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Abstract

Neural models have been investigated for
sentiment classification over constituent trees.
They learn phrase composition automatically
by encoding tree structures but do not explic-
itly model sentiment composition, which re-
quires to encode sentiment class labels. To
this end, we investigate two formalisms with
deep sentiment representations that capture
sentiment subtype expressions by latent vari-
ables and Gaussian mixture vectors, respec-
tively. Experiments on Stanford Sentiment
Treebank (SST) show the effectiveness of sen-
timent grammar over vanilla neural encoders.
Using ELMo embeddings, our method gives
the best results on this benchmark.

1 Introduction

Determining the sentiment polarity at or below the
sentence level is an important task in natural lan-
guage processing. Sequence structured models (Li
et al., 2015; McCann et al., 2017) have been ex-
ploited for modeling each phrase independently.
Recently, tree structured models (Zhu et al., 2015;
Tai et al., 2015; Teng and Zhang, 2017) were lever-
aged for learning phrase compositions in sentence
representation given the syntactic structure. Such
models classify the sentiment over each constituent
node according to its hidden vector through tree
structure encoding.

Though effective, existing neural methods do not
consider explicit sentiment compositionality (Mon-
tague, 1974). Take the sentence “The movie is not
very good, but I still like it” in Figure 1 as example
(Dong et al., 2015), over the constituent tree, sen-
timent signals can be propagated from leaf nodes
to the root, going through negation, intensification
and contrast according to the context. Modeling
such signal channels can intuitively lead to more
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Figure 1: Example of sentiment composition

interpretable and reliable results. To model sen-
timent composition, direct encoding of sentiment
signals (e.g., +1/-1 or more fine-grained forms) is
necessary.

To this end, we consider a neural network gram-
mar with latent variables. In particular, we em-
ploy a grammar as the backbone of our approach in
which nonterminals represent sentiment signals and
grammar rules specify sentiment compositions. In
the simplest version of our approach, nonterminals
are sentiment labels from SST directly, resulting in
a weighted grammar. To model more fine-grained
emotions (Ortony and Turner, 1990), we consider
a latent variable grammar (LVG, Matsuzaki et al.
(2005), Petrov et al. (2006)), which splits each non-
terminal into subtypes to represent subtle sentiment
signals and uses a discrete latent variable to denote
the sentiment subtype of a phrase. Finally, inspired
by the fact that sentiment can be modeled with
a low dimensional continuous space (Mehrabian,
1980), we introduce a Gaussian mixture latent vec-
tor grammar (GM-LVeG, Zhao et al. (2018)), which



associates each sentiment signal with a continuous
vector instead of a discrete variable.

Experiments on SST show that explicit mod-
eling of sentiment composition leads to signifi-
cantly improved performance over standard tree
encoding, and models that learn subtle emotions
as hidden variables give better results than coarse-
grained models. Using a bi-attentive classifica-
tion network (Peters et al., 2018) as the encoder,
out final model gives the best results on SST. To
our knowledge, we are the first to consider neural
network grammars with latent variables for senti-
ment composition. Our code will be released at
https://github.com/Ehaschia/bi-tree-lstm-crf.

2 Related Work

Phrase-level sentiment analysis Li et al. (2015)
and McCann et al. (2017) proposed sequence struc-
tured models that predict the sentiment polarities
of the individual phrases in a sentence indepen-
dently. Zhu et al. (2015), Le and Zuidema (2015),
Tai et al. (2015) and Gupta and Zhang (2018) pro-
posed Tree-LSTM models to capture bottom-up
dependencies between constituents for sentiment
analysis. In order to support information flow bidi-
rectionally over trees, Teng and Zhang (2017) intro-
duced a Bi-directional Tree-LSTM model that adds
a top-down component after Tree-LSTM encoding.
These models handle sentiment composition im-
plicitly and predict sentiment polarities only based
on embeddings of current nodes. In contrast, we
model sentiment explicitly.

Sentiment composition Moilanen and Pulman
(2007) introduced a seminal model for sentiment
composition (Montague, 1974), composed positive,
negative and neutral (+1/-1/0) singles hierarchi-
cally. Taboada et al. (2011) proposed a lexicon-
based method for addressing sentence level contex-
tual valence shifting phenomena such as negation
and intensification. Choi and Cardie (2008) used a
structured linear model to learn semantic composi-
tionality relying on a set of manual features. Dong
et al. (2015) developed a statistical parser to learn
the sentiment structure of a sentence. Our method
is similar in that grammars are used to model se-
mantic compositionality. But we consider neural
methods instead of statistical methods for senti-
ment composition. Teng et al. (2016) proposed a
simple weighted-sum model of introducing senti-
ment lexicon features to LSTM for sentiment analy-
sis. They used -2 to 2 represent sentiment polarities.

