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Towards Better Word Alignment in Transformer
Kai Song , Xiaoqing Zhou, Heng Yu, Zhongqiang Huang, Yue Zhang , Weihua Luo , Xiangyu Duan,

and Min Zhang

Abstract— While neural models based on the Transformer ar-
chitecture achieve the State-of-the-Art translation performance,
it is well known that the learned target-to-source attentions do
not correlate well with word alignment. There is an increasing
interest in inducing accurate word alignment in Transformer, due
to its important role in practical applications such as dictionary-
guided translation and interactive translation. In this article, we
extend and improve the recent work on unsupervised learning of
word alignment in Transformer on two dimensions: a) parameter
initialization from a pre-trained cross-lingual language model to
leverage large amounts of monolingual data for learning robust
contextualized word representations, and b) regularization of the
training objective to directly model characteristics of word align-
ments which results in favorable word alignments receiving more
concentrated probabilities. Experiments on benchmark data sets
of three language pairs show that the proposed methods can sig-
nificantly reduce alignment error rate (AER) by at least 3.7 to 7.7
points on each language pair over two recent works on improving
the Transformer’s word alignment. Moreover, our methods can
achieve better alignment results than GIZA++ on certain test sets.

Index Terms—Neural network, neural machine translation,
Transformer, word alignment, language model pre-training,
alignment concentration.

I. INTRODUCTION

D IFFERENT from traditional statistical machine translation
methods (SMT) [1]–[3], which make explicit use of word

alignment as part of the model training process, neural machine
translation (NMT) [4]–[7] works by taking an end-to-end ap-
proach, using a neural network to encode a given source sentence
and incrementally predicting its target translation by calculating
a distribution over a target vocabulary at each step, where no
word alignment is required during model training or decoding.
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Intuitively, word alignment as a source of bilingual knowledge
can be useful because of its practical significance. There is
an increasing interest in inducing accurate word alignment in
neural translation models. In addition, word alignment is helpful
to improve the translation of terminology and low-frequency
words. In dictionary-suggested translation [8]–[10], translation
quality can benefit from leveraging external bilingual lexicons
for terminology constraints [11]–[14]. When translating low-
frequency words by methods based on placeholder tags [15],
[16], word alignment is the key information for the replace-
ment operations during both training and decoding procedures.
Also, word alignment provides useful linguistic information
on translation output. For example, producing reasonable word
alignment can help to analyse translation errors [17], such as
over-translation and under-translation [18]. Also, highlight the
source aligned word of the current translated word can be helpful
in interactive translation with the human in the loop [19]–[21].

NMT models have shown large advantages on a myriad of
data sets. Among them, Transformer [7] based NMT attributes
its superior performance to the multi-layer and multi-head
self-attention architecture. In this paper we focus on inducing
high quality word alignment during decoding in Transformer.
Although its use of multi-layer and multi-head attention leads
to the state-of-the-art performance in machine translation and
other tasks, multiple studies have found that Transformer’s
target-to-source attention does not correlate well with word
alignment [17], [22]. Several approaches have been proposed
to make Transformer model produce better word alignment.

The first method learns word alignment from external align-
ment signals by supervising original attention head [23] or
additional parameters [10], [17]. The second method learns word
alignment from bilingual data only, without using alignment
supervision. The word alignment is interpreted from the standard
Transformer’s attention head [22] or from dedicated neural mod-
els [24]. Notably, Zenkel et al. (2019) [24] introduced a separate
alignment layer to the Transformer architecture to learn word
alignment directly from bilingual text without extra supervision,
resulting in alignment that is significantly more accurate than
that obtained from target-to-source attentions in the decoder.
Most of these works rely on taking intermediate representations
produced by Transformer NMT, the learned representations
are restricted to available bilingual training corpora, which are
limited in practice for many language pairs. Moreover, its use of
a simple word-generation objective is not sufficient to capture
other desirable alignment characteristics, such as alignment
concentration and source fertility [25], [26], which are utilized
in traditional alignment models in SMT.
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We build upon the work of Zenkel et al. (2019) [24] and
propose to address the aforementioned limitations on two di-
mensions. First, we make use of monolingual data, which are
more abundantly available than bilingual data, to better capture
the similarity of words within and across languages. Inspired by
recent work on pre-training contextualized word representations
from monolingual data for downstream language understanding
tasks [27]–[29], we initialize and fine-tune the parameters of
the Transformer NMT and the alignment layer from a cross-
lingual language model, which is pre-trained on monolingual
text of source and target languages. Similarity of words within
and across languages can be better captured in the pre-trained
model [30], which is intuitively helpful to the word alignment
problem. Second, we introduce soft constraints on attention
weights produced by the alignment layer to encourage the char-
acteristics of proper word alignment. In particular, we propose to
regularize the training objective of the alignment layer so that the
distribution of alignment probabilities can be more concentrated
on the most relevant source words. As a result, the attention
probabilities are more consistent with word alignments.

Experiments on benchmark data sets of three language pairs
show that the proposed methods are effective. Alignment error
rate (AER) is significantly reduced by at least 3.7 to 7.7 points
on each language pair compared with two recent works on im-
proving the Transformer’s word alignment [22], [24]. Moreover,
our methods achieve better alignment results than GIZA++ [31]
on certain test sets.

II. BACKGROUND

A. Transformer

Transformer-based NMT [7] uses a self-attention network for
both encoder and decoder. The encoder is composed ofJ stacked
neural layers. For time step i in layer j, the hidden state hj

i is
calculated by employing self-attention over the hidden states in
layer j − 1, which are {hj−1

1 ,hj−1
2 , . . .,hj−1

m }, where m is the
number of source-side words. In particular, hj

i is calculated as
follows: First, a self-attention sub-layer is employed to encode
the context. Then attention weights are computed as scaled
dot products between the current query hj−1

i and all the keys
{hj−1

1 ,hj−1
2 , . . . ,hj−1

m }, normalized with a softmax function.
The context vector is then represented as weighted sum of the
values projected from the hidden states in the previous layer,
which are {hj−1

1 ,hj−1
2 , . . . ,hj−1

m }. The hidden states in the
previous layer and the context vector are then connected by
residual connection, followed by a layer normalization func-
tion [32] to produce a candidate hidden state h′j

i , where h′

represents a candidate hidden state. Finally, another sub-layer,
a feed-forward network (FFN), is connected with h′j

i through a
residual connection, followed by a