
Improved English to Russian Translation by Neural Suffix Prediction

Kai Song1,2, Yue Zhang3, Min Zhang1, Weihua Luo2
1 Soochow University, Suzhou, China

2 Alibaba Group, Hangzhou, China
3 Singapore University of Technology and Design, Singapore

{songkai.sk, weihua.luowh}@alibaba-inc.com
yue zhang@sutd.edu.sg, minzhang@suda.edu.cn

Abstract

Neural machine translation (NMT) suffers a performance de-
ficiency when a limited vocabulary fails to cover the source
or target side adequately, which happens frequently when
dealing with morphologically rich languages. To address
this problem, previous work focused on adjusting transla-
tion granularity or expanding the vocabulary size. However,
morphological information is relatively under-considered in
NMT architectures, which may further improve translation
quality. We propose a novel method, which can not only re-
duce data sparsity but also model morphology through a sim-
ple but effective mechanism. By predicting the stem and suf-
fix separately during decoding, our system achieves an im-
provement of up to 1.98 BLEU compared with previous work
on English to Russian translation. Our method is orthogo-
nal to different NMT architectures and stably gains improve-
ments on various domains.

Introduction
Neural machine translation (NMT) (Bahdanau, Cho, and
Bengio 2014) has shown better performance compared with
statistic machine translation (Zens, Och, and Ney 2002).
Such methods encode a source sentence into hidden states
and generate target words sequentially by calculating a prob-
ability distribution on the target-side vocabulary. Most NMT
systems limit target side vocabulary to a fixed size, consid-
ering the limit of graphics memory size and high comput-
ing complexity when predicting a word over the whole tar-
get side vocabulary (e.g., 30K or 50K). In addition, a larger
target-side vocabulary can also make the prediction task
more difficult. Word-level NMT systems suffer the problem
of out of vocabulary (OOV) words, particularly for morpho-
logically rich languages. For example, English to Russian
machine translation faces a big challenge due to rich mor-
phology of Russian words, which leads to much more OOV
words than some other languages. Typically a specific tag is
used to represent all OOV words, which is then translated
during a post process (Luong et al. 2014). This can be harm-
ful to the translation quality.

There has been several methods to address this problem.
Some focused on translation granularity (Sennrich, Haddow,
and Birch, 2015b; Lee, Cho, and Hofmann, 2016; Luong and

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Manning, 2016), while others (Jean et al., 2014; Mi, Wang,
and Ittycheriah, 2016) effectively expand target side vocab-
ulary. However, though those methods can avoid OOV, none
of them has explicitly modeled the target side morphology.
When dealing with language pairs such as English-Russian,
the number of different target side words is large due to the
rich suffixes in Russian. The above methods are limited in
distinguishing one suffix from another.

Since the total number of different stems in a morpho-
logically rich language is much less than the number of
words, a natural perspective to make a better translation on a
morphologically-rich target-side language is to model stems
and suffixes separately. We design a simple method, which
takes a two-step approach for the decoder. In particular, stem
is first generated at each decoding step, before suffix is pre-
dicted. Two types of target side sequences are used during
training, namely stem sequence and suffix sequence, which
are extracted from the original target side word sequence, as
shown in Figure 1. Sparsity is relieved since the number of
stem types is much smaller than word types, and suffix types
can be as small as several hundreds. Another advantage of
this structure is that during the prediction of suffix, the pre-
viously generated stem sequence can be considered, which
can further improve the accuracy of suffix prediction.

We empirically study this method and compare it with
previous work on reducing OOV rates (Sennrich, Haddow,
and Birch, 2015b; Lee, Cho, and Hofmann, 2016). Results
show that our method gives significant improvement on the
English to Russian translation task on two different domains
and two popular NMT architectures. We also verify our
method on training data consisting of 50M bilingual sen-
tences, which proves that this method works effectively on
large-scale corpora.

Related Work
Translation Granularity
Subword based (Sennrich, Haddow, and Birch 2015b) and
character-based (Lee, Cho, and Hofmann, 2016; Luong and
Manning, 2016) NMT are the two directions of adjusting
translation granularity, which can be helpful to our problem.