In contrast, we model sentiment subtypes with la-
tent variables and combine the strength of neural
encoder and hierarchical sentiment composition.

Latent Variable Grammar There has been a
line of work using discrete latent variables to en-
rich coarse-grained constituent labels in phrase-
structure parsing (Johnson, 1998; Matsuzaki et al.,
2005; Petrov et al., 2006; Petrov and Klein, 2007).
Our work is similar in that discrete latent variables
are used to model sentiment polarities. To our
knowledge, we are the first to consider modeling
fine-grained sentiment signals by investigating dif-
ferent types of latent variables. Recently, there has
been work using continuous latent vectors for mod-
eling syntactic categories (Zhao et al., 2018). We
consider their grammar also in modeling sentiment
polarities.

3 Baseline

We take the constituent Tree-LSTM as our baseline,
which extends sequential LSTM to tree-structured
network topologies. Formally, our model computes
a parent representation from its two children in a
Tree-LSTM:
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hp = o⊗ tanh(cp) (3)

where Wt ∈ R5Dh×3Dh and bt ∈ R3Dh are train-
able parameters, ⊗ is the Hadamard product and
x represents the input of leaf node. Our formula-
tion is a special case of the N -ary Tree-LSTM (Tai
et al., 2015) with N = 2.

Existing work (Tai et al. (2015), Zhu et al.
(2015)) performs softmax classification on each
node according to the state vetcor h on each node
for sentiment analysis. We follow this method in
our baseline model.

4 Sentiment Grammars

We investigate sentiment grammars as a layer of
structured representation on top of a tree-LSTM,
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which model the correlation between different sen-
timent labels over a tree. Depending on how a
sentiment label is represented, we develop three in-
creasingly complex models. In particular, the first
model, which is introduced in Section 4.1, uses a
weighted grammar to model the first-order corre-
lation between sentiment labels in a tree. It can
be regarded as a PCFG model. The second model,
which is introduced in Section 4.2, introduces a dis-
crete latent variable for a refined representation of
sentiment classes. Finally, the third model, which
is introduced in Section 4.3, considers a continuous
latent representation of sentiment classes.

4.1 Weighted Grammars
Formally, a sentiment grammar is defined as
G = (N,S,Σ, Rt, Re,Wt,We), where N =
{A,B,C, ...} is a finite set of sentiment polari-
ties, S ∈ N is the start symbol, Σ is a finite set
of terminal symbols representing words such that
N ∩ Σ = ∅, Rt is the transition rule set contain-
ing production rules of the form X � α where
X ∈ N and α ∈ N+; Re is the emission rule set
containing production rules of the form X � w
where X ∈ N and w ∈ Σ+. Wt and We are sets
of weights indexed by production rules in Rt and
Re, respectively. Different from standard formal
grammars, for each sentiment polarity in a parse
tree our sentiment grammar invokes one emission
rule to generate a string of terminals and invokes
zero or one transition rule to product its child senti-
ment polarities. This is similar to the behavior of
hidden Markov models. Therefore, in a parse tree
each non-leaf node is a sentiment polarity and is
connected to exactly one leaf node which is a string
of terminals. The terminals that are connected to
the parent node can be obtained by concatenating
the leaf nodes of its child nodes. Figure 2 shows an
example for our sentiment grammar. In this paper,
we only consider Rt in the Chomsky normal form
(CNF) for clarity of presentation. However, it is
straightforward to extend our formulation to the
general case.

The score of a sentiment tree T conditioned on
a sentence w is defined as follows:

S(T |w,K) =
∏
rt∈T

Wn(rt)×
∏
re∈T

We(re) (4)

where rt and re represent a transition rule and
an emission rule in sentiment parse tree T , re-
spectively. We specify the transition weights Wn

with a non-negative rank-3 tensor. We compute
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Figure 2: Sentiment grammar example. Here yellow
nodes are leaf nodes of green constituent nodes, blue
line B � w1 and black line A � BC represent an
emission rule and a transition rule, respectively.

the non-negative weight of each emission rule
We(X � wi:j) by applying a single layer per-
ceptron fX and an exponential function to the neu-
ral encoder state vector hi:j representing the con-
stituent wi:j .

