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• Structural descriptors produce better ad-
sorption isotherm prediction accuracy
compared with LSER descriptors.

• XGB is better than NN-based models in
predicting adsorption isotherm of organic
molecules.

• Structure of organic molecules are the
most important feature for constructing
XGB models.

• 3D coordinate is more accurate in
predicting adsorption isotherm of similar
organic molecules.
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Adsorption of organic molecules from aqueous solution offers a simple and effective method for their removal. Re-
cently, there have been several attempts to apply machine learning (ML) for this problem. To this end, polyparameter
linear free energy relationships (pp-LFERs) were employed, and poor prediction results were observed outside model
applicability domain of pp-LFERs. In this study, we improved the applicability of MLmethods by adopting a chemical-
structure (CS) based approach.We used the prediction of adsorption of organic molecules on carbon-based adsorbents
as an example. Our results show that this approach can fully differentiate the structural differences between any or-
ganic molecules, while providing significant information that is relevant to their interaction with the adsorbents.
We compared two CS feature descriptors: 3D-coordination and simplified molecular-input line-entry system
(SMILES). We then built CS-ML models based on neural networks (NN) and extreme gradient boosting (XGB). They all
outperformed pp-LFERs basedmodels and are capable to accurately predict adsorption isotherm of isomers with similar
physiochemical properties such as chiral molecules, even though they are trained with achiral molecules and race-
mates. We found for predicting adsorption isotherm, XGB shows better performance than NN, and 3D-coordinations
allow effective differentiation between organic molecules.
m 9 November 2022; Accepted 12
1. Introduction

Today, carbon-based adsorbents remain one of themost simple and versa-
tile adsorbents for the removal of aqueous organic contaminants (Pai and
Wang, 2022; Rojas and Horcajada, 2020; Van Duck and van de Voorde,
1984). Applicationwise, batch experiments are usually required to determine
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the optimum dosage of adsorbents, which can be tedious and inefficient (Luo
et al., 2022; Zhang et al., 2020; Zhu et al., 2022). Besides, such effort can be
prohibitive for synthesized organic compounds such as chiral chemicals.
Therefore, the construction of a predictive model of adsorption property is
highly desired.

Traditionally, quantitative structure-property relationships (QSPRs)
were used to correlate adsorption property of organic molecules with its
representative descriptor (Apul et al., 2013; Dickenson and Drewes, 2010;
Kennicutt et al., 2016). To that end, multi-linear regression (MLR) models
were typically developed in conjunction with polyparameter linear free en-
ergy relationships (pp-LFERs) (Su et al., 2022; Xu et al., 2021); more specif-
ically, linear solvation energy relationship (LSER) descriptors were used
(Yu et al., 2015). However, several obstacles significantly reduce the accu-
racy of QSPRs, including the limited availability of experimentally derived
LSER descriptors. Since the accuracy of predicted LSER descriptors is sub-
stantially lower than that of experimentally derived ones (Ulrich et al.,
2017), new prediction methods independent to LSER descriptors need to
be developed.

Due to the rapid development of artificial intelligence, predictive
models based on machine learning (ML) have already been reported for
the optimization of various remediation technologies such as disinfection
and filtration (Lowe et al., 2022). Since only a few operation parameters
such as flow rate and dosage are involved, basic ML models such as Artifi-
cial Neural Network (ANN) and Random Forest (RF) were directly em-
ployed with good prediction result (Cordero et al., 2021; Li et al., 2017).
Usually, these models were trained using data collected from a certain
wastewater treatment plant (WWTPs) and thus cannot be applied to other
WWTPs due to the lack of data diversity. Several studies have also reported
the application of ML in predicting the adsorption performance of organic
contaminants, which is substantially more complicated than the former ap-
plications due to the diversity in the physiochemical properties of organic
molecules. Existing ML based adsorption prediction heavily relies on the
physiochemical properties of the adsorbates, which are conveniently
described by pp-LFERs (Qi et al., 2020; Zhao et al., 2022). However, for
organic molecules with subtle differences such as chiral compounds, the
experimental value of LSER descriptors is scare. In addition, structure of or-
ganic molecule reported in adsorption study is extremely diverse. To solve
that, data preprocessing such as selecting similar data for ML training has
been reported (Zhang et al., 2020). Unfortunately, such strategy suffers
from the lack of data diversity, and cannot be applied to a broad range of
organic molecules.

