sharing mechanism in multi-cell LSTM.

ET cells. All ET cells \(\{ C_k \}_{k \in \mathcal{E}_d \cup \mathcal{E}_t} \) in multi-cell LSTM are a composition of entity-specific cells from both source and target domains. For each domain \(d \in \{ S, T \} \), the actually used ET cells are the domain-specific subset \(\{ C_k \}_{k \in \mathcal{E}_d} \), aiming to conserve domain-specific features.

C cell. In order to make the source and target domains share the same feature space in a word level, we use a shared C cell \(\hat{C} \) across domains.

3.2 Unsupervised Domain Adaptation

To better leverage target-domain knowledge without target-domain NER labeled data, we conduct the auxiliary dictionary matching and language modeling tasks on target-domain raw data \(T_{im} = \{ (x^n) \}_{n=1}^N \).

Auxiliary tasks. To better extract entity knowledge from raw data, we use a pre-collected named entity dictionary \(D_c \) by Peng et al. (2019) to label \(T_{im} \), and obtain a set of entity words \(D_{ner}^+ \), which are used to train entity prediction task and attention scoring task jointly.

Language modeling. Following Jia et al. (2019), we use sampling softmax to compute forward LM probability \(p^f(x_t|x_{<t}) \) and backward LM probability \(p^b(x_t|x_{>t}) \), respectively:

\[
p^f(x_t|x_{<t}) = \frac{1}{Z} \exp \left(w^T_x \tilde{h}_{t-1} + b_x \right)
\]
\[
p^b(x_t|x_{>t}) = \frac{1}{Z} \exp \left(w^T_x \tilde{h}_{t+1} + b_x \right),
\]

(15)

where \(w_x \) and \(b_x \) are the target word vector and bias, respectively. \(Z \) is the normalization item computed by the target word and negative samples.

The LM loss function on \(T_{im} \) is:

\[
\mathcal{L}^a_{im} = -\frac{1}{2|\mathcal{T}_{im}|} \sum_{n,t=1}^N \left\{ \log(p^f(x^n_t|x_{<t}^n)) + \log(p^b(x^n_{t}|x_{>t}^n)) \right\}
\]

(16)

3.3 Training Objective

Algorithm 1 is the transfer learning algorithm under both supervised and unsupervised domain adaptation settings. Both source- and target-domain training instances undertake auxiliary tasks and obtain the loss \(\mathcal{L}_a \), which is a combination of \(\mathcal{L}_{ent} \) and \(\mathcal{L}_{atten} \) weighted by \(\lambda_{ent} \) and \(\lambda_{atten} \) respectively (line 6).

Supervised domain adaptation. The auxiliary tasks as well as source- and target-domain NER tasks (line 8, 11) form the final training objective:

\[
\mathcal{L}_{SDA} = \sum_{d \in \{S,T\}} \{ \lambda_d \mathcal{L}^d_{ner} + \mathcal{L}^a_d \} + \lambda \| \Theta \|^2.
\]

(17)
where $\lambda_d \ (d \in \{S, T\})$ are the domain weights for NER tasks. λ is the L_2 regularization parameters and Θ represents the parameters set.

Unsupervised domain adaptation. The training objective for UDA is similar to that of SDA, except for using target-domain LM task (line 13) instead of target-domain NER task:

$$
\mathcal{L}_{UDA} = \mathcal{L}^S_{rec} + L^T_{lm} + \epsilon^S + \epsilon^T_T + \frac{\lambda}{2} ||\Theta||^2
$$

(18)

3.4 Theoretical Discussion

Below we show theoretically that our method in §2.2 is stronger than the baseline method in §2.1 for domain adaptation. Following [Ben-David et al. (2010)](#), a domain is defined as a pair of input distribution D on X and a labeling function $y: X \to Y$, where Y is a $(l - 1)$-simplex. According to this definition, $<D_S, y_S>$ and $<D_T, y_T>$ represent source and target domains, respectively. A hypothesis is a function $h: X \to \{1, ..., l\}$, which can be a classification model.