Sentiment grammars provides a principled way
for explicitly modeling sentiment composition, and
through parameterizing the emission rules with neu-
ral encoders, it can take the advantage of deep learn-
ing. In particular, by adding a weighted grammar
on top of a tree-LSTM, our model is reminiscent
of LSTM-CRF in the sequence structure.

4.2 Latent Variable Grammars
Inspired by categorical models (Ortony and Turner,
1990) which regard emotions as an overlay over a
series of basic emotions, we extend our sentiment
grammars with Latent Variable Grammars (LVGs;
Petrov et al. (2006)), which refine each constituent
tree node with a discrete latent variables, splitting
each observed sentiment polarity into finite unob-
served sentiment subtypes. We refer to trees over
unsplit sentiment polarities as unrefined trees and
trees over sentiment subtypes as refined trees.

Suppose that the sentiment polaritiesA,B andC
of a transition rule A � BC are split into nA, nB
and nC subtypes, respectively. The weights of the
refined transition rule can be represented by a non-
negative rank-3 tensor WA�BC ∈ RnA×nB×nC .
Similarly, given an emission rule A � wi:j , the
weights of its refined rules by splitting A into nA
subtypes is a non-negative vector WA�wi:j ∈ RnA

calculated by an exponential function and a single
layer perceptron fA:

WA�wi:j = exp(fA(hi:j)) (5)

where hi:j is the vector representation of con-
stituent wi:j . The score of a refined parse tree



is defined as the product of weights of all transition
rules and emission rules that make up the refined
parse tree, similar to Equation 4. The score of an
unrefined parse tree is then defined as the sum of
the scores of all refined trees that are consistent
with it.

Note that Weighted Grammar (WG) can be
viewed as a special case of LVGs where each senti-
ment polarity has one subtype.

4.3 Gaussian Mixture Latent Vector
Grammars

Inspired by continuous models (Mehrabian, 1980)
which model emotions in a continuous low dimen-
sional space, we employ Latent Vector Grammars
(LVeGs) (Zhao et al., 2018) that associate each
sentiment polarity with a latent vector space repre-
senting the set of sentiment subtypes. We follow
the idea of Gaussian Mixture LVeGs (GM-LVeGs)
(Zhao et al., 2018), which uses Gaussian mixtures
to model weight functions. Because Gaussian mix-
tures have the nice property of being closed under
product, summation, and marginalization, learning
and parsing can be done efficiently using dynamic
programming

In GM-LVeG, the weight function of a transition
or emission rule r is defined as a Gaussian mixture
with Kr mixture components:

Wr(r) =

Kr∑
k=1

ρr,kN (r|µr,k,Σr,k) (6)

where r is the concatenation of the latent vectors
representing subtypes for sentiment polarities in
rule r, ρr,k > 0 is the k-th mixing weight (the
Kr mixture weights do not necessarily sum up
to 1), and N (r|µr,k,Σr,k) denotes the k-th Gaus-
sian distribution parameterized by mean µr,k and
co-variance matrix Σr,k. For an emission rule
A � wi:j , all the Gaussian mixture parameters
are calculated by single layer perceptrons from the
vector representation hi:j of constituent wi:j :

ρr,k = exp(fρ,kA (hi:j))

µr,k = fµ,kA (hi:j) (7)

Σr,k = exp(fΣ,kA (hi:j))

For the sake of computational efficiency, we use
Gaussian distributions with diagonal co-variance
matrices.

4.4 Parsing
The goal of our task is to find the most probable
sentiment parse tree T ∗, given a sentencew and its
constituency parse tree skeleton K. The polarity of
the root node represents the polarity of the whole
sentence, and the polarity of a constituent node is
considered as the polarity of the phrase spanned by
the node. Formally, T ∗ is defined as:

T ∗ = argmax
T∈G(w,K)

P (T |w,K) (8)

where G(w,K) denotes the set of unrefined
sentiment parse trees for w with skeleton K.
P (T |w,K) is defined based on the parse tree score
Equation 4:

P (T |w,K) =
S(T |w,K)∑
T̂∈K S(T̂ |w,K)

. (9)