In this study, we proposed an improved ML strategy for predicting
adsorption performance of organic molecules, by incorporating feature de-
scriptors based on their chemical structures as well as adsorbents. This fea-
ture is clearly different from the previous ML methods, by which pp-LFERs
were used as organic molecule descriptors. We have compared the predic-
tion performance obtained from a combination of different structural
descriptors and ML algorithms. Thus, diversities in ML along with their
effects in prediction performance have been examined in detail. This infor-
mation should be valuable for the future application ofML to solve environ-
mental problems with limited but diverse experimental data.

2. Materials and methods

Chemicals involved in the current study are summarized in Table S1.
Our objective is to develop a universal ML algorithm based on features to
describe organic molecules as well as adsorbents. To this end, we have
employed two systems to describe chemical structures: 1) 3-D chemical
structures of organic molecules (CS); 2) isomeric simplified molecular-
input line-entry system (SMILES) (Weininger, 1988). For the former,
Cartesian coordination of all atoms from each organic molecules were col-
lected from PubChem Database. These structures were calculated based on
MMFF94s force field, and represent energetically accessible and biologi-
cally relevant conformations, rather than energy-minimal forms (Halgren,
1999; Kim et al., 2013). For the later, isomeric SMILES was chosen since it
allows specifying isotopism and stereochemistry of organic molecules. A
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list of SMILES and the structure of each organic molecules used in our
study is summarized in Table S2 and Fig. S1.

2.1. Data set construction

Large-scale database is necessary to develop and validateML algorithm.
Unfortunately for environmental applications, such database is usually
scarce due to the limited availability of experimental data, even for a
well-studied subject such as the adsorption of organic molecules using
carbon-based adsorbents. In both traditional polyparameter linear free en-
ergy relationships (pp-LFER) method and recently published NN-LFER
method (Zhang et al., 2020), the adsorption capacity at certain equilibrium
concentration could be calculated by the LSER descriptors (E, S, A, B, and
V) according to the following equation (Zhang et al., 2020):

log Kd ¼ eE þ sSþ aAþ bBþ vV þ c (1)

where the adsorption coefficient log Kd represents the extent of adsorption,
e, s, a, b and v are fitting parameters, and c is the constant form.

After comparing data sets used in relevant studies, we decided to adopt
an adsorption data set reported by a recent study (Zhang et al., 2020), de-
noted as the Original Data Set, due to the relatively large number of organic
molecules with diverse structure that were included. It includes 4102 data
points associated with 586 isotherms and 165 organic molecules collected
from literatures on biochars, CNTs, GACs, and polymeric resins. Each data
point from this data set includes 5 Abraham descriptors for organic mole-
cules (E, S, A, B, and V), 2 descriptors for adsorbents including surface
area (BET) and total pore volume (Vt), log Ce (aqueous concentrations at
the adsorption equilibrium), and log Kd (adsorption coefficient). 7 data
points were used to describe each adsorption isotherm. It also has to be
noted that since the original data set did not specify adsorbate and adsor-
bent for each data point, to make use of this data set, we have determined
the identity of adsorbate by matching each data point to organic molecules
of known Abraham descriptors. Unfortunately, 203 data points cannot be
identified due to unmatching, and were thus removed. Furthermore, since
the major adsorptionmechanisms of organicmolecules on polymeric resins
are different to that of carbon-based adsorbents (Caetano et al., 2009; Zhao
et al., 2019), we have decided to omit data for resin adsorption. These lead
to a smaller data set consisting of 130 organic molecules, which is denoted
as the Master Data Set in LSER Descriptors Data Sets. Since more than one
adsorption isotherm for each organic molecule have been reported, the
Master Data Set consists of 924, 1288, 714 data points for biochar, carbon
nanotubes (CNTs), and granular activated carbons (GACs), respectively. In
addition, we have expanded this data set by incorporating data from
recently published studies to form the Expanded Master Data Set in LSER
Descriptors Data Sets. We have followed the data collection rule reported
for the construction of the Original Data Set (Zhang et al., 2020). In addi-
tion, since experimentally derived LSER descriptors are more accurate
than predicted ones, for added data, we have only chosen organic mole-
cules without conflicting experimental LSER descriptors. The Expanded
Master Data Set involves a total of 135 organic molecules (Table S1), or
966, 1323, 833 data points for biochar, CNTs, and GACs, respectively.