Target-domain error is defined as the probability h_T disagrees with y_T, $\epsilon(h_T) = \epsilon(h_T, y_T) = E_{x \sim D_T}[|y_T - h_T(x)|]$. The training target for h_T is to minimize a convex weighted combination of source and target errors, $\epsilon(h_T) = \alpha \epsilon_T(h) + (1 - \alpha) \epsilon_S(h)$, where $\alpha \in [0, 1)$ is the domain weight, when $\alpha = 0$, it is the setting of UDA.

Theorem 1 Let h be a hypothesis in class \mathcal{H}, then:

$$
\epsilon_T(h) \leq \epsilon_S(h) + (1 - \alpha) \left(\frac{1}{2} d_{\Delta \mathcal{H}}(D_S, D_T) + \lambda \right),
$$

where

$$
d_{\Delta \mathcal{H}}(D_S, D_T) = 2 \sup_{h', h'' \in \mathcal{H}} \left| \Pr_{x \sim D_S}[h'(x) \neq h''(x)] - \Pr_{x \sim D_T}[h'(x) \neq h''(x)] \right|
$$

Here λ is a constant that values the shared error of the ideal joint hypothesis. In $d_{\Delta \mathcal{H}}(D_S, D_T)$, sup denotes the supremum of the right term for all $h', h'' \in \mathcal{H}$.

The optimization objective is as follows:

$$
\min_{f \in \mathcal{F}} \sup_{g', g'' \in \mathcal{G}} \left| \Pr_{x \sim D_T}[g' \circ f(x) \neq g'' \circ f(x)] \right|
$$

Aiming to $\min_{f \in \mathcal{F}} d_{\Delta \mathcal{H}}(D_S, D_T)$, we decompose the unified feature space into several entity typed distributions using multi-cell LSTM, resulting in that source- and target-domain features belonging to the same entity type are clustered together. The proof is mainly based on the cluster assumption ([Chapelle and Zien, 2005](#)), which is equivalent to the low density separation assumption, states that the decision boundary should lie on a low-density region. According to the cluster assumption, both g' and g'' tend to cross the low-density regions in the shared...
4.2 Development Experiments

Figure 2 shows the performances of the main target-domain NER task and the auxiliary entity prediction and attention scoring tasks on the development sets of BioNLP13CG and Twitter when the number of training iterations increases. As can be seen from the figure, all the three tasks have the same trend of improvement without potential conflicts between tasks, which shows that all the three tasks take the feature space of the same form.

4.3 Supervised Domain Adaptation

We conduct supervised domain adaptation on BioNL dataset, Broad Twitter dataset and Twitter dataset, respectively. In particular, for the BioNL dataset, BioNLP13CG is used as the target-domain dataset and the CoNLL-2003 as the source-domain dataset. These two datasets have different entity types. In the Broad Twitter dataset, Broad Twitter is used as the target-domain dataset, and the CoNLL-2003 is used as the source-domain dataset. These two datasets have different target-domain and auxiliary tasks. We choose NCFF++ (Yang and Zhang, 2018) for developing the models. The multi-task baselines are based on Jia et al. (2019). Our hyperparameter settings largely follow Yang et al. (2018); word embeddings for all models are initialized with PubMed 200-dimension vectors (Chiu et al., 2016) in BioNL experiments and GloVe 100-dimension vectors (Pennington et al., 2014) in other experiments. All word embeddings are fine-tuned during training. Character embeddings are randomly initialized.

Table 1: Statistic of datasets.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Entity Type</th>
<th>Size</th>
<th>Train</th>
<th>Dev</th>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoNLL-2003</td>
<td>PER, LOC</td>
<td>#Sentence</td>
<td>15.0K</td>
<td>3.5K</td>
<td>3.7K</td>
</tr>
<tr>
<td>Broad Twitter</td>
<td>PER, LOC</td>
<td>#Sentence</td>
<td>6.3K</td>
<td>1.0K</td>
<td>2.0K</td>
</tr>
<tr>
<td>Twitter</td>
<td>PER, LOC</td>
<td>#Sentence</td>
<td>4.3K</td>
<td>1.4K</td>
<td>1.5K</td>
</tr>
<tr>
<td>BioNLP13PC</td>
<td>CHEM, CC</td>
<td>#Sentence</td>
<td>2.5K</td>
<td>0.9K</td>
<td>1.7K</td>
</tr>
<tr>
<td>BioNLP13CG</td>
<td>CHEM, CC</td>
<td>#Sentence</td>
<td>3.0K</td>
<td>1.0K</td>
<td>1.9K</td>
</tr>
<tr>
<td>CBS News</td>
<td>PER, LOC</td>
<td>#Sentence</td>
<td>-</td>
<td>-</td>
<td>2.0K</td>
</tr>
</tbody>
</table>