Note that unlike syntactic parsing, on SST we do
not need to consider structural ambiguity, and thus
resolving only rule ambiguity.
T ∗ can be found using dynamic programming

such as the CYK algorithm for WG. However, pars-
ing becomes intractable with LVGs and LVeGs
since we have to compute the score of an unre-
fined parse tree by summing over all of its refined
versions. We use the best performing max-rule-
product decoding algorithm (Petrov et al., 2006;
Petrov and Klein, 2007) for approximate parsing,
which searches for the parse tree that maximizes
the product of the posteriors (or expected counts)
of unrefined rules in the parse tree. The detailed
procedure is described below, which is based on
the classic inside-outside algorithm.

For LVGs, we first use dynamic programming
to recursively calculate the inside score function
sAI (a, i, j) and outside score function sAO(a, i, j)
for each sentiment polarity over each span wi:j

consistent with skeleton K using Equation 10
and Equation 11 in Table 1, respectively. Simi-
larly for LVeGs, we recursively calculate inside
score function sAI (a, i, j) and outside score func-
tion sAO(a, i, j) in LVeG are calculated by Equa-
tion 13 and Equation 14 in Table 1, in which we
replace the sum of discrete variables in Equation 10-
11 with the integral of continuous vectors. Next,
using Equation 12 and Equation 15 in Table 1, we
calculate the score s(A � BC, i, k, j) for LVG
and LVeG, respectively, where 〈A � BC, i, k, j〉
represents an anchored transition rule A � BC
with A, B and C spanning phrasewi:j ,wi,k−1 and



sAI (a, i, j) =
∑

A�BC∈Rt

∑
b∈N

∑
c∈N

WA�wi:j (a) WA�BC(a, b, c)× sBI (b, i, k) sCI (c, k + 1, j) .(10)

sAO(a, i, j) =
∑

B�CA∈Rt

∑
b∈N

∑
c∈N

WA�wi:j (a) WB�CA(b, c, a)× sBO(b, k, j) sCI (c, k, i− 1)

+
∑

B�AC∈Rt

∑
b∈N

∑
c∈N

WA�wi:j (a) WB�AC(b, a, c)× sBO(b, i, k) sCI (c, j + 1, k) .(11)

s(A � BC, i, k, j) =
∑
a∈N

∑
b∈N

∑
c∈N

WA�BC(a, b, c)× sAO(a, i, j)× sBI (b, i, k)× sCI (c, k + 1, j) . (12)

sAI (a, i, j) =
∑

A�BC∈Rt

∫∫
WA�wi:j (a)WA�BC(a, b, c)× sBI (b, i, k)sCI (c, k + 1, j) dbdc .(13)

sAO(a, i, j) =
∑

B�CA∈Rt

∫∫
WA�wi:j (a)WB�CA(b, c,a)× sBO(b, k, j)sCI (c, k, i− 1) dbdc

+
∑

B�AC∈Rt

∫∫
WA�wi:j (a)WB�AC(b,a, c)× sBO(b, i, k)sCI (c, j + 1, k) dbdc.(14)

s(A � BC, i, k, j) =

∫∫∫
WA�BC(a, b, c)× sAO(a, i, j)× sBI (b, i, k)× sCI (c, k + 1, j) dadbdc .(15)

Table 1: Equation 10-12 calculate the inside score, outside score and production rule score for LVG, respectively.
Equation 13-15 is used for LVeG. Equation 10 and Equation 13 are the inside score functions of a sentiment
polarity A over its spanwi:j in the sentencew1:n. Equation 11 and Equation 14 are the outside score functions of
a sentiment polarity A over a span wi:j in the sentence w1:n. Equation 12 and Equation 15: the production rule
score function of a rule A � BC with sentiment polarities A, B, and C spanning wordswi:j ,wi,k−1, andwk+1:j

respectively. Here we use lower case letters a, b, c . . . represent discrete subtypes of sentiment polarities A, B,
C . . . in LVG and use bold lower case letters a, b, c . . . represent continuous subtypes of sentiment polarities in
LVeG. Note that spans such as wi:j mentioned above are all given by the skeleton K of sentence w1:n.

wk+1:j (all being consistent with skeleton K), re-
spectively. The posterior (or expected count ) of
〈A � BC, i, k, j〉 can be calculate as follows:

q(A � BC, i, k, j) =
s(A �, BC, i, k, j)

sI(S, 1, n)
, (16)

where sI(S, 1, n) is the inside score for the start
symbol S over the whole sentence w1:n. Then we
can run CYK algorithm to identify the parse tree
that maximizes the product of rule posteriors. It’s
objective function is given by:

T ∗q = argmax
Tq∈G(w,K)

∏
e∈T

q(e) (17)

where e ranges over all the transition rules in the
sentiment parse tree T .