2.2. Data preprocessing

We have described the origin of descriptors that were used to describe
structures of organic molecules. Briefly, Cartesian coordination of all
atoms from each organic molecules, which is calculated by MMFF94s
force field, were collected from PubChem Database. Due to the large
number of different atoms included in the organic molecules listed in the
Structural Descriptors Data Set, an array of 210 Cartesian coordinates is
necessary to describe possible positions of all atoms from the 135 organic
molecules. Since most organic molecules in this data set contains lesser
atoms than the maximum number of atoms possible, this results in many
empty coordinates, especially for C and H atoms, which were filled with
zeros. However, for such small data set, high-dimensional data may lead
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to over-fitting and poor prediction performance. Therefore, dimension re-
duction was performed using principal component analysis (PCA). A num-
ber of new features were generated through PCA-CS in order to capture the
variability in the data with fewer features (Fig. S2). We combined these
new features with adsorbent properties such as BET surface area and total
pore volume (Vt), along with adsorption equilibrium concentration (Ce)
as input features for the ML modeling.

Alternatively, isomeric SMILES was used to represent the structure of or-
ganic molecules involved in this study (Table S2). Since it is a linear repre-
sentation, it needs to be preprocessed to provide information regarding
atoms and their chemical environment that are necessary to build ML
models using GNN (graph neuron network), which is based on learning rep-
resentations of fingerprints (or r-radius subgraphs) (Tsubaki et al., 2018). As
the first step to create molecular vectors, isomeric SMILES was transformed
into uniformed 2-D molecular graph (Fig. S3). Meanwhile, atom types and
bond information were extracted from SMILES through “RDKit” package
in Python (Tsubaki et al., 2018). Then, GNN encodes 2-D molecular graphs
to form features as nodes and edges, corresponding to atomic features and
bond features, respectively. Since each organic molecule contains a large
number of atoms, and not all atoms participate in adsorption, existing
nodes and edges were grouped to form fingerprints as new nodes based on
the chemical structure. These fingerprints were built by setting central mol-
ecule with certain radius. Subsequently, new edges would describe bond
features between these fingerprints. Finally, fingerprints were non-linearly
transformed into atom vectors by GNN. These atom vectors were combined
into a single molecular vector to represent organic molecule's structure.

To increase the data diversity and generalizability of ML models, the
preprocessed data were first grouped before been randomly shuffled, to
ensure the element of randomness for the construction of representative
models. Typically, all experimental data points extracted from the same
adsorption isotherm were grouped together, since they shared the same
adsorbate and absorbent, and the only variable was Ce.

Before training ML models, data splitting is necessary. In general, the
split ratio of training, validation, and test set is 8:1:1. Considering the rela-
tively small data set used in this study, larger validation and test set may
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avoid fortuity and reduce error. Therefore, we have split the preprocessed
data into training, validation, and test set with the ratio of 7:1.5:1.5. This
is also consistent with reported practice using similar data set.(Zhang
et al., 2020).

2.3. Modeling methods

Gradient Boosting Decision Tree (GBDT) and Neural Network (NN) are
two of the most widely employed machine learning methods, from which
six ML algorithms including NN-LFER, NN-PCA-CS, NN-GNN-SMILES,
XGB-LFER, XGB-PCA-CS, and XGB-GNN-SMILES were proposed and evalu-
ated for the prediction performance of adsorption isotherm of organic
chemicals on carbon-based adsorbents (Fig. 1).

Neuron network (NN) constructed by three layers (input, hidden, and
output layers) was applied to different feature description methods includ-
ing LFER, PCA-CS, and GNN-SMILES. In general, NNwas optimized though
the adjustment of hidden layers and activation functions. For NN-LFER,
there is no need to preprocess the data since only eight features (LFER
descriptors, BET, Vt, and log Ce) were involved. Similarly, for NN-PCA-CS
model, new features obtained from data preprocessing were used in the
input layer. For all NN models, the number of hidden layers was set to 4,
while the output layer was composed of log Kd values. Besides, rectified
linear units (ReLU), which is a piecewise linear function, was selected as
activation function between hidden layers, and Sigmoid, an alias for the
logistic function, was applied before output layers.