In Sennrich, Haddow, and Birch (2015b)’s work, com-
monly appearing words remain unchanged, while others
are segmented into several subword units, which are from

ar
X

iv
:1

80
1.

03
61

5v
1

 [
cs

.C
L

]
 1

1
Ja

n
20

18

Figure 1: Russian word sequence to stem sequence and suffix sequence, “N” is a special tag used in suffix sequence, which
means “no suffix” for corresponding stem.

Figure 2: Different forms of the word “ball”.

a fixed set. Both source and target side sentences can be
changed into subword sequences. More specifically, some
rare words are split into and represent as some more fre-
quent units, base on a data compression technique, namely
Byte Pair Encoding (BPE). The vocabulary built on common
words and these frequent subword units can successfully im-
prove the coverage of training data. In fact, a fixed size vo-
cabulary can cover all the training data as long as the gran-
ularity of subword units is small enough. The main limita-
tion of this method is the absence of morphology boundary.
Some subword units may not be a word suffix which can rep-
resent a morphological meaning, and the subword units are
treated in the same way as complete words. Subword units
and complete words are predicted during a same sequence
generation procedure. This may lead to two problems:

• The sequence length can increase, especially on a mor-
phologically rich language, which can lead to low NMT
performance.

• A subword unit cannot represent a linguistic unit, and suf-
fix is not modeled explicitly.

Luong and Manning (2016) proposed a hybrid architec-
ture to deal with the OOV words in source side and any
generated unknown tag in the target side. In their system,
any OOV words on the source side are encoded at the char-
acter level, and if an unknown tag is predicted during de-
coding, another LSTM will be used to generate a sequence

of target-side characters, which will be used as the replace-
ment of the target side unknown word for the translation of a
source OOV. However, their model may not work well when
the target side is morphologically rich and the source side
is not, because their hybrid network on the target side will
only be used when an unknown tag is generated, which is
always corresponding to a source unknown word. If most of
the source side tokens are covered by the source vocabulary,
the hybrid network may not have advantage on a morpho-
logically rich target side language.

In Lee, Cho, and Hofmann (2016)’s work, source side and
target side sequence are all character-based, which elimi-
nates OOV on the source side, and can generate any target
side word theoretically. Character-based NMT may poten-
tially improve the translation accuracy of morphologically
rich language on the source side, but the training and de-
coding latency increase linearly with the sequence length,
which is several times to the original word based NMT. An-
other disadvantage of character-based NMT is that charac-
ter embedding lost the ability to represent a linguistic unit.
Long-distance dependences are more difficult to be modeled
in a character-based NMT. Lee, Cho, and Hofmann (2016)
use convolutional and pooling layers on the source side to
make the source sequence shorter. However, the target side
sequence remains much longer than the original word se-
quence, and suffix boundary of the target side is not specif-
ically considered in their model. This work may more help-
ful if a morphologically rich language is on the source side,
but it is not designed to overcome the problem brought by a
morphologically rich target side language.

There is another way which can effectively reduce target-
side OOV. Both Jean et al. (2014) and Mi, Wang, and Itty-
cheriah (2016) use a large target-side vocabulary. To over-
come the problem of GPU memory limitation and increas-
ing computational complexity, instead of the original vo-
cabulary, a selected subset is actually used both during the
training and decoding time. Their model can generate any
of the words in the large vocabulary, but data sparsity still
remains, the low frequent words in the training data is not

fully trained.

Morphology and MT
Previous work considered morphological information for
both SMT and NMT. Koehn and Hoang (2007) proposed
an effective way to integrate word-level annotation in SMT,
which can be morphological, syntactic, or semantic. Mor-
phological information can be utilized not only on source
side, but also the target side. Although these annotation can
help to improve the translation procedure, data sparsity still
exists. Chahuneau et al. (2013) decompose the process of
translating a word into two steps. Firstly a stem is produced,
then a feature-rich discriminative model selects an appropri-
ate inflection for the stem. Target-side morphological fea-
tures and source-side context features are utilized in their
inflection prediction model.