Note that the equations in Table 1 are tailored
for our sentiment grammars and differ from their
standard versions in two aspects. First, we take

into account the additional emission rules in the
inside and outside computation; second, the parse
tree skeleton is assumed given and hence the split
point k is prefixed in all the equations.

4.5 Learning

Given a training dataset D = {Ti,wi,Ki|i =
1 . . .m} containing m samples, where Ti is the
gold sentiment parse tree for the sentence wi with
its corresponding gold tree skeleton Ki. The dis-
criminative learning objective is to minimize the
negative log conditional likelihood:

L(Θ) = − log
m∏
i=1

PΘ(Ti|wi,Ki) , (18)

where Θ represents the set of trainable parameters
of our models. We optimize the objective with
gradient-based methods. In particular, gradients are
first calculated over the sentiment grammar layer,



before being back-propagated to the tree-LSTM
layer.

The gradient computation for the three models
involves computing expected counts of rules, which
has been described in Section 4.4. For WG and
LVG, the derivative of Wr, the parameter of an
unrefined production rule r is:

∂L(Θ)

∂Wr
=

m∑
i=1

(EΘ[fr(t)|Ti]− EΘ[fr(t)|wi]),(19)

where EΘ[fr(t)|Ti] denotes the expected count of
the unrefined production rule r with respect to PΘ

in the set of refined trees t, which are consistent
with the observed parse tree T . Similarly, we use
EΘ[fr(t)|wi] for the expectation over all deriva-
tions of the sentence wi.

For LVeG, the derivative with respect to Θr, the
parameters of the weight function Wr(r) of an
unrefined production rule r is:

∂L(Θ)

∂Θr
=

m∑
i=1

∫ (
∂Wr(r)

∂Θr
(20)

× EΘ[fr(t)|wi]− EΘ[fr(t)|Ti]
Wr(r)

)
dr .

The two expectations in Equation 19 and 20 can
be efficiently computed using the inside-outside
algorithm in Table 1. The derivative of the param-
eters of neural encoder can be derived from the
derivative of the parameters of the emission rules.

5 Experiments

To investigate the effectiveness of modeling sen-
timent composition explicitly and using discrete
variables or continuous vectors to model sentiment
subtypes, we compare standard constituent Tree-
LSTM (ConTree) with our models ConTree+WG,
ConTree+LVG and ConTree+LVeG, respectively.
To show the universality of our approaches, we also
experiment with the combination of a state-of-the-
art sequence structured model, bi-attentive classifi-
cation network (BCN, Peters et al. (2018)), with our
model: BCN+WG, BCN+LVG and BCN+LVeG.

5.1 Data

We use Stanford Sentiment TreeBank (SST, Socher
et al. (2013)) for our experiments. Each constituent
node in a phrase-structured tree is manually as-
signed an integer sentiment polarity from 0 to 4,
which correspond to five sentiment classes: very

negative, negative, neutral, positive and very pos-
itive, respectively. The root label represents the
sentiment label of the whole sentence. The con-
stituent node label represents the sentiment label of
the phrase it spans. We perform both binary classi-
fication (-1, 1) and fine-grained classification (0-4),
called SST-2 and SST-5, respectively. Following
previous work, we use the labels of all phrases and
gold-standard tree structures for training and test-
ing. For binary classification, we merge all positive
labels and negative labels.

5.2 Experimental Settings

Hyper-parameters For ConTree, word vectors
are initialized using Glove (Pennington et al., 2014)
300-dimensional embeddings and are updated to-
gether with other parameters. We set the hidden
size of hidden units is 300. Adam (Kingma and
Ba, 2014) is used to optimize the parameters with
learning rate is 0.001. We adopt Dropout after the
Embedding layer with a probability of 0.5. The
sentence level mini-batch size is 32. For BCN ex-
periment, we follow the model setting in McCann
et al. (2017) except the sentence level mini-batch
is set to 8.