To prevent overfitting for such small data set, k-fold cross-validation
(CV) was applied during the model construction, it's known to improve
model performance and generalization. We chose to use 5 as k value,
since this produces validation and test sets with similar size. In each cycle
of the 5-fold cross-validation, 70 % of the data were selected to train and
build the NN model, while the rests were applied for validation and test.
Since input values varied with large range, they were normalized to the
same scale between−1 and 1. As the result, the output data of log Kd has
to be denormalized in order to compare with experimental values during
validation or test process.
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Since different algorithms impact the ML model prediction, extreme
gradient boosting (XGB) was compared with NN. XGB is a scalable machine
learning system for gradient tree boosting (Chen and Guestrin, 2016). It
has been reported that XGB is more proficient in solving tabular and small-
scale data sets by building tree structures (Ching et al., 2022; Liu et al.,
2022; Sagi and Rokach, 2021). The basic components of XGB include small
trees, root nodes, numerical weight, internal nodes, and leaf nodes. It can
be mathematically expressed as the following (Chen and Guestrin, 2016):

by tð Þ
i ¼ ∑t

k¼1f k xið Þ ¼ by t�1ð Þ
i þ f t xið Þ (2)

where byi is the predicted value with respect to input xi; t is the total number
of regression trees being used; and fk represents the predicted value of each
independent regression tree. Different from NN models, XGB can optimize
the model by adjusting the number of trees, learning rate, and tree depth.
Besides, early stopping, an optimization technique, was employed to re-
duce overfitting without compromising model accuracy. We used feature
importance analysis to visualize contribution of features to the model
performance.

2.4. Error metrics

The model performance of all algorithms (NN-LFER, NN-PCA-CS, NN-
GNN-SMILES, XGB-LFER, XGB-PCA-CS, and XGB-GNN-SMILES) was evalu-
ated in terms of correlation coefficient (R2), QF2

2 value (referred as Q2), and
the root mean square error (RMSE), as described in Eqs. (3), (4) and (5),
respectively.

R2 ¼ 1 � ∑n
1 yi � yð Þ2

∑n
1 yi � yð Þ2 (3)

Q2
F2 ¼ 1 � ∑n

1 y � yið Þ2
∑n
1 y � yð Þ2 (4)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n
1 yi � yð Þ2

n

s
(5)

where yi, y are the predicted and real values of the target labels, respec-
tively; y is themean value of the real target labels; and n is the total number
of data points. To allow comparison with results from previous study, both
R2 and Q2 were calculated for all models. Generally, higher R2/Q2 accom-
panied with lower RMSE suggest better prediction performance of the
model.

2.5. Model selection

The performance of ML algorithms is typically evaluated based on the
prediction results of their respective models using test set (Yuan et al.,
2021; Zhu et al., 2022). For a large data set with high diversity, the predic-
tion performance of test set is consistent, so eachmodel is representative for
the ML algorithm which it was derived. However, for many environmental
problems, such as prediction of adsorption isotherm, the data set is of high
diversity but relatively small size. As the result, Q2/R2 as well as RMSE of
the test set may fluctuatewithin awide range, rendering difficulty in choos-
ing the best model that is representative for the ML algorithm. So, standard
to choose representative model needs to be imposed in order to properly
compare the performance of ML algorithms for environmental problems
with diverse but limited data.

To this end, we proposed the Medium-Selection Cross-Validation
Method, which is an improved version of cross-validationmethod. It is spe-
cifically designed for small data set to avoid fortuity during ML training
while ensuring statistical significance. Specifically, we first perform cross-
validation method to generate 5 ML models, and the ML model with the
best prediction performance was chosen. Subsequently, we repeat this
process for 8 more times, and summarized the result (Table S3 shows an
4

example). Then, ML model with median value of R2/Q2 for test set is
selected as the representative model. It represents a comprehensive
assessment of model performance which is trained with small and diverse
data set.

3. Results and discussion

3.1. Effect of data size on prediction accuracy

For NN-LFER, two data setswith different sizes in LSERDescriptors Data
Sets including Master Data Set and Expanded Master Data Set were first
compared to distinguish whether data expansion could improve the
model performance. The joint scattered plots including experimental and
predicted values of log Kd are shown in Figs. 2 and 3. The results are sum-
marized in Table S4. As expected, the goodness-of-fit, which is represented
byQ2, substantially increased when the larger data set was used. For exam-
ple, Q2 were 0.64, 0.72, 0.59, and 0.74 for biochar, CNTs, GACs, and all
adsorbents using Master Data Set, while Q2 increased to 0.71, 0.80, 0.70,
and 0.84 separately after Expanded Master Data Set was used. In addition,
better prediction performancewas also achieved, which is evident from the
reduction in RMSE, except for GACs. This result suggests the prediction
accuracy of NN-LFER can be improved with additional experimental data,
which is unfortunately very tedious to obtain. Of course, the inaccuracy
in predicted LSERs values used in the model training also aids the deviation
between predicted and experimental adsorption isotherms.

