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Abstract

Chinese chunking has traditionally been solved by as-
suming gold standard word segmentation. We find that
the accuracies drop drastically when automatic seg-
mentation is used. Inspired by the fact that chunking
knowledge can potentially improve segmentation, we
explore a joint model that performs segmentation, POS-
tagging and chunking simultaneously. In addition, to
address the sparsity of full chunk features, we employ
a semi-supervised method to derive chunk cluster fea-
tures from large-scale automatically-chunked data. Re-
sults show the effectiveness of the joint model with
semi-supervised features.

1 Introduction

Chunking is a standard task in natural language process-
ing, with applications to a variety of common tasks, such
as syntactic analysis (Zhou, Qu, and Zhang 2012), named
entity recognition (Wang, Che, and Manning 2013) and
fine-grained sentiment (Yang and Cardie 2013). A chal-
lenge unique to character-based languages such as Chinese,
Japanese and Thai is that word segmentation is a necessary
pre-processing step. Chunking is typically performed on
segmentation and POS-tagging outputs, which suffer from
error propagation. In this paper, we take syntactic chunking
as the task and explore joint models to address the issue.
The main reason for our choice is the availability of widely-
used benchmark data, and the method can be applied to all
chunking tasks, such as name entity and opinion expression
chunks.

Syntactic Chunking is also called shallow parsing. The
task is to divide a text into syntactically correlated non-
overlapping chunks (Abney 1991). Chinese chunking is
a difficult task, which was conventionally defined over
words, requiring word segmentation and POS-tagging as
pre-processing steps (Chen, Zhang, and Isahara 2006; Li,
Webster, and Yao 2003; Tan et al. 2004; Tan, Yao, and Chen
2005; Wu et al. 2005; Zhao et al. 2000; Zhou, Qu, and Zhang
2012).
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Most previous work assumes that gold standard segmen-
tation and POS-tagging have been given before chunking.
The performance of typical chunking systems can reach
around 91% on the gold input (Chen, Zhang, and Isahara
2006; Zhou, Qu, and Zhang 2012). Our experiments on the
standard test corpus, with automatically assigned word seg-
mentation and POS-tags, show that the performance of the
chunking system is only around 70%. The contrast demon-
strates that there is still a large gap for improvement in real-
istic settings.

Given a Chinese sentence, word segmentation errors can
propagate to later processing stages, namely POS tagging
and chunking. On the other hand, chunking information,
which consist of chunk boundaries and corresponding chunk
types, can also be used to improve the word segmentation
and POS-tagging. As a result, the three tasks can be jointly
performed to bring potential accuracy improvements on all
tasks. Similar ideas have been exploited for joint segmenta-
tion and POS-tagging (Zhang and Clark 2010), joint named
entity recognition and parsing (Finkel and Manning 2009),
and joint segmentation, POS-tagging, and parsing (Hatori et
al. 2012; Li and Zhou 2012; Zhang et al. 2013).

In this paper, we make an investigation of character-
level Chinese chunking based on a joint segmentation and
POS-tagging framework of Zhang and Clark (2010). The
character-level chunking system performs word segmenta-
tion, part-of-speech (POS) tagging and chunking jointly.
Compared to a pipeline system, the advantages of a joint
system include reduction of error propagation, and the inte-
gration of segmentation, POS tagging and chunk-level fea-
tures. To our knowledge, this is the first work to develop a
system that jointly performs the above three tasks.

Word features, especially chunk-level features, which are
used in the transition-based chunking systems, are relatively
sparse. The state-of-the-art models (Chen, Zhang, and Isa-
hara 2006; Zhou, Qu, and Zhang 2012) are usually trained
on corpora automatically extracted from the Penn Chinese
Treebank (CTB) (Nianwen et al. 2000), which consists of
tens of thousands of sentences. Given such a limited set of
training data (e.g. tens of thousands sentences), the chance
of a sparse feature occurring in the training data but not in
the test data can be high. As a result, full chunk features
are not useful in our experiments. To address this issue, we
present a semi-supervised approach that extracts chunk clus-
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ter features from large automatically-chunked data to im-
prove chunking.