5.3 Development Experiments

We use the SST development dataset to investigate
different configurations of our latent variables and
Gaussian mixtures. The best performing parame-
ters on the development set are used in all following
experiments.

LVG subtype numbers To explore the suitable
number of latent variables to model subtypes of a
sentiment polarity, we evaluate our ConTree+LVG
model with different number of latent variables
from 1 to 8. Figure 6(a) shows that there is an
upward trend while the number of hidden variables
n increases from 1 to 4. After reaching the peak
when n = 4, the accuracy decreases as the number
of latent variable continue to increase. We thus
choose n = 4 for remaining experiments.

LVeG Gaussian dimensions We investigate the
influence of the latent vector dimension on the accu-
racy for ConTree+LVeG. The component number
of Gaussian mixtures is fixed to 1, Figure 6(b) illu-
minates that as the dimension increases from 1 to 8,
there is a rise of accuracy from 1 to 2, followed by
a decrease from 2 to 8. Thus we set the Gaussian
dimension to 2 for remaining experiments.
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Figure 6: Sentence level accuraicies on the development dataset. Figure (a) shows the performance of Con-
Tree+LVG with different latent variables. Figure (b) and Figure (c) show the performance of ConTree+LVeG
with different Gaussian dims and Gaussian mixture component numbers, respectively.

Model SST-5 Root SST-5 Phrase SST-2 Root SST-2 Phrase
ConTree (Le and Zuidema, 2015) 49.9 - 88.0 -
ConTree (Tai et al., 2015) 51.0 - 88.0 -
ConTree (Zhu et al., 2015) 50.1 - - -
ConTree (Li et al., 2015) 50.4 83.4 86.7 -
ConTree (Our implementation) 51.5 82.8 89.4 86.9
ConTree + WG 51.7 83.0 89.7 88.9
ConTree + LVG4 52.2 83.2 89.8 89.1
ConTree + LVeG 52.9 83.4 89.8 89.5

Table 2: Experimental results with constituent Tree-LSTMs.

Model
SST-5 SST-2

Root Phrase Root Phrase
BCN(P) 54.7 - - -
BCN(O) 54.6 83.3 91.4 88.8
BCN+WG 55.1 83.5 91.5 90.5
BCN+LVG4 55.5 83.5 91.7 91.3
BCN+LVeG 56.0 83.5 92.1 91.6

Table 3: Experimental results with ELMo. BCN(P) is
the BCN implemented by Peters et al. (2018). BCN(O)
is the BCN implemented by ourselves.

LVeG Gaussian mixture component numbers
Future 6(c) shows the performance of different
component numbers with fixing the Gaussian di-
mension to 2. With the increase of Gaussian com-
ponent number, the fine-grained sentence level ac-
curacy declines slowly. The best performance is
obtained when the component number Kr = 1,
which we choose for remaining experiments.

5.4 Main Results

We re-implement constituent Tree-LSTM (Con-
Tree) of Tai et al. (2015) and obtain better results
than their original implementation. We then in-
tegrate ConTree with Weighted Grammars (Con-
Tree+WG), Latent Variable Grammars with a sub-

type number of 4 (ConTree+LVG4), and Latent
Variable Grammars (ConTree+LVeG), respectively.
Table 2 shows the experimental results for senti-
ment classification on both SST-5 and SST-2 at the
sentence level (Root) and all nodes (Phrase).

The performance improvement of ConTree+WG
over ConTree reflects the benefit of handling
sentiment composition explicitly. Particularly
the phrase level binary classification task, Con-
Tree+WG improves the accuracy by 2 points.

Compared with ConTree+WG, ConTree+LVG4
improves the fine-grained sentence level accuracy
by 0.5 point, which demonstrates the effectiveness
of modeling the sentiment subtypes with discrete
variables. Similarly, incorporating Latent Vector
Grammar into the constituent Tree-LSTM, the per-
formance improvements, especially on the sentence
level SST-5, demonstrate the effectiveness of mod-
eling sentiment subtypes with continuous vectors.
The performance improvements of ConTree+LVeG
over ConTree+LVG4 show the advantage of infinite
subtypes over finite subtypes.