Figure 2: Performances of the main NER and auxiliary tasks against the total number of training iterations.
we leverage the outputs of LM pre-training methods with two improved methods, M with the traditional parameter sharing mechanism (Jia et al., 2019), which adds an parameter generation networks (PGN) to generate parameters for source- and target-domain LSTMs and M (Zhou et al., 2019), which adds a generalization resource-adversarial discriminator (GRAD) and leverages adversarial training. The results show that our method can significantly outperform these multi-task methods on the same datasets, which shows the effectiveness of our multi-cell structure in cross-domain settings.

Comparison with the state-of-the-art models. Results show that our model outperforms cross-domain method of Jia et al. (2019), cross-type method of Wang et al. (2019) and methods using addition features (Crichton et al., 2017; Lu et al., 2018). Recently, LM pre-training based methods such as ELMo/BioELMo (Peters et al., 2018), BERT (Devlin et al., 2019) and BioBERT (Lee et al., 2020) achieve state-of-the-art results on NER. However, these methods use additional large-scale language resources, thus it is unfair to make direct comparisons with our method. Thus we leverage the outputs of LM pre-training methods as contextualized word embeddings. In particular, we use the same batch size as our method and the Adam optimizer with an initial learning rate 3e-5 in BERT fine-tuning baselines. Results show that our method benefits from these LM pre-training output features and outperforms these LM pre-training based methods.

4.4 Unsupervised Domain Adaptation

We conduct unsupervised domain adaptation on the CBS SciTech News test set, using CoNLL-2003 as the source-domain dataset. The overall results are listed in Table 3.

Adding target-domain LM training. Only using the source-domain NER data, BiLSTM and MULTI-CELL LSTM give comparable results, 70.73% F₁ and 70.03% F₁, respectively. In comparison with the source-domain only models, all of the models

<table>
<thead>
<tr>
<th>Methods</th>
<th>BioNLP</th>
<th>Broad Twitter</th>
<th>Twitter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jia et al. (2019)</td>
<td>73.59</td>
<td>74.23</td>
<td>71.30</td>
</tr>
<tr>
<td>BERT-BASE (Devlin et al., 2019)</td>
<td>74.23</td>
<td>70.73</td>
<td>72.49</td>
</tr>
<tr>
<td>BiLSTM</td>
<td>70.03</td>
<td>71.30</td>
<td>72.49</td>
</tr>
<tr>
<td>BiLSTM+LM</td>
<td>72.49</td>
<td>72.49</td>
<td>72.49</td>
</tr>
<tr>
<td>BiLSTM+LM+Dict</td>
<td>74.91</td>
<td>74.91</td>
<td>74.91</td>
</tr>
<tr>
<td>Multi-CELL LSTM</td>
<td>73.56</td>
<td>73.56</td>
<td>73.56</td>
</tr>
<tr>
<td>Multi-CELL LSTM+LM+Dict</td>
<td>75.19</td>
<td>75.19</td>
<td>75.19</td>
</tr>
</tbody>
</table>

Table 3: Results on CBS News datasets. #Raw indicates number of words in raw data used in the experiment. † indicates statistical significance compared with all of the baselines with p < 0.01 by t-test.
We visualize feature spaces of ET cells and C cell under
Visualization. Adding a named entity dictionary.
(75.19% F_1) different clusters of different colours), and states
erate different feature distributions (gathering in
figure we can see that different ET cells can generate
different feature distributions (gathering in
different clusters of different colours), and states
of the same ET cell gather together across domains. This indicates that our model can learn
cross-domain entity typed knowledge with the help of
ET cells, which are more robust across domains.