Standard evaluation shows that the joint model outper-
forms a baseline pipeline system that consists of a joint seg-
mentation and POS-tagging system, and a transition-based
chunker that takes segmented and POS-tagged inputs, both
components giving competitive results. In addition, semi-
supervised learning effectively reduces the sparsity of full
chunk features, which are not useful in fully supervised sys-
tems. Our semi-supervised chunk cluster features improve
the accuracies of both chunking and segmentation/POS-
tagging in the joint chunking system.

2 Related Work

Chunking research started with English, with the CoNLL-
2000 offering a platform for system comparison (Sang and
Buchholz. 2000). The benchmark data was generated from
the Penn Treebank. Most previous work reduced chunking to
sequence labeling problems. Classification models, includ-
ing SVMs (Kudo and Matsumoto 2001) and other classi-
fiers (Zhang, Damerau, and Johnson 2002), have been used.
Kudo and Matsumoto (2000) applied combinations of mul-
tiple SVMs classifiers to English chunking and achieved the
best performance in the CoNLL2000 shared task. Sequence
labeling models, such as CRFs, were widely used for chunk-
ing, and gave state-of-the-art results (Sha and Pereira 2003;
Mcdonald, Crammer, and Pereira 2005).

Similar approaches, including classification models and
sequence labeling models, were also applied for Chinese
chunking (Li, Webster, and Yao 2003; Tan et al. 2004;
Tan, Yao, and Chen 2005; Wu et al. 2005; Zhao et al. 2000).
Chen, Zhang and Isahara (2006) used CTB4 as a standard
benchmark to compare the performances of several state-of-
the-art models for Chinese chunking, and proposed ensem-
ble voting methods to improve performance.

Most previous work focused on gold segmentation and
POS-tagging input, while there are also some research ex-
ploiting the chunking systems that take input with gold seg-
mentation and automatically assigned POS-tags (Sun et al.
2008; Yao, Li, and Huang 2007). To our knowledge, our
work is the first to perform chunking on raw text, without
assuming that the input has been assigned with gold seg-
mentation.

In terms of features, most previous work performed
chunking with word-level features. Zhou, Qu and
Zhang (2012) utilized chunk-level features, and achieved
state-of-the-art performance. Most of their features are
based words within chunks, such as the first word and the
last of the chunk. We find that full chunk features are not
useful in our fully supervised model due to their sparseness.
Yao, Li, and Huang (2007) utilized distributional similarity-
based features to solve the sparsity of word features. To our
knowledge, our semi-supervised model is the first to solve
the sparsity problem of full chunk features.

3 Baseline systems

We use a transition-based model for the baseline chunking
system. It consists of a joint word segmentation and POS-

tagging model (Zhang and Clark 2010) and a word-based
chunker. Both systems are built using the global discrimi-
native learning for structured prediction, and beam search
framework of Zhang and Clark (2011).

3.1 Joint Word Segmentation and POS-Tagging

We apply Zhang and Clark (2010) as the baseline word seg-
mentation and POS-tagging system. Because the training
and decoding framework is also used for our baseline chun-
ker and joint chunker, we give the model description and
training algorithm in details in their generic forms.

The Transition System Given an input sentence, the joint
segmentor and POS-tagger builds an output incrementally,
one character at a time. At each step, each character can ei-
ther be attached to the current word or separated as the start
of a new word. When the current character starts a new word,
a POS-tag is assigned to the new word. When the character
is concatenated to a word, the POS-tag of the word remains
unchanged.

Formally, a state item in the transition system consists a
stack and a queue. The stack contains partially segmented
and tagged sentence, and the queue consists of the unpro-
cessed character sequence. The candidate transition action
at each step is defined as follows:

• SEPARATE(TAG): remove the front character from the
queue, and add it as the start of a new word with the POS
TAG on the stack.

• APPEND: remove the front character from the queue, and
append it to the last partial word on the stack.