3.2. Effect of feature descriptors on prediction accuracy

We evaluated the data size effect on prediction accuracy using NN-LFER
as model algorithm, log Kd at given Ce was used as the label, our results
show limited improvement can be achieved when a larger data set was
used (Figs. 2 and 3). So, we emphasized on the feature descriptor effect
on prediction accuracy. Three NN based ML models, namely NN-LFER,
NN-PCA-CS, and NN-GNN-SMILES were evaluated for the prediction of
adsorption isotherm of organic molecules. The results are summarized in
Tables S4 and S5. The latter two models showed better prediction results
compared to NN-LFER using same data set (Figs. 4, S4 and S5). As we can
see, NN-PCA-CS outperforms the other models, with Q2 reached to 0.89,
0.91, 0.89 and 0.90, for biochar, CNT, GAC, and all carbon-based adsor-
bents, respectively, and RMSE reduced to 0.25, 0.32, 0.32, and 0.34 respec-
tively for four adsorbents. The prediction performance of NN-PCA-CS is
followed by NN-GNN-SMILES. Slightly reduced Q2 values (0.82, 0.83,
0.80 and 0.85 for biochar, CNT, GAC, and all adsorbents, respectively)
were observed, along with increased RMSE values, ranging from 0.32 to
0.35 for all adsorbent types.

The possible reason of reduced prediction accuracy for NN-GNN-SMILES
might be the incomplete expression of molecular features, which results
from information extraction via GNN preprocessing. For example, benzene
ring from organic molecules might be separated into different fingerprints,
which cannot express the structure of benzene appropriately. In addition,
GNN ignored the bonds inside fingerprints, which omits important features
that maybe involved in the adsorbent-adsorbate interaction. Albeit, both
NN-PCA-CS and NN-GNN-SMILES models outperform NN-LFER model in
terms of prediction accuracy.

We analyzed the LSER descriptors involved in this study, and found they
are a mixture of experimental and predicted values. Among which conflict-
ing values of experimental LSERs descriptors can be found for 82 molecules
(Fig. S6, Table S6), and 12 molecules' LSER descriptors have never been ex-
perimentally determined (Fig. S6). Using QSPR prediction tool provided by
the UFZ-LSER database, the predicted LSER descriptors for these 12 mole-
cules all fell outside the application domain (Ulrich et al., 2017). It has to
be noted that these LSER descriptors were adopted from the reported data
set without any modification, in order to allow performance comparison
(Zhang et al., 2020), therefore the selection of these LSER descriptors is
beyond the scope of this paper. But nevertheless, it shows the proportion
of reliable LSER descriptors that were employed in the NN-LFER model
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Fig. 2. Prediction performance of NN-LFERmodels for a) biochar, b) CNT, c) GAC, and d) all carbon-based adsorbents using theMaster Data Set from LSER Descriptors Data
Sets with total sample size of 2926.
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development is as low as 30.37% (Fig. S6). Therefore, poor prediction accu-
racy can be expected using this approach. In a word, the selection of proper
feature descriptors, such as structural descriptors vs. LSER descriptors, can
significantly impact the model performance with limited experimental data.

Overfitting is a modeling error in statistics, it occurs when the model
properly learns the data during the training process, but the test performance
is poor (Dietterich, 1995; Ying, 2019). NN models are prone to overfitting
when large number of features are used in the input layer. To reduce the pos-
sibility of overfitting, we employed the strategy of k-fold CV adjustment.
Rationales are provided in Materials and Methods Section. The possibility
of overfitting can be visualized using the training-validation loss curves.
Typically, during the training process, the loss value of both training and
validation data set will decrease and tend to be stable. Overfitting usually oc-
curs when the training or validation loss suddenly increased as the model
continues to learn the data. As evident from our result (Figs. S7, S8 and
S9), the 5-fold CV strategy is successful to prevent over-fitting in all models
including NN-LFER, NN-PCA-CS, and NN-GNN-SMILES.