Tran, Bisazza, and Monz (2015) use distributed represen-
tations for words and soft morphological tags in their neural
inflection model, which can effectively reduce lexical spar-
sity, leading to less morphological ambiguity. This is the
first try of modeling inflection through a neural method, in-
tegrated in a SMT architecture.

For NMT, Sennrich and Haddow (2016) make use of var-
ious source side features (such as morphological features,
part-of-speech tags, and syntactic dependency labels) to en-
hance encoding in NMT. This is the first time morpholog-
ical information is leveraged in NMT architecture. Target-
side morphology is not considered in their work. Tamchyna,
Marco, and Fraser (2017) predict a sequence of interleav-
ing morphological tags and lemmas, followed by a morpho-
logical generator. They used a external model to synthesize
words given tags and lemmas. Our method is the first to
explicitly consider the generation of morphological suffixes
within a neural translation model. Our work is motivated by
a line of work that generates morphology during text gen-
eration (Toutanova, Suzuki, and Ruopp, 2010; Song et al.,
2014; Tran, Bisazza, and Monz, 2015).

Background
Russian Morphology and Stemming
Morphology Russian has rich morphology, which includes
number (singular or plural), case (nominative, accusative
etc.), gender (feminine, masculine or neuter) and tense
mood. Figure 2 shows one example for Russian. A noun
word “ball” is always masculine, but the suffix differs when
the case and number changes, resulting in 10 different forms.
Some other nouns can be feminine or neuter, and their ad-
jectives will agree with them. Both adjectives and verbs have
different forms according to their case, tense mood and the
form of words they modify. Such morphological changes
bring a challenge to machine translation task.

Stemming A Russian word can be split into two parts,
namely the stem and the suffix. Suffix contains morphologi-
cal information of a Russian word, including gender, number
and case etc. In this paper, we use a deterministic rule-based
stemmer to obtain stem and suffix for a Russian word. The
process of stemming is shown in Figure 1.

Neural Machine Translation Baselines
We experiment with two different types of Neural Machine
Translation (NMT) systems, one using a recurrent encoder-
decoder structure (Bahdanau, Cho, and Bengio 2014), the
other leveraging the attention mechanism on the encoder
(Vaswani et al. 2017).

Recurrent Neural Network Based NMT We use an
encoder-decoder network proposed by Cho et al. (2014a).
The encoder uses a bi-directional recurrent neural net-
work (RNN) to encode the source sentence, the decoder
uses a uni-directional RNN to predict the target transla-
tion. Formally, the source sentence can be expressed as
x = (x1, ..., xm), where m is the length of the sentence. It is
encoded into a sequence of hidden states h = (h1, ..., hm),
each hi is the result of a concat operation on a forward (left-
to-right) hidden state ~hi and a backword (right-to-left) hid-
den state ~hi:

hi = [~hi; ~hi], (1)
~hi = f(~hi−1, xi), (2)
~hi = f(~hi+1, xi) (3)

f is a variation of LSTM (Hochreiter and Schmidhu-
ber 1997), namely Gated Recurrent Unit (GRU) (Cho et al.
2014b):

zi = σ(Wz ∗ [hi−1, xi]), (4)
ri = σ(Wr ∗ [hi−1, xi]), (5)

h̃i = tanh(W ∗ [ri ∗ hi−1, xi]), (6)

hi = (1− zi) ∗ hi−1 + zi ∗ h̃i (7)
where Wz , Wr, W are weight matrices which are learned.