Given the sentence“他到达北京机场。”(He reached
Beijing airport), the sequence of actions SEPARATE(NR) -
SEPARATE(VV) - APPEND - SEPARATE(NR) - APPEND -
SEPARATE(NN) - APPEND - SEPARATE(PU) can be used
to analyze its structure.

Model A linear model is used to score both partial and full
candidate outputs. Given an input x, the score of a candidate
output y is computed as:

Score(y) = Φ(y) · �w (1)

where Φ(y) is the global feature vector extracted from y, and
�w is the parameter vector of the model.

Given a partial or complete candidate y, its global feature
vector Φ(y) is extracted by instantiating all applicable fea-
ture templates for each character in y. The feature templates
are taken from Zhang and Clark (2010). Table 1 summarizes
the features, where w, t and c are used to represent a word, a
POS-tag and a character, respectively.

The subscripts are based on the current character. c0, c−1

and c−2 represent the current character and its previous two
characters, respectively; w−1 and w−2 represent the pre-
vious two words to the current character, respectively; t0,
t−1 and t−2 represent the POS tags of the current word and
the previous two words, respectively. start(w), end(w) and
len(w) represent the first character, the last character and
the length of word w, respectively.
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ID Feature Templates

1 w−1

2 w−2 · w−1

3 w−1, where len(w−1) = 1
4 start(w−1) · len(w−1)
5 end(w−1) · len(w−1)
6 end(w−1) · c0
7 c−1 · c0
8 start(w−1) · end(w−1)
9 w−1 · c0
10 end(w−2) · w−1

11 start(w−1) · c0
12 end(w−2) · end(w−1)
13 w−2 · len(w−1)
14 len(w−2) · w−1

15 w−1 · t−1

16 t−1 · t0
17 t−2 · t−1 · t0
18 w−1 · t0
19 t−2 · w−1

20 w−1 · t−1 · end(w−2)
21 w−1 · t−1 · c0
22 c−2 · c−1 · c0 · t−1, where len(w−1) = 1
23 start(w0) · t0
24 t−1 · start(w−1)
25 t0 · c0
26 t0 · c0 · start(w0)
27 c · t−1 · end(w−1), where c ∈ w−1 and c �= end(w−1)
28 c0 · t0 · c−1 · t−1

29 c0 · t0 · c−1

Table 1: Feature templates for the joint word segmentation
and POS-tagging system (Zhang and Clark 2010).

Decoding We apply beam-search for decoding. An agenda
is used to keep the N-best partial outputs at each incremen-
tal step. Before decoding starts, the agenda is initialized with
the start state item. During the incremental process, existing
candidates are extended in all possible ways, and the N-best
newly generated candidates are used for the next incremen-
tal step. When the process is complete, the highest-scored
candidate from the agenda is taken as the output.

Pseudocode for the beam-search algorithm is given in Al-
gorithm 1, where the variable problem represents a particu-
lar task, such as joint word segmentation and POS-tagging,
and the variable candidate represents a state item, which
has a different definition for each task. For example, for the
joint word segmentation and POS-tagging task, a candidate
is a pair, consisting of the partially segmented and tagged
sentence and the remaining input character sequence. The
agenda is an ordered list, used to keep all the state items
generated at each stage, ordered by the score. The variable
candidates is the set of state items that can be used to gen-
erate new state items, namely the N-best state items from
the previous stage. N is the number of state items retained at
each stage.

STARTITEM initializes the start state item according to the
problem; for the joint word segmentation and POS-tagging
task, the start state item is a pair consisting of an empty sen-
tence and the complete sequence of characters waiting to be

Algorithm 1 Beam Search Decoding
Input: problem, agenda, candidates,N

Output: the highest-scored final state
1: candidates ← STARTITEM(problem)
2: agenda ← CLEAR(agenda)
3: for loop do
4: for s in candidates do
5: for action in GETACTIONS(s) do
6: agenda ← APPLY(s, action)
7: end for
8: end for
9: best ← TOP(agenda)

10: if GOALTEST(problem, best) then
11: return best
12: end if
13: candidates ← TOP-N(agenda, N)
14: agenda ← CLEAR(agenda)
15: end for

processed. CLEAR removes all items from the agenda.
GETACTIONS represents all possible actions which one

candidate s can take to generate new state items, for the joint
word segmentation and POS-tagging task, GETACTIONS re-
turns {SEPARATE(TAG), APPEND}. APPLY represents an
incremental processing step, which takes a state item s and
generates new state items from it according to the action,
and then puts new state items onto the agenda.