Figure 3 visualize the hidden vectors of the
target-domain only baseline, the multi-task baseline
and the proposed model. From the figure, we
can see that both the multi-task baseline and ours
can obtain similar feature distributions across do-
 mains compared with the target-domain only base-
line. In comparison with the multi-task baseline,
our model also shows strong matches across do-
 mains in an entity type level, which can better nar-
row the gap between source and target domains as
discussed in §3.4.

Fine-grained comparison. We make fine-grained
comparisons between our model and the multi-task
baseline on the BioNLP dataset, aiming to show
how our model achieves better results on the en-
tity type level. Following Crichton et al. (2017)
and Jia et al. (2019), we study five well studied
entity groups (not including all entity types) in
BioNLP13CG. As shown in Table 4, both MUL
(Multi-Task baseline) and Ours achieve significant
improvement over the target-domain only base-
line and the proposed model. From the figure, we
mainly the gap between source and target domains as
of the same ET cell gather together across do-
 mains. This indicates that our model can learn
cross-domain entity typed knowledge with the help of
ET cells, which are more robust across domains.

Figure 4 visualize the hidden vectors of the
target-domain only baseline, the multi-task base-
line and the proposed model. From the figure, we
can see that both the multi-task baseline and ours
can obtain similar feature distributions across do-
 mains compared with the target-domain only base-
line. In comparison with the multi-task baseline,
our model also shows strong matches across do-
 mains in an entity type level, which can better nar-
row the gap between source and target domains as
discussed in §3.4.

Fine-grained comparison. We make fine-grained
comparisons between our model and the multi-task
baseline on the BioNLP dataset, aiming to show
how our model achieves better results on the en-
tity type level. Following Crichton et al. (2017)
and Jia et al. (2019), we study five well studied
entity groups (not including all entity types) in
BioNLP13CG. As shown in Table 4, both MUL
(Multi-Task baseline) and Ours achieve significant
improvement over the target-domain only base-
line and the proposed model. From the figure, we
mainly the gap between source and target domains as
of the same ET cell gather together across do-
 mains. This indicates that our model can learn
cross-domain entity typed knowledge with the help of
ET cells, which are more robust across domains.

Figure 4 visualize the hidden vectors of the
target-domain only baseline, the multi-task base-
line and the proposed model. From the figure, we
can see that both the multi-task baseline and ours
can obtain similar feature distributions across do-
 mains compared with the target-domain only base-
line. In comparison with the multi-task baseline,
our model also shows strong matches across do-
 mains in an entity type level, which can better nar-
row the gap between source and target domains as
discussed in §3.4.

Fine-grained comparison. We make fine-grained
comparisons between our model and the multi-task
baseline on the BioNLP dataset, aiming to show
how our model achieves better results on the en-
tity type level. Following Crichton et al. (2017)
and Jia et al. (2019), we study five well studied
entity groups (not including all entity types) in
BioNLP13CG. As shown in Table 4, both MUL
(Multi-Task baseline) and Ours achieve significant
improvement over the target-domain only base-
line and the proposed model. From the figure, we
mainly the gap between source and target domains as
of the same ET cell gather together across do-
 mains. This indicates that our model can learn
cross-domain entity typed knowledge with the help of
ET cells, which are more robust across domains.

Figure 4 visualize the hidden vectors of the
target-domain only baseline, the multi-task base-
line and the proposed model. From the figure, we
can see that both the multi-task baseline and ours
can obtain similar feature distributions across do-
 mains compared with the target-domain only base-
line. In comparison with the multi-task baseline,
our model also shows strong matches across do-
 mains in an entity type level, which can better nar-
row the gap between source and target domains as
discussed in §3.4.

Fine-grained comparison. We make fine-grained
comparisons between our model and the multi-task
baseline on the BioNLP dataset, aiming to show
how our model achieves better results on the en-
tity type level. Following Crichton et al. (2017)
and Jia et al. (2019), we study five well studied
entity groups (not including all entity types) in
BioNLP13CG. As shown in Table 4, both MUL
(Multi-Task baseline) and Ours achieve significant
improvement over the target-domain only base-
line and the proposed model. From the figure, we
mainly the gap between source and target domains as
of the same ET cell gather together across do-
 mains. This indicates that our model can learn
cross-domain entity typed knowledge with the help of
ET cells, which are more robust across domains.