3.3. Effect of machine learning algorithms on prediction accuracy

We have also investigated the effects of machine learning algorithms on
prediction accuracy. To this end, we have compared XGB with NN. Tree-
based algorithms have been widely applied in solving environmental prob-
lemswith good performance (Ching et al., 2022;Wang et al., 2022). Among
tree-based algorithms, XGB has the advantages to avoid overfitting and op-
timize the models (Chen and Guestrin, 2016). Besides, early stopping can
be easily employed to prevent overfitting. We evaluated the application
5

of XGB algorithm using different descriptor approach, namely LFER, PCA-
CS, and GNN-SMILES. It has to be noted that the inputs of XGB models
were identical to that of NN models discussed earlier, in order to allow
performance comparison. After optimization of XGB-based models, we
found the prediction performance of these models were superior to that
of NN-based models, evidenced by the enhanced test R2 and reduced
RMSE (Tables S4 and S5). Our results show a clear advantage of XGB
over NN-based algorithms (Figs. 4, 5, S10 and S11). It is notable that for
prediction of all carbon-based adsorbents, both structural descriptors
based XGB models exhibited similar prediction performance, and RMSE
of 0.34 and 0.32, Q2 of 0.93 and 0.94 were observed for XGB-PCA-CS and
XGB-GNN-SMILES, respectively. This may be due to the fact that only 135
different organic molecules were involved in the current study, and both
PCA-CS and GNN-SMILES can effectively describe these molecules. Never-
theless, XGB-PCA-CS and XGB-GNN-SMILES showed significant improve-
ment in prediction accuracy compared to XGB-LFER. Our result is also
significantly improved compared with published results (Table S7), al-
though they are primarily based on LSERs.

Feature importance analysis has been frequently applied to XGBmodels
to understand the distribution of each feature in model construction (Asare
et al., 2021; Yuan et al., 2021). Such information can help us to further im-
prove the ML algorithm by selecting features with high contribution. For
XGB models employed in the current study, several factors related to ad-
sorption isothermwere described by features, including structures and con-
centration of organic molecules, and physical properties of carbon-based
adsorbents. Some features such as BET area, pore volume of adsorbents,
and concentration of organic molecules are straightforward to describe.
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Fig. 3. Prediction performance of NN-LFERmodels for a) biochar, b) CNT, c) GAC, and d) all carbon-based adsorbents using ExpandedMaster Data Set from LSERDescriptors
Data Sets with total sample size of 3122.
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However, instead of directly employing 3-D coordinates and SMILES as fea-
tures to describe chemical structures of organic molecules, new structural
features were generated by PCA and GNN in terms of principal components
and molecular vectors, in order to properly describe them. For example, for
XGB-PCA-CSmodel, 30 features related to structural information of organic
molecules were generated by PCA (Fig. 6a). Separately, each of these
feature does not contain complete information on bond length nor bond
distance. So, we combined all PCA generated structural features in order
to consider the importance of chemical structures in XGBmodeling.We per-
formed feature importance analysis for XGB-PCA-CS, the results are shown
in Fig. 6a, and are summarized in Fig. 6b. Our results show that among all
features used for XGB-PCA-CS modeling, the chemical structure of organic
molecules (a combination of 30 structural features) accounts for the highest
proportion (36.69 %) in feature importance graph, followed by concentra-
tion of organic molecules (26.01%), BET area of adsorbents (19.84%), and
pore volume of adsorbents (14.47 %). With a total feature importance of
62.7 %, this result exemplifies the importance to properly describe organic
molecules inMLmodels for predicting their adsorption isotherm.Of course,
the physical properties of adsorbents, although only accounts for 34.31 %
of feature importance, is also important to the prediction accuracy.