TOP returns the highest scoring state item on the agenda.
GOALTEST checks whether the incremental decoding pro-
cess is completed; for the joint word segmentation and POS-
tagging task, the process is completed if the state item con-
sists of a fully segmented and tagged sentence and an empty
remaining character sequence. TOP-N returns the N-highest
scoring state items on the agenda, which are used for the
next incremental step.

Training The learning algorithm is based on the general-
ized perceptron (Collins 2002). Parameter adjustments can
be performed at any character during the decoding process,
using the early update mechanism (Collins and Roark 2004;
Zhang and Clark 2011).

3.2 Word-based Chinese Chunking

We use the same framework as described in Section 3.1 for
the baseline word-based chunker. To our knowledge, we are
the first to report a transition-based syntactic chunker in the
literature, scoring transition action sequences instead of out-
put sentences directly, which most previous work does.

The Transition System Similar to the joint word segmen-
tation and POS-tagging model, the word-based chunking
model builds an output incrementally, one word at a time.
At each step, each word can either be attached to the current
chunk or separated as the start a new chunk. When the cur-
rent word starts a new chunk, a chunk type is assigned to the
new chunk. When the word is concatenated to a chunk, the
chunk type of the chunk remains unchanged.
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step action stack queue

0 - Φ 他/NR
1 SEP(NP) [NP他/NR] 到达/VV
2 SEP(VP) [NP他/NR][VP到达/VV] 北京/NR
3 SEP(NP) [NP他/NR][VP到达/VV] 机场/NN

[NP北京/NR]
4 APP(NP) [NP他/NR][VP到达/VV] 。/PU

[NP北京/NR机场/NN]
5 SEP(O) [NP他/NR][VP到达/VV] Φ

[NP北京/NR机场/NN]
[O。/PU]

Table 2: Word-based chunking example.

The state item in the transition system consists a stack and
a queue. The stack contains partially chunked sentence, and
the queue consists of the unprocessed word sequence. The
candidate transition action at each step is defined as follows:

• SEPARATE(TYPE): remove the front word from the
queue, and add it as the start of a new chunk with the
label TYPE on the stack.

• APPEND: remove the front word from the queue, and ap-
pend it to the last partial chunk on the stack.

Table 2 gives an example action sequence for the sen-
tence “他/NR(He) 到达/VV(reached) 北京/NR(Beijing)
机场/NN(airport)。”.

The same linear model from Section 3.1 is applied to
score candidate outputs. Table 3 summarizes the feature
templates. Some templates are adapted from Zhou, Qu and
Zhang (2012). In the feature templates, C, T, w and t are used
to represent a chunk, a chunk type, a word and a POS tag,
respectively. N is the queue of incoming words. The sub-
scripts are based on the current word. C0 and C−1 represent
the current chunk and the previous chunk, respectively. T0

and T−1 represent the chunk types of the current chunk and
the previous chunk, respectively. N0, N1, and N2 represent
the front items from the queue.

Label(w) represents the position of the word w in the cur-
rent chunk (here refers to label ”B” and ”I” in a BI sequence
labeling tag set). Bigram(w) denotes the word to the left of w
and the one to the right of w. And the similar meaning is for
biPOS(w). POSset(C) represents the sequence of POS tags
in chunk C. start word(C), end word(C) and len(C) repre-
sent the first word, the last word, and the length of chunk C,
respectively. Similarly, start POS(C) and end POS(C) rep-
resent the POS tags of the first word and the last word in
chunk C, respectively.