Figure 4 visualize the hidden vectors of the
target-domain only baseline, the multi-task base-
line and the proposed model. From the figure, we
can see that both the multi-task baseline and ours
can obtain similar feature distributions across do-
 mains compared with the target-domain only base-
line. In comparison with the multi-task baseline,
our model also shows strong matches across do-
 mains in an entity type level, which can better nar-
row the gap between source and target domains as
discussed in §3.4.

Fine-grained comparison. We make fine-grained
comparisons between our model and the multi-task
baseline on the BioNLP dataset, aiming to show
how our model achieves better results on the en-
tity type level. Following Crichton et al. (2017)
and Jia et al. (2019), we study five well studied
entity groups (not including all entity types) in
BioNLP13CG. As shown in Table 4, both MUL
(Multi-Task baseline) and Ours achieve significant
improvement over the target-domain only base-
line and the proposed model. From the figure, we
mainly the gap between source and target domains as
of the same ET cell gather together across do-
 mains. This indicates that our model can learn
cross-domain entity typed knowledge with the help of
ET cells, which are more robust across domains.

Figure 4 visualize the hidden vectors of the
target-domain only baseline, the multi-task base-
line and the proposed model. From the figure, we
can see that both the multi-task baseline and ours
can obtain similar feature distributions across do-
 mains compared with the target-domain only base-
line. In comparison with the multi-task baseline,
our model also shows strong matches across do-
 mains in an entity type level, which can better nar-
row the gap between source and target domains as
discussed in §3.4.

Fine-grained comparison. We make fine-grained
comparisons between our model and the multi-task
baseline on the BioNLP dataset, aiming to show
how our model achieves better results on the en-
tity type level. Following Crichton et al. (2017)
and Jia et al. (2019), we study five well studied
entity groups (not including all entity types) in
BioNLP13CG. As shown in Table 4, both MUL
(Multi-Task baseline) and Ours achieve significant
improvement over the target-domain only base-
line and the proposed model. From the figure, we
mainly the gap between source and target domains as
of the same ET cell gather together across do-
 mains. This indicates that our model can learn
cross-domain entity typed knowledge with the help of
ET cells, which are more robust across domains.

Figure 4 visualize the hidden vectors of the
target-domain only baseline, the multi-task base-
line and the proposed model. From the figure, we
can see that both the multi-task baseline and ours
can obtain similar feature distributions across do-
 mains compared with the target-domain only base-
line. In comparison with the multi-task baseline,
our model also shows strong matches across do-
 mains in an entity type level, which can better nar-
row the gap between source and target domains as
discussed in §3.4.

Fine-grained comparison. We make fine-grained
comparisons between our model and the multi-task
baseline on the BioNLP dataset, aiming to show
how our model achieves better results on the en-
tity type level. Following Crichton et al. (2017)
and Jia et al. (2019), we study five well studied
entity groups (not including all entity types) in
BioNLP13CG. As shown in Table 4, both MUL
(Multi-Task baseline) and Ours achieve significant
improvement over the target-domain only base-
line and the proposed model. From the figure, we
mainly the gap between source and target domains as
of the same ET cell gather together across do-
 mains. This indicates that our model can learn
cross-domain entity typed knowledge with the help of
ET cells, which are more robust across domains.

Figure 4 visualize the hidden vectors of the
target-domain only baseline, the multi-task base-
line and the proposed model. From the figure, we
can see that both the multi-task baseline and ours
can obtain similar feature distributions across do-
 mains compared with the target-domain only base-
line. In comparison with the multi-task baseline,
our model also shows strong matches across do-
 mains in an entity type level, which can better nar-
row the gap between source and target domains as
discussed in §3.4.

Fine-grained comparison. We make fine-grained
comparisons between our model and the multi-task
baseline on the BioNLP dataset, aiming to show
how our model achieves better results on the en-
tity type level. Following Crichton et al. (2017)
and Jia et al. (2019), we study five well studied
entity groups (not including all entity types) in
BioNLP13CG. As shown in Table 4, both MUL
(Multi-Task baseline) and Ours achieve significant
improvement over the target-domain only base-
line and the proposed model. From the figure, we
mainly the gap between source and target domains as
of the same ET cell gather together across do-
 mains. This indicates that our model can learn
cross-domain entity typed knowledge with the help of
ET cells, which are more robust across domains.