During decoding, at each time step t, an attention proba-
bility αtj to the source word xj is first calculated by:

αtj =
exp(etj)∑m
k=1 exp(etk)

(8)

and
etj = a(St−1, hj) (9)

is an attention model that gives a probability distribution on
source words (x1, ..., xm), which indicates how much the
source word xj is considered during the decoding step t to
generate target side word yt. The attention layer a can be as
simple as a feed-forward network. Ct is a weighted sum of
the encoding hidden state at each position of input sentence:

Ct =

m∑
j=1

(αtj ∗ hj), (10)

Ct is then fed into a feed-forward network together with pre-
vious target word embedding yt−1 and the current decoding
hidden state St to generate the output intermediate state Ot:

Ot = g(yt−1, St, Ct), (11)

and
St = f(yt−1, St−1, Ct), (12)

where f is GRU, which is mentioned before. The output in-
termediate state Ot is then used to predict the current target

word by generating a probability distribution on target side
vocabulary. In our implementation, maxout (Goodfellow et
al. 2013) mechanism is used in both training and decoding.
Dropout (Srivastava et al. 2014) is used in training time.

Transformer (Vaswani et al. 2017) is a recently proposed
model for sequence to sequence tasks. It discards the RNN
structure for building the encoder and decoder blocks. In-
stead, only the attention mechanism is used to calculate the
source and target hidden states.

The encoder is composed of stacked neural layers. In par-
ticularly, for the time step i in layer j, the hidden state hij is
calculated as follows: First, a self-attention sub-layer is em-
ployed to encode the context. For this end, the hidden states
in the previous layer are projected into a tuple of queries(Q),
keys(K) and values(V), where g in the following function
denotes a feed forward layer:

Q(i(j−1),Ki(j−1), Vi(j−1) = g(hi(j−1)) (13)

Then attention weights are computed as scaled dot prod-
uct between current query and all keys, normalized with
a softmax function. After that, the context vector is repre-
sented as weighted sum of the values projected from hidden
states in the previous layer. The hidden state in the previous
layer and the context vector are then connected by resid-
ual connection, followed by a layer normalization function
(Ba, Kiros, and Hinton 2016), to produce a candidate hidden
state h

′

ij . Finally, another sub-layer including a feed forward
layer, followed by another residual connection and layer nor-
malization, are used to obtain the hidden state hij :

hij = LayerNorm(h
′

ij + g(h
′

ij)) (14)

The decoder is also composed of stacked layers. The hid-
den states are calculated in a similar way, except for the
following two differences: First, only those target positions
before the current one are used to calculate the target side
self-attention. Second, attention is applied in both target-
to-target and target-to-source. The target-to-source attention
sub-layer is inserted between the target self-attention sub-
layer and the feed-forward sub-layer. Different from self-
attention, the queries(Q) are projected from target hidden
states in the previous layer, and the keys(K) and values(V)
are projected from the source hidden states in the last layer.

The rest of the calculation is exactly the same with self-
attention. Compared to RNN based sequence to sequence
models, transformer allows significantly more paralleliza-
tion, since all the hidden states in the same layer can be cal-
culated simultaneously, whereas the hidden states in RNN
can only be calculated sequentially from left to right. In con-
sideration of translation quality, Vaswani et al. (2017) use
multi-head attention instead of single-head attention as men-
tioned above, and positional encoding is also used to com-
pensate the missing of position information in this model.

Target-Side Suffix Prediction
We take a two-step approach for the decoder, yielding a stem
at each time step before predicting the suffix of the stem.
Since we only make use of source hidden states, target hid-
den states, target to source attention weights and target pre-
dicted tokens, these are universal in all sequence to sequence

Figure 3: Improved rnn-based NMT architecture.

models, our method can be implemented into any of these
models.

Figure 3 shows a more detailed procedure. Decoding tar-
get stems is exactly the same as decoding target words in
normal sequence to sequence model, which is predicted
through a softmax layer based on the target output layer. All
we need is to replace target words with target stems:

p(ystem
t |ystem1 , ..., ystemt−1 , x) =

softmax(Ostem
t ∗Wstem),

(15)

where Wstem is a weight matrix to transfer the output layer
Ostem

t from a dimension of hidden size to target side vocab-
ulary size. Sstem

t is target side hidden state at time step t
when generating the stem. Ostem

t is the output state:

Ostem
t = g(ystemt−1 , Sstem

t , Ct), (16)

g is a single layer feed-forward neural network.
After the prediction of ystem

t , the target suffix ysuffix
t on

decoding step t is immediately predicted from the target suf-
fix hidden state Ssuffix

t :

p(ysuffix
t |ystem1 , ..., ystemt , x) =

softmax(Ssuffix
t ∗Wsuffix)

(17)

Ssuffix
t is generated from a single layer feed-forward neu-

ral network by using the stem embedding ystem
t , stem hidden

state Sstem
t , and source context vector Ct:

Ssuffix
t = g(Sstem

t , ystem
t , Ct) (18)

Title
Amazing hot selling air scent machine
Large capacity men backpack bags.
Strap slash neck women pencil dress
Description
Along with tie shoulder straps, three-quarter sleeves.
Compare the detail sizes with yours.
Comment
I did not expect that the backpack is so happy.
Thanks for the very quick shipping.
I liked the dress. the quality is good.

Table 1: Example of the e-commerce test set.

Since we consider that the attention degree towards each
word in the source sequence is useful to the generation of
suffix, the aligned source context is also used during the pre-
diction of suffix. Note that the source context vector Ct is
shared between the generation of stem hidden state Sstem

t

and suffix hidden state Ssuffix
t .

In addition, the embedding of the predicted suffix is not
further fed into the hidden state of the next stem, because
we think suffix information can provide little information
for predicting the next stem from a linguistic perspective.

Training
During the training stage, the objective function L consists
of two components:

L = (1− λ) ∗ Lstem + λ ∗ Lsuffix , (19)

where:

Lstem =

n∑
i=1

p(ystem
i |ystem

i−1 , ..., ystem
1 , x) (20)

and

Lsuffix =

n∑
i=1

p(ysuffix
i |ystem

i , ..., ystem
1 , x) (21)

λ verifies from 0 to 1, and λ can also be modeled in the
whole architecture, which will be studied in our future work.
In our experiments, we set λ to 0.1 empirically. We use
Adam (Kingma and Ba 2014) as our optimizing function.

Decoding
Beam search is adopted as our decoding algorithm. At each
time step, the search space can be infeasible large if we take
all the combinations of stems and suffixes into considera-
tion. So we use cube pruning (Huang and Chiang 2007)
to obtain n-best candidates. First, the top n stems with the
highest scores are pushed to the stack. Then for each stem,
we predict the top n suffixes, which will result in n com-
plete candidates. The candidates will be inserted to a prior-
ity queue, which keeps records of the top n complete can-
didates. After all the stems are expanded, the final n-best
candidates are obtained.

Figure 4: Adjust the suffix sequence according to the “sub-
stem” sequence.

Experiments
We run our experiments on English to Russian (En-RU) data
under two significantly different domain, namely the news
domain and the e-commerce domain. We verify our method
on both RNN based NMT architecture and Transformer
based NMT architecture.

Data
News We select 5.3M sentences from the bilingual training
corpus released by WMT2017 shared task on the news trans-
lation domain1 as our training data. We use 3 test set, which
are published by WMT2017 news translation task, namely
“News2014”, “News2015”, “News2016”.

E-commerce We collect 50M bilingual sentences as our
training corpus:
• 10M sentences are crawled and automatic aligned from

some international brand’s English and Russian websites.
• 20M are back translated corpus: First we crawled the Rus-

sian sentences from websites of certain Russian’s Brands.
Then translated them to English through a machine trans-
lation system trained on limited RU-EN corpus (Sennrich,
Haddow, and Birch 2015a).

• The last 20M bilingual sentences are crawled from the
web, and are not domain specific.
We typically use the following 3 types of data as test set,

which are named title, description and comment, these sen-
tences are all extracted from e-commerce websites. Title are
the goods’ titles showed on a listing page when some buy-
ers type in some keywords in a searching bar under an e-
commerce website. Description refers to the information in
a commodities’ detail page. Comment include the review or
feedback from some buyers. Example sentences are shown
in Table 1. For each kind of test set, we randomly select 1K
English sentences and translate it by human.