There has also been work using large-scale ex-
ternal datasets to improve performances of senti-
ment classification. Peters et al. (2018) combined
bi-attentive classification network (BCN, McCann
et al. (2017)) with a pretrained language model



0

0.5

1

1.5

2

2.5

3

words 1<=h<5 5<=h<10 h>=10

WG

LVG4

LVeG

Figure 7: Changes in phrase level 5-class accuracies of
our methods over ConTree.

with character convolutions on a large-scale cor-
pus (ELMo) and reported an accuracy of 54.7 on
sentence-level SST-5. For fair comparison, we
also augment our model with ELMo. Table 3
shows that our methods beat the baseline on ev-
ery task. BCN+WG improves accuracies on all
task slightly by modeling sentiment composition
explicitly. The obvious promotion of BCN+LVG4
and BCN+LVeG shows that explicitly modeling
sentiment composition with fine-grained sentiment
subtypes is useful. Particularly, BCN+LVeG im-
proves the sentence level classification accurracies
by 1.4 points (fine-grained) and 0.7 points (binary)
compared to BCN (our implementation), respec-
tively. To our knowledge, we achieve the best re-
sults on the SST dataset.

5.5 Analysis

We make further analysis of our methods based on
the constituent Tree-LSTM model. In the follow-
ing, using WG, LVG and LVeG denote our three
methods, respectively.

Impact on words and phrases Figure 7 shows
the accuracy improvements over ConTree on
phrases of different heights. Here the height h
of a phrase in parse tree is defined as the distance
between its corresponding constituent node and the
deepest leaf node in its subtree. The improvement
of our methods on word nodes, whose height is 0,
is small because neural networks and word embed-
dings can already capture the emotion of words.
In fact, the accuracy of ConTree on word nodes
reaches 98.1%. As the height increases, the per-
formance of our methods increase, expect for the
accuracies of WG when h ≥ 10 since the coarse-
grained sentiment representation is far difficulty for
handling too many sentiment compositions over the
tree structure. The performance improvements of

Figure 8: Top left is the normalized confusion matrix
on the 5-class phrase level test dataset for ConTree.
The others are the performance changs of our model
over ConTree. Value in each cell is written with a unit
of ×10−2

LVG4 and LVeG when h ≥ 10 show modeling fine-
grained sentiment signals can represent sentiment
of higher phrases better.

Impact on sentiment polarities Figure 8 shows
the performance changes of our models over Con-
Tree on different sentiment polarities. The accuracy
of every sentiment polarity on WG over ConTree
improves slightly. Compared with ConTree, the
accuracies of LVG4 and LVeG on extreme sen-
timents (the strong negative and strong positive
sentiments) receive significant improvement. In
addition, the proportion of extreme emotions mis-
classified as weak emotions (the negative and posi-
tive sentiments) drops dramatically. It indicates that
LVG4 and LVeG can capture the subtle difference
between extreme sentiments and weak sentiments
by modeling sentiment subtypes explicitly.

Visualization of sentiment subtypes To investi-
gate whether our LVeG can accurately model differ-
ent emotional subtypes, we visualize all the strong
negative sentiment phrases with length below 6
that are classified correctly in a 2D space. Since
in LVeG, 2-dimension 1-component Gaussian mix-
tures are used to model a distribution over subtypes
of a specific sentiment of phrases, we directly rep-
resent phrases by their Gaussian means µ. From
Figure 9, we see that boring emotions such as “Ex-
tremely boring” and “boring” (green dots) are lo-
cated at the bottom left, stupid emotions such as



Extremely dumb .

Extremely dumb

Extremely boring .

Extremely boring boring

A real clunker .

clunker .
Ridiculous .

is bad .
is bad

bad

It 's painful .

hate this movie

hate

awful and

A dreadful live-
action movie .

dreadful

A very bad sign .

stupider

Boring

bloody mess .

Figure 9: Visualization of correlation of phrases not
longer than 5 in the strong negative sentiment space

“stupider” and “Ridiculous” (red dots) are mainly
located at the top right and negative emotions with
no special emotional tendency such as “hate” and
“bad” (blue dots) are evenly distributed throughout
the space. This demonstrates that LVeG can capture
sentiment subtypes.

6 Conclusion

We presented a range of sentiment grammars for
using neural networks to model sentiment com-
position explicitly, and empirically showed that
explicit modeling of sentiment composition with
fine-grained sentiment subtypes gives better perfor-
mance compared to state-of-the-art neural network
models in sentiment analysis. By using EMLo em-
beddings, our final model improves fine-grained
accuracies by 1.3 points compare to the current
best result.
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