Figure 4 visualize the hidden vectors of the
target-domain only baseline, the multi-task base-
line and the proposed model. From the figure, we
can see that both the multi-task baseline and ours
can obtain similar feature distributions across do-
 mains compared with the target-domain only base-
line. In comparison with the multi-task baseline,
our model also shows strong matches across do-
 mains in an entity type level, which can better nar-
row the gap between source and target domains as
discussed in §3.4.
(b) Multi-Task baseline.

(c) Ours.

Figure 4: t-SNE visualization of hidden vectors on the CoNLL–2003 test set and Broad Twitter test set, represented by signal star and dot, respectively. Different entity types are represented by different colours.

Table 5: Ablation studies on BioNLP, Broad Twitter and CBS SciTech News datasets.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Datasets</th>
<th>F₁</th>
<th>Δ</th>
<th>F₁</th>
<th>Δ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BioNLP</td>
<td>83.15</td>
<td>-</td>
<td>74.82</td>
<td>-</td>
</tr>
<tr>
<td>−Łcnt</td>
<td>Broad Twitter</td>
<td>82.71</td>
<td>-0.44</td>
<td>73.97</td>
<td>-0.85</td>
</tr>
<tr>
<td>−Łatten</td>
<td>CBS News</td>
<td>81.65</td>
<td>-1.50</td>
<td>73.25</td>
<td>-1.57</td>
</tr>
<tr>
<td>−Łcnt−Łatten</td>
<td></td>
<td>81.74</td>
<td>-1.41</td>
<td>73.64</td>
<td>-1.18</td>
</tr>
<tr>
<td>BiLSTM−BASED</td>
<td></td>
<td>81.06</td>
<td>-2.09</td>
<td>73.84</td>
<td>-0.98</td>
</tr>
<tr>
<td>STACKED BiLSTMs</td>
<td></td>
<td>80.61</td>
<td>-2.54</td>
<td>73.86</td>
<td>-0.96</td>
</tr>
<tr>
<td>HIDDEN EXPANSION</td>
<td></td>
<td>80.32</td>
<td>-2.83</td>
<td>73.34</td>
<td>-2.48</td>
</tr>
</tbody>
</table>

Table 6: Example from CBS News test. Red and green represent incorrect and correct entities, respectively.

<table>
<thead>
<tr>
<th>Sentence</th>
<th>The World Health Organization (WHO) describes Nipah infection as a "newly emerging" organism that causes severe disease in both animals and humans.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BiLSTM</td>
<td>WHO describes Nipah as ORG, RG, O'</td>
</tr>
<tr>
<td>BiLSTM+LM</td>
<td>WHO (O) describes ORG, RG, O'</td>
</tr>
<tr>
<td>Ours</td>
<td>WHO (O) describes NIP, RG, O'</td>
</tr>
</tbody>
</table>

Table 6: Example from CBS News test. Red and green represent incorrect and correct entities, respectively.

BiLSTM+LM give the correct results because this entity is mentioned in raw data. Using the multicell structure, our method learns the pattern “ORG, O, ORG, O” from source data without confusions by target-domain specific entities, thus Ours recognizes “WHO” correctly.

5 Conclusion

We have investigated a multi-cell compositional LSTM structure for cross-domain NER under the multi-task learning strategy. Theoretically, our method benefits from the distinct feature distributions for each entity type across domains. Results on a range of cross-domain datasets show that multi-cell compositional LSTM outperforms BiLSTM under the multi-task learning strategy.

Acknowledgments

We thank the anonymous reviewers for their helpful comments and suggestions. We gratefully acknowledge funding from the National Natural Science Foundation of China (NSFC No.61976180) and the Westlake University and Bright Dream Joint Institute for Intelligent Robotics. Yue Zhang is the corresponding author.