Pre-Processing Both the training set and the test set are
lowercased, and some entity words appeared in the data
are generalized into specific symbols, such as “ date ”,
“ time ”, “ number ”. When selecting our training data, we
keep the sentences which has length between 1 to 30. We
use a bilingual sentence scorer to discard some low-quality
bilingual sentences. The scorer is simply trained under algo-
rithm of IBM Model 1 (Brown et al. 1993) on a very large
bilingual corpus.

Target Side Word Stemming We use snowball2 to create
1http://www.statmt.org/wmt17/translation-task.html
2http://snowball.tartarus.org/

Vocabulary Coverage Test set
Systems Source Target Source Target News2014 News2015 News2016
RNN-based + Subword 30K 30K 99.7% 97.0% 19.72(22.59) 16.11 15.41
Fully Character-based 861 853 100% 100% 20.32(25.74) 17.60 15.65
RNN-based + Suffix Prediction 30K 30K 99.7% 100% 21.30(26.22) 18.09 17.09
Transformer + Subword 30K 30K 99.7% 97.0% 23.18(26.39) 18.66 18.31
Transformer + Suffix Prediction 30K 30K 99.7% 100% 24.41(29.14) 20.54 19.62

Table 2: Evaluation on the news domain: “Subword” refers to Sennrich, Haddow, and Birch (2015b), “Fully Character-based”
refers to Lee, Cho, and Hofmann (2016), “Suffix Prediction” refers to our work. Scores in brackets are BLEU of stem, which
means that the output sentence and reference are both transformed into stem sequence.

Vocabulary Coverage Test set
Systems Source Target Source Target Title Offer Comments
RNN-based + Subword 45K 45K 99.8% 100% 17.52 29.78 33.29
RNN-based + Suffix Prediction 45K 45K 99.8% 100% 17.85 30.60 34.18

Table 3: Evaluation on the e-commerce domain: “Subword” refers to Sennrich, Haddow, and Birch (2015b), “Suffix Predic-
tion” refers to our work.

stems from words. Because stem created from snowball is
always a substring of the original word, we can obtain suf-
fixes by simply applying a string cut operation. By applying
snowball to a target side word sequence, we split a target
side sentence into a stem sequence and a suffix sequence.
The stemming accuracy of snowball is 83.3% on our human
labeled test set.

Applying BPE to Target Side Stem Sequence We also
use the Byte-pair encoding (BPE algorithm) on the target
side stem sequence, which will further reduce data sparsity.
Some stems will be split into “sub-stem” units. The stem se-
quence is transferred to “sub-stem” sequence at this step.
Suffix sequence should also be adjusted according to the
“sub-stem” sequence simultaneously. More specifically, as
shown in Figure 4, if a stem is split into n “sub-stem” units,
then n−1 “N” (refers to “N” in Figure 1) will be inserted into
the suffix sequence, and these tags will be located in front
of the suffix which is corresponding to the original com-
plete stem. The sub-stem sequence and the adjusted suffix
sequence are the final training corpus on target side.

Baselines
Our RNN and Transformer baseline systems utilize BPE
(Sennrich, Haddow, and Birch 2015b) to transfer the origi-
nal word sequence to subword sequence on both the source
and the target sides, since the subword method had a stable
improvement compared with word based system, especially
on morphologically rich languages.

Besides, we compared our system with a fully character-
based baseline system, which is an implementation of Lee,
Cho, and Hofmann (2016)’s work, and is available on
github3.

We limit the source and target vocabularies to the most
frequent 30K tokens for both English and Russian. For news
domain, about 99.7% tokens are covered by the source side

3https://github.com/nyu-dl/dl4mt-c2c

vocabulary, about 97.0% target tokens are covered by the
target side vocabulary.

Our System
For our system, the source token coverage is the same as the
baselines. On the other hand, 100% target tokens are covered
by the target-side vocabulary, which consists of “sub-stem”
units generated from target side stem sequence by apply-
ing BPE algorithm. There are totally 752 types of suffixes,
which are calculated from the suffix sequences generated
from target side sentences.