The training method described in Section 3.1 is
used. For the decoding process, GETACTIONS returns
{SEPARATE(TYPE), APPEND}.

4 Character-Level Chinese Chunking

We develop a character-based chunking model under
transition-based framework, which jointly performs word
segmentation, POS tagging and chunking, by making a
change to the state item of the baseline chunker, adding a

ID Feature Templates

1 N0w
2 N0t
3 N1w
4 N1t
5 N2w
6 N2t
7 N0w ·N0t
8 N1w ·N1t
9 N2w ·N2t
10 N0w ·N1w
11 N0w ·N1t
12 N0t ·N1w
13 N0w ·N1w ·N0t
14 N0w ·N1w ·N1t
15 N1w ·N2w
16 N1w ·N2t
17 N1t ·N2w
18 N1t ·N2t
19 w1 ·N0 · T0 , where len(C0) = 1
20 start word(C0)T0

21 start POS(C0)T0

22 end word(C0)T0

23 end POS(C0)T0

24 w · end word(C0) · T0

where w ∈ C0 and w �= end word(C0)
25 t · end POS(C0) · T0

where t ∈ POSset(C0) and p �= end POS(C0)
26 w · label(w) · T0 for all w in C0

27 bigram(w) · label(w) · T0 for all w in C0

28 biPOS(w) · label(w) · T0 for all w in C0

29 POSset(C0) · T0

30 T0 · T−1

31 end word(C−1) · T−1 · start word(C0) · T0

32 end word(C−1) · T−1 · end word(C0) · T0

33 start word(C−1) · T−1 · start word(C0) · T0

34 end POS(C−1) · T−1 · start POS(C0) · T0

35 end POS(C−1) · T−1 · end POS(C0) · T0

36 start POS(C−1) · T−1 · start POS(C0) · T0

37 end word(C−1) · T0; end POS(C−1) · T0

38 T−1 · T0 · start word(C0)
39 T−1 · T0 · start POS(C0)
40 POSset(C−1) · T−1 · POSset(C0) · T0

Table 3: Feature templates for word-based chunking.

deque between the stack and the queue to save partial seg-
mented and POS-tagged results.

The mode use two types of transition actions, one for
joint word segmentation and POS-tagging and the other for
chunking. The joint segmentation and POS-tagging actions
operate between the deque and the queue, while the chunk-
ing actions operate between the stack and the deque. The
candidate transition action at each step is defined as follows:

• SEPARATE(TAG): remove the front character from the
queue, and add it as the start of a new word with the POS
TAG on the deque. This action can only be applied when
the length of the deque is less than t and the last word in
the deque is a full word.

• APPENDWORD: remove the front character from the
queue, and append it to the last partial word on the deque.
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step action stack deque queue

0 - Φ Φ 他 到
1 SEP(NR) Φ 他/NR 到 达
2 FINW Φ 他/NR 到 达
3 SEP(NP) [NP他/NR] Φ 到 达
4 SEP(VV) [NP他/NR] 到/VV 达 北
5 APPW [NP他/NR] 到达/VV 北 京
6 FINW [NP他/NR] 到达/VV 北 京
... ... ... ...
15 APPC [NP他/NR] Φ 。

[VP到达/VV]
[NP北京/NR机场/NN]

... ... ... ...

Table 4: Character-based chunking example.

This action can only be applied when the length of the
deque is less than t and the last word in the deque is a
partial word.

• FINISHWORD: mark the last partial word on the deque
as a full word. The action is necessary for counting the
number of full words in the deque.

• SEPARATE(TYPE): remove the front word from the
deque, and add it as the start of a new chunk with the
label TYPE on the stack. This action can only be applied
when the length of the deque is equal with t.

• APPENDCHUNK: remove the front word from the deque,
and append it to the last partial chunk on the stack. This
action can only be applied when the length of the deque
is equal with t.

• FINISH: finalized the state item. This action can only be
applied when both the deque and queue are empty.

Table 4 gives an example action sequence for the sentence
“他到达北京机场。”(He reached Beijing airport).