In order to further enhance prediction accuracy of structural descriptor-
based ML models, as well as understand their application domain, we ana-
lyzed the identity of outliers in the predicted vs. actual values plots (Figs. 7
and S12). The results are summarized in Tables S8 and S9. For prediction of
all carbon-based adsorbents, we noticed there is no outliers for XGB-PCA-
CS, while outliers have been detected for 2 data groups for XGB-GNN-
6

SMILES, however, most data points of these data groups show excellent pre-
diction result. In contrast, NN-PCA-CS shows 3 data groups with outliers,
for non-outlier data within those groups, the prediction results are similar
to real values. Further, for NN-GNN-SMILES, not only it contains 3 data
groups with outliers, but all data points from these groups are also poorly
predicted. This result is consistent with the order of prediction performance
(Q2, R2, and RMSE) of these models. In addition, it shows XGB-PCA-CS has
the greatest application domain in terms of organic molecules and carbon-
based adsorbents, since no outlier was found.We further examined outliers
for NN-PCA-CS for different carbon-based adsorbents (Fig. S12), our results
show no outlier was found for GAC prediction, while both biochar and CNT
predictions contain 2 data groups with outliers. This suggests for NN-PCA-
CS, the current adsorbent description is adequate for GACwith limited pore
volume and BET surface area, but inadequate for biochar and CNT, where
higher BET surface area and pore volume, as well as additional functional
group other than carboxyl group and hydroxyl group, can be expected,
leading to limited application domain for NN-PCA-CS. It has to be noted
that outliers share no similarity in their chemical structure nor physical
property (Table S9). Therefore, in order to increase the application domain
ofMLmodels with outliers, it is necessary to further increase data diversity,
although it is constrained by the limited experimental studies available.

3.4. Application of chemical structure-based machine learning on isomers

Isomers include constitutional isomers and stereoisomers. However, the
selective adsorption of isomer can be difficult depending on the difference
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between their physiochemical properties. For example, cresol is a mixture
of constitutional isomers including ortho-cresol (o-cresol), meta-cresol
(m-cresol), and para-cresol (p-cresol). Since they share extremely similar
boiling point, pKa, density, and even dipole moment, recrystallization is
typically employed in the industry for their separation. Further, stereoiso-
mers such as chiral chemicals often require chiral adsorbents for their sep-
aration (Casado et al., 2012; Chang et al., 2012), which comes in high cost
and the selectivity is often difficult to predict. Because these isomers often
behave differently in bioavailability and toxicity (Nikolai et al., 2006;
Sanganyado et al., 2017), simple yet effective method is greatly desired
for their selective removal from the environment. Numerous studies have
reported the selective adsorption of constitutional isomers onto activated
carbons (Ravi et al., 1998; Suresh et al., 2012). The primary reason for
their differentiation is often attributed to the difference in binding mecha-
nisms between the constitutional isomers and adsorbents, such as π-π
interaction, hydrogen bonding, etc. Further, it has been shown that enantio-
meric excess (ee) enrichment can also be achieved using achiral adsorbents
(Farhadian et al., 2015; Gomis-Berenguer et al., 2020). Notably, a number of
studies have shown that achiral carbon-based adsorbents can selectively ad-
sorb chiral chemicals (Belhamdi et al., 2016; Gomis-Berenguer et al., 2020;
Huang and Garcia-Bennett, 2021), albeit the exact mechanism for their
differentiation is beyond the scope of this study. Nevertheless, such strategy
offers a simple but efficient approach for the selective removal of isomers.

We first evaluated the applicability of CS-ML strategy on constitutional
isomers and stereoisomers with similar physiochemical properties. Cresol
isomers and a number of chiral compounds were chosen for this purpose,
their physiochemical properties are listed in Table S10. We used their
experimentally determined adsorption isotherm as test set and applied
CS-ML models including NN-PCA-CS, NN-GNN-SMILES, XGB-PCA-CS, and
XGB-GNN-SMILES. The results are shown in Fig. S13. It shows for the pre-
diction of isomers with similar physiochemical properties, XGB-PCA-CS is
better than other CS-ML based methods, followed by XGB-GNN-SMILES,
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and trailed by NN based models. This result is different to that of our previ-
ous observation, bywhich XGB-GNN-SMILES shows the best predict perfor-
mance for all organic molecules (Table S8), in which only 18.5 % were
isomers. This result suggests that the combination of chemical structure
as feature descriptor and PCA as pre-processing method is more adequate
to capture the subtle structural difference between isomers. In contrast,
more structural information is lost when the combination of SMILES and
GNN were employed. In terms of ML algorithm, XGB based models pro-
duced better prediction result for these isomers, which is consistent with
our previous observation for all organic molecules (Table S8).