Distributed Training
For the experiments on the e-commerce domain, the train-
ing data is large. We use a distributed training framework
for both the baseline system and our system. Training data
are split into several parts, each being trained on a single
worker node. A parameter server averages the model param-
eters from each worker node after every 100 training batchs
and then synchronizes the averaged model to every worker
node. Each worker continues with the training process based
on the averaged model.

Results and Analysis
We use BLEU (Papineni et al. 2002) as our evaluation met-
ric. The performance of different systems are shown in Ta-
ble 2 and 3. On both the news and e-commerce domains, our
system performs better than baseline systems.

On news domain, the average improvement of our method
is 1.75 and 0.97 BLEU score when implemented on RNN-
based NMT, compared with subword (Sennrich, Haddow,
and Birch 2015b) method and fully character-based (Lee,
Cho, and Hofmann 2016) method, respectively. When im-
plemented on Transformer (Vaswani et al. 2017), aver-
age improvement is 1.47 BLEU compared with subword

Figure 5: “RNN+Subword” refers to Sennrich, Haddow, and Birch (2015b), “Character-based” refers to Lee, Cho, and Hof-
mann (2016), “RNN+Suffix” refers to our work.

method. On the e-commerce domain, which use 50M sen-
tences as training corpus, the average improvement of our
method is 0.68 BLEU compared with the subword method.

We evaluate stem accuracies and suffix accuracies sepa-
rately. For stem, we use BLEU as evaluation metric, Table 2
shows stem BLEU of different methods on “News2014” test
set, our method can gain significant improvement compared
with baselines, since our method can reduce data sparsity
better than baselines. Our method can effectively reduce suf-
fix error, Figure 5 gives some examples both on e-commerce
and news domains:

• For the first sample, the suffix of the translation words
(tagged by 1 and 2) from two different baseline systems
means a reflexive verb, whose direct object is the same as
its subject. In other words, a reflexive verb has the same
semantic agent and patient. It is an incorrect translation
according to the source meaning, because we can infer
from the source sentence that the agent is a person and the
patient is an object (some goods bought by a customer).
In our system, the suffix of the translation word (tagged
by 3) is correct. It represents an infinitive verb which may
take objects, other complements and modifiers to form a
verb phrase.

• In the second sample, the translation word (tagged by 1)
is not accurate, its suffix represents a plural form, but the
correct form is singular, because the corresponding source
word “positive” is singular form. Character-based system
can correctly translate source word “stars” into a Russian
word with plural form. However, the translation of “pos-
itive” (tagged by 2) is still with wrong form. Both the
translation of “positive” and “stars” from our system are
with the correct forms.

• In the third sample, the translation word tagged by 3 rep-
resents past tense; However, the translation words tagged
by 1 and 2 represent present tense. Our system success-

fully predicted the tense moods.

Conclusion
We proposed a simple but effective method to improve
English-Russian NMT, for which a morphologically rich
language is on the target side. We take a two-step approach
in the decoder. At each step, a stem is first generated,
then its suffix is generated. We empirically compared our
method with two previous methods (namely subword and
fully character-based), which can also to some extent ad-
dress our problem. Our method gives an improvement on
two encoder-decoder NMT architectures on two domains.
To our knowledge, we are the first to explicitly model suffix
for morphologically-rich target translation.

Acknowledgments
We thank the anonymous reviewers for their detailed and
constructed comments. Yue Zhang and Min Zhang are
the corresponding authors. The research work is supported
by the National Natural Science Foundation of China
(61525205, 61432013, 61373095). Thanks for Xiaoqing Li,
Heng Yu and Zhdanova Liubov for their useful discussion.

References
Ba, J. L.; Kiros, J. R.; and Hinton, G. E. 2016. Layer nor-
malization. arXiv preprint arXiv:1607.06450.
Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural ma-
chine translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473.
Brown, P. F.; Pietra, V. J. D.; Pietra, S. A. D.; and Mer-
cer, R. L. 1993. The mathematics of statistical machine
translation: Parameter estimation. Computational Linguis-
tics 19(2):263–311.