The same linear model from Section 3.1 is applied to
score the candidate outputs. The feature templates of our
character-based chunking model contains the union of the
baseline chunking features in Table 3, and the baseline joint
word segmentation and POS tagging features in (Zhang and
Clark 2010).

The training method described in Section 3.1 is
used. For the decoding process, GETACTIONS returns
{SEPARATE(TAG), APPENDWORD, FINISHWORD, SEPA-
RATE(TYPE), APPENDCHUNK, FINISH}.

5 Semi-supervised model

In order to make use full chunk features to improve accura-
cies, we exploit semi-supervised learning to derive such fea-
tures with less sparsity. In particular, we use our joint model
to segment, POS-tag and chunk raw text, and extract semi-
supervised chunk cluster features from the automatically-
analyzed data according to the feature templates.

5.1 Features Extraction

We follow the method of Chen et al. (2009) for semi-
supervised feature extraction. First, we extract chunks from

the automatically-chunked data, and then merge the same
chunks into one entry in order to count their frequency. We
eliminate all chunks that occur only once in the data.

The extracted chunks are grouped into three sets cor-
responding to three levels of frequency: “high-frequency
(HF)”,“middle-frequency (MF)”, and“low-frequency
(LF)”, which correspond to chunks in the TOP-10% most
frequent chunks, the TOP-20% chunks and the other chunks,
respectively. We store the set ID for each chunk in a map
MAPc. During testing, if a chunk is not included in MAPc,
its set ID is ZERO. Therefore, we have four labels: HF, MF,
LF, and ZERO for one chunk.

We generate chunk cluster features for the chunk-based
feature templates, replacing the chunk with the indicator
functions for set IDs of the retrieved chunk in the chunking
process. The set IDs are much less sparse compared to full
chunk features. We also extract word bigram list and gen-
erate bigram-based features from unlabeled data using the
same method.

To our knowledge, we are the first to apply semi-
supervised method of Chen et al. (2009) to a transition-based
model. When applied to a graph-based model, the mech-
anism of the cluster features is easy to understand, which
scores contextual patterns directly. Here we give some intu-
ition on how it works on our transition-based model. Con-
sidering the chunk-based feature templates in the decoding
process, if C0 in the candidate is labeled as HF, the model
tends to apply the SEPARATE(TYPE) action to the candi-
date, and therefore the weight of the SEPARATE(TYPE) ac-
tion should be higher in the model. In this way, the semi-
supervised chunk cluster features can improve the chunking
performance in the transition-based model. Similarity, semi-
supervised word bigram features can improve word segmen-
tation in the transition-based model.

5.2 Feature Templates

Table 5 summarizes the feature templates. Similar to Ta-
ble 3, C, T and w are used to represent a chunk, a chunk
type and a word, respectively. N is the queue of incoming
words. C0 and C−1 represent the current chunk and the pre-
vious chunk, respectively. T0 and T−1 represent the chunk
types of the current chunk and the previous chunk, respec-
tively. w−1 and w−2 represent the previous two words to
the current character, respectively. N0 represents the front of
the queue. POSset(C) represents the sequence of POS tags
in chunk C. start word(C), end word(C) and len(C) repre-
sent the first word, the last word, and the length of chunk
C, respectively. None of these features are included in Ta-
ble 3, because they do not give higher accuracies. All the
features all contain full chunk or word bigram information,
and therefore are highly sparse.

6 Experiments

6.1 Experimental Settings

Unlike English chunking, there is not a most commonly
used benchmark corpus for Chinese chunking. We follow
Chen, Zhang and Isahara (2006) in dataset selection and
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ID Feature Templates

1 C0

2 C0 · T0

3 C0 · POSset(C0)
4 C0, where len(C0) = 1
5 C0 ·N0w
6 C0 ·N0w · T0

7 C−1 · C0

8 T−1 · C0

9 C−1 · T0

10 C0 · end word(C−1)
11 C−1 · len(C0)
12 C0 · len(C−1)
13 C0 · end word(C−1) · T0
14 C−1 · T−1 · C0 · T0

15 w−2 · w−1

Table 5: Additional feature templates for the semi-
supervised chunking model.