In order to visualize the difference in prediction performance between
CS and LFER based models, we plotted the Langmuir adsorption isotherm
curves of constitutional isomers (cresol isomers) and chiral organic mole-
cules obtained from ML models against that of experimental values
(Belhamdi et al., 2016; Gomis-Berenguer et al., 2020; Ravi et al., 1998). A
close fit between XGB-PCA-CS predicted and experimentally derived
isotherms can be seen in Figs. 8 and S14, while the adsorption isotherm pre-
dicted byNN-LFER significantly deviates from the experimental curve. This
result is remarkable since all CS-MLmodels were trained using data set that
does not include enantiomers. As discussed earlier, such good prediction
result on chiral organic molecules can be primarily attributed to the more
accurate description of 3D-structures of organic molecules.

It is beneficial to extract additional chemical and physical information
from the predicted data. To this end, we have also calculated Langmuir con-
stant (KL) and maximum adsorption capacity (qmax) from the predicted
isotherm curves. The results are summarized in Table S11. Unfortunately,
both KL and qmax calculated from the predicted isotherms are significantly
different from those of experimentally derived values. The reason for such
deviationmay be due to the fact that ourmodels were trained using adsorp-
tion data within a narrow range of Ce. For example, many experimental
isotherms employed in the current study have not reached maximum
adsorption capacity even for highest Ce reported. Therefore, fitting of the
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Fig. 5. Prediction performance of XGB-LFER models for a) biochar, b) CNT, c) GAC, and d) all carbon-based adsorbents using Expanded Master Data Set from LSER
Descriptors Data Sets with total sample size of 3122.
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isotherm data is necessary to calculate KL and qmax, which often occur at Ce

that is beyond the prediction range of our CS-ML models. As the result, in
order to improve the prediction performance of KL and qmax, it is necessary
to achieve a much higher prediction accuracy of adsorption isotherm,
which is unfortunately very difficult based on the limited data set that
can be collected from the literatures.

4. Conclusion

In summary, we have developedML-basedmodels to predict adsorption
isotherm of organic molecules on carbon-based adsorbents. We found ML
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models developed using structural descriptor are superior to models devel-
oped using LSER descriptors. In addition, we found XGB can produce more
accurate prediction results compared with NN, and both GNN-SMILES and
PCA-CS are capable to effectively describe the difference in organic mole-
cules (RMSE of 0.34 and 0.32, Q2 of 0.93 and 0.94 for XGB-PCA-CS and
XGB-GNN-SMILES, respectively). However, for chiral and structural related
isomers with similar chemical structure, XGB-PCA-CS is more adequate to
differentiate them and is thus able to produce better prediction results
(RMSE of 0.30, R2 of 0.89) evenwhen achiral molecules were used as train-
ing set. To our knowledge, this is the most accurate model in predicting
adsorption isotherm of structural isomers up to date. Thus, our strategy is
39.69%14.47%

19.84%

26.01%
 log Ce

 BET

 Vt

Structure coordinates

b)

highest F score; b) feature importance proportion for four main features.



Fig. 7. The outliers in the scatter plots with structural descriptors and different algorithms for all carbon-based adsorbents.
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of broad interest to researches related to environmental applications such
as removal of prioritized contaminants, prediction of uptake and toxicity
of isomers.

In addition, based on feature importance analysis, our study reveals that
the structure of organic molecules plays a major role in determine their ad-
sorption capacity on carbon-based adsorbents, followed by their solution
concentration, and characteristics of adsorbents. To accurately evaluate
the performance of ML models with limited data set, we proposed a
Medium-Selection Cross-Validation Method, from which we found XGB-
PCA-CS is a universal ML model to predict the adsorption capacity of
organic molecules on carbon-based adsorbents, since no outliers were
detected. Our results can be used to guide the design and optimization of
high-performance carbon-based adsorbent. It also has to be noted that
some of the adsorbents involved in the current study exhibits toxicity atmo-
lecular, cellular, and animal levels (Liu et al., 2013), thus it is beneficial to
take toxicity into consideration when designing adsorbents; however, due
to the limited information on adsorbent toxicity that is available, it is
beyond the scope of the current study. In addition, since the majority of
adsorption isotherm reported up to date were performed at relatively
high concentration of organic contaminants in order to determine maxi-
mum adsorption capacity, adsorption performance at low concentration is
out of the application domain of the current ML model. But nevertheless,
our results provide insight in choosing proper molecular descriptors for en-
vironmental applications of ML where limited data set and a diverse range
of organic molecules are involved.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2022.160228.
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