References

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman

Xuan Wang, Yu Zhang, Xiang Ren, Yuhao Zhang, Marinka Zitnik, Jingbo Shang, Curtis Langlotz, and Jiawei Han. 2019. Cross-type biomedical named entity recognition with deep multi-task learning. Bioinformatics, 35(10):1745–1752.

A Proof of Lemma 1

Proof. Given the precondition $\epsilon_\alpha(h^*) = \alpha \epsilon_T(h_1) + (1 - \alpha) \epsilon_S(h_2)$, we use the trangle inequality as follows:

\[
\epsilon_T(h_1) - \epsilon_\alpha(h^*) \leq |\epsilon_\alpha(h^*) - \epsilon_T(h_1)|
\]

\[
= (1 - \alpha) |\epsilon_S(h_2) - \epsilon_T(h_1)|
\]

\[
\leq (1 - \alpha) \left[|\epsilon_S(h_2) - \epsilon_S(h_1, h_2)| + |\epsilon_S(h_1, h_2) - \epsilon_T(h_1, h_2)| + |\epsilon_T(h_1, h_2) - \epsilon_T(h_1)| \right]
\]

The trangle inequality in Crammer et al. (2008) states that for a class of models F and expected error function ϵ if for all $g_1, g_2, g_3 \in F$, we have $\epsilon(g_1, g_2) \leq \epsilon(g_1, g_3) + \epsilon(g_2, g_3)$. Following the above formular and the definition of $d_{H \Delta H}(\cdot, \cdot)$, we can further obtain:

\[
\epsilon_T(h_1) - \epsilon_\alpha(h^*) \leq (1 - \alpha) \left[|\epsilon_S(h_1) + \epsilon_T(h_2)| + |\epsilon_S(h_1, h_2) - \epsilon_T(h_1, h_2)| + \epsilon_T(h_1, h_2) - \epsilon_T(h_1) \right]
\]

\[
\leq (1 - \alpha) \left[\epsilon_S(h_1) + \epsilon_T(h_2) + \frac{1}{2} d_{H \Delta H}(DS, DT) \right]
\]

Given the precondition $\epsilon_\alpha(h^*) = \alpha \epsilon_T(h_1) + (1 - \alpha) \epsilon_S(h_2)$, we consider two UDA settings: (i) do-
As the common setting of transfer learning, we set \(1 > \alpha \geq \frac{1}{2}\) and then \(\frac{n}{1 - \alpha} \geq 1\), further obtaining:

\[
\epsilon_S(h_1) \leq \frac{\alpha}{1 - \alpha} \epsilon_T(h_1) + \frac{1}{2} d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{D}_S, \mathcal{D}_T) + \lambda_1
\]

Using these conclusions to the previous inequalities, we have:

\[
(1 - \alpha) \left[\epsilon_S(h_1) + \epsilon_T(h_2) + \frac{1}{2} d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{D}_S, \mathcal{D}_T) \right] \\
\leq \alpha \epsilon_T(h_1) + (1 - \alpha) \epsilon_S(h_2) \\
+ (1 - \alpha) \left[\frac{3}{2} d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{D}_S, \mathcal{D}_T) + \lambda_1 + \lambda_2 \right]
\]

Setting \(\lambda^* = \lambda_1 + \lambda_2\), which is the shared error of ideal joint hypothesis and use the precondition, \(\epsilon_\alpha(h^*) = \alpha \epsilon_T(h_1) + (1 - \alpha) \epsilon_S(h_2)\), we have

\[
\epsilon_T(h_1) - \epsilon_\alpha(h^*) \\
\leq (1 - \alpha) \left[\epsilon_S(h_1) + \epsilon_T(h_2) + \frac{1}{2} d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{D}_S, \mathcal{D}_T) \right] \\
\leq \epsilon_\alpha(h^*) + (1 - \alpha) \left[\frac{3}{2} d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{D}_S, \mathcal{D}_T) + \lambda^* \right]
\]

Finally, we obtain the Lemma 1:

\[
\epsilon_T(h_1) \leq 2 \epsilon_\alpha(h^*) \\
+ (1 - \alpha) \left[\frac{3}{2} d_{\mathcal{H}\Delta\mathcal{H}}(\mathcal{D}_S, \mathcal{D}_T) + \lambda^* \right]
\]

□