Sections Sentences Words

Training 1-300 9,528 232,085
326-899

Dev 301-325 350 6,821
Test 900-1078 5,290 165,862

Table 6: Statistics of the CTB4 corpus.

chunk type defination. The chunking corpus can be ex-
tracted from CTB4 with a public tool1. We conduct our
experiments on the CTB4 corpus following previous stud-
ies on Chinese chunking (Chen, Zhang, and Isahara 2006;
Zhou, Qu, and Zhang 2012). We split the corpus according
to previous work, using files (FID from 301-325) from the
training set as the development set from the training set. Ta-
ble 6 lists the details about the CTB4 data used in this exper-
iment.

We use wikidump201503252 as the raw text for the
semi-supervised model. All the traditional Chinese pages
in Wikipedia are converted to simplified Chinese using the
tool OpenCC3 . After removing duplication, 5.3 million sen-
tences are reserved.

We evaluated the results in the same way as the
CONLL2000 share-task, using precision P and recall R. The
F1 score is given by F1 = 2× P ×R/(P +R).

6.2 Development Results

Our development tests are mainly used to decide the size of
the beam b and the deque size t in the transition system. We
set the number of training iterations to 30 for all the experi-
ments.

Influence of Deque Size We first adjust the deque size t
for our character-level chunking model. In this step, we set
the beam size b=16 and the training iteration n=30. Table 7

1https://github.com/rainarch/ChunkLinkCTB
2http://download.wikipedia.com/zhwiki/20150325/
3https://github.com/BYVoid/OpenCC

SEG POS CHUNK

t=1 95.75 92.73 83.77
t=2 95.68 92.40 83.44
t=3 95.50 92.20 83.30
t=4 95.81 92.65 84.52
t=5 95.70 92.39 83.74

Table 7: The influence of deque size.
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(b) Character-based.

Figure 1: The influence of beam size.

shows the results, according to which we set t = 4 for the
character-level chunking model for the other experiments.

Influence of Beam Size We use a beam size of 16 for
joint segmentation and POS-tagging according to previous
work (Zhang and Clark 2010). Figure 1(a) shows the accu-
racy curves of our word-based chunking model using dif-
ferent beam sizes with respect to the number of training it-
erations. We use gold word segmentation and POS-tags in
this step. Figure 1(b) shows the accuracy curves for our
character-level chunking model using different beam sizes
with respect to the number of training iterations. We set the
beam sizes of both chunkers to 64 according to the the fig-
ures.

Comparison with Other Word-based Chinese Chunking
Models Chen, Zhang and Isahara (2006) compared the
performance of some state-of-the-art machine learning mod-
els, including SVMs, CRFs, transformation-based learning
and memory-based learning for Chinese chunking on the
CTB4 corpus. They proposed ensemble voting methods to
improve performance. We evaluate our word-based chunk-
ing model using the same dataset and compare our results
with Chen, Zhang and Isahara (2006) and Zhou, Qu and
Zhang (2012).

Table 8 shows the results. The results of CRFs-based and
SVMs-based chunking systems are taken from Chen, Zhang
and Isahara (2006). Baseline refers to our word-based chun-
ker and Pipeline refers to our pipeline chunking model. Our
word-based chunking model give comparable results on the
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Method CHUNK

CRFs 90.74
SVMs 91.46

Chen, Zhang and Isahara (2006) 91.68
Zhou, Qu and Zhang (2012) 92.11

Our Baseline 91.43
Pipeline 69.02

Table 8: Results of word-based chunking.

SEG POS CHUNK

Supervised 89.85 81.94 70.96
Semi-ALL 91.00 82.71 72.29

Semi-C 90.67 82.45 72.09
Semi-C0 90.71 82.59 71.98
Semi-W 90.72 82.53 71.62

Table 9: Results of the semi-supervised models.

same input with gold segmentation and POS-taggings.
When our word-based chunking model is applied to the

automatically segmented and POS-tagged input, the chunk-
ing performance decrease significantly. The contrast shows
the significance of segmentation errors to chunking accura-
cies in the realistic setting. To our knowledge, this is the first
work to evaluate a pipeline chunking system.