Chahuneau, V.; Schlinger, E.; Smith, N. A.; and Dyer, C.
2013. Translating into morphologically rich languages with
synthetic phrases. In Prague Bulletin of Mathematical Lin-
guistics, volume 100, 51–62.
Cho, K.; Van Merriënboer, B.; Bahdanau, D.; and Ben-
gio, Y. 2014a. On the properties of neural machine
translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259.
Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014b. Learning
phrase representations using rnn encoder-decoder for statis-
tical machine translation. arXiv preprint arXiv:1406.1078.
Goodfellow, I. J.; Warde-Farley, D.; Mirza, M.; Courville,
A.; and Bengio, Y. 2013. Maxout networks. arXiv preprint
arXiv:1302.4389.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural Computation 9(8):1735–1780.
Huang, L., and Chiang, D. 2007. Forest rescoring: Faster de-
coding with integrated language models. In ACL, volume 45,
144.
Jean, S.; Cho, K.; Memisevic, R.; and Bengio, Y. 2014. On
using very large target vocabulary for neural machine trans-
lation. arXiv preprint arXiv:1412.2007.
Kingma, D. P., and Ba, J. 2014. Adam: A method for
stochastic optimization. Computer Science.
Koehn, P., and Hoang, H. 2007. Factored translation models.
In EMNLP-CoNLL, 868–876.
Lee, J.; Cho, K.; and Hofmann, T. 2016. Fully character-
level neural machine translation without explicit segmenta-
tion. arXiv preprint arXiv:1610.03017.
Luong, M.-T., and Manning, C. D. 2016. Achieving open
vocabulary neural machine translation with hybrid word-
character models. arXiv preprint arXiv:1604.00788.
Luong, M. T.; Sutskever, I.; Le, Q. V.; Vinyals, O.; and
Zaremba, W. 2014. Addressing the rare word problem in
neural machine translation. Bulletin of University of Agri-
cultural Sciences and Veterinary Medicine Cluj-Napoca.
Veterinary Medicine 27(2):82–86.
Mi, H.; Wang, Z.; and Ittycheriah, A. 2016. Vocabulary
manipulation for neural machine translation. arXiv preprint
arXiv:1605.03209.
Papineni, K.; Roukos, S.; Ward, T.; and Zhu, W.-J. 2002.
Bleu: a method for automatic evaluation of machine transla-
tion. In ACL, 311–318.
Sennrich, R., and Haddow, B. 2016. Linguistic input fea-
tures improve neural machine translation. arXiv preprint
arXiv:1606.02892.
Sennrich, R.; Haddow, B.; and Birch, A. 2015a. Improving
neural machine translation models with monolingual data.
Computer Science.
Sennrich, R.; Haddow, B.; and Birch, A. 2015b. Neural
machine translation of rare words with subword units. arXiv
preprint arXiv:1508.07909.
Song, L.; Zhang, Y.; Song, K.; and Liu, Q. 2014. Joint mor-

phological generation and syntactic linearization. In AAAI,
1522–1528.
Srivastava, N.; Hinton, G. E.; Krizhevsky, A.; Sutskever, I.;
and Salakhutdinov, R. 2014. Dropout: a simple way to pre-
vent neural networks from overfitting. Journal of machine
learning research 15(1):1929–1958.
Tamchyna, A.; Marco, M. W.; and Fraser, A. 2017. Mod-
eling target-side inflection in neural machine translation.
WMT.
Toutanova, K.; Suzuki, H.; and Ruopp, A. 2010. Applying
morphology generation models to machine translation. In
ACL, 514–522.
Tran, K.; Bisazza, A.; and Monz, C. 2015. A distributed in-
flection model for translating into morphologically rich lan-
guages. Proceedings of MT Summit XV 145.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention is all you need. CoRR abs/1706.03762.
Zens, R.; Och, F. J.; and Ney, H. 2002. Phrase-based statisti-
cal machine translation. Lecture Notes in Computer Science
11(2):18–32.