6.3 Results of Semi-supervised Model

We explore the performance of semi-supervised model using
different feature templates. The models are listed below:

• Supervised: the joint model using the feature templates
describe in Section 4.

• Semi-ALL: Supervised + feature templates in Table 5.
• Semi-C: Supervised + feature templates 1-14 in Table 5.
• Semi-C0: Supervised + feature templates 1 in Table 5.
• Semi-W: Supervised + feature templates 15 in Table 5.

Table 9 shows the results of the above models on the
test data. Chunk cluster features, especially the C0 feature,
improve the chunking performance of the semi-supervised
model. When all the semi-supervised features are applied,
the Semi-ALL system improves the chunking F-score from
70.96% to 72.29%. The results is significant at p < 10−3 by
pair-wise t-test. In addition, semi-supervised word bigram
features also improve the word segmentation performance.

6.4 Comparison between the pipeline and joint
models

We apply the semi-supervised method on the pipeline model
and the joint model, and explore the effects of the full chunk
features.

The models are listed below:

• Pipeline: a joint word segmentation and POS-tagging
model and a word-based chunker, using feature templates
in Table 1 and Table 3, respectively. For the baseline
word-based chunker, we assign automatic POS to the
training data by 10-way jackknifing.

SEG POS CHUNK

Pipeline 88.81 80.64 69.02
Pipeline-C 88.81 80.64 68.82

Pipeline-Semi-C 88.81 80.64 69.45
Joint 89.85 81.94 70.96

Joint-C 89.83 81.78 70.63
Joint-Semi-C 90.67 82.45 72.09

Table 10: Comparison between the pipeline and joint mod-
els.

• Pipeline-C: Pipeline + feature templates 1-14 in Table 5
for the baseline chunker.

• Pipeline-Semi-C: Pipeline + templates 1-14 in Table 5
for the semi-supervised model.

• Joint: character-level chunking model, using feature tem-
plates describe in Section 4.

• Joint-C: Joint + feature templates 1-14 in Table 5 for the
joint chunker.

• Joint-Semi-C: Joint + feature templates 1-14 in Table 5
for the semi-supervised model.

Table 10 shows the results of the above models on the
test data. From the table, we can see that the joint model
is better than the pipeline model on chunking performance,
and also give a higher word segmentation and POS-tagging
performance. Without using semi-supervised features, the
joint model improves the segmentation, POS-tagging and
chunking accuracies significantly (p < 10−3) from 88.81%,
80.64% and 69.02% to 89.85%, 81.94% and 70.96%, re-
spectively, compared with the pipeline model.

On the other hand, full chunk features can not improve
the chunking performance in the supervised model due to its
sparsity. In contrast, when applied to the semi-supervised
model, they can improve not only the chunking perfor-
mance, but also the word segmentation and POS-tagging
performance of the joint model, showing the effectiveness
of reducing feature sparsity. Compared with the joint model
without using semi-supervised features, the joint model with
all the semi-supervised model improves segmentation, POS-
tagging and chunking accuracies significantly (p < 10−3).

Compared to the pipelined baseline, our best model Semi-
ALL gives an error reduction of 19.57%, 10.69% and
10.56% on word segmentation, POS-tagging and chunking,
respectively.

7 Conclusions

We studied character-level Chinese chunking using the
transition-based framework, which achieved better results
compared with a pipelined baseline that performs joint seg-
mentation and POS-tagging, before word-level chunking.
Due to the sparsity of full chunk features, they are not ef-
fective in a fully supervised model. We exploited a semi-
supervised method to solve the sparsity problem by lever-
aging large-scale automatically-chunked text. The semi-
supervised chunk features improved the accuracies of both
segmentation and chunking by our joint model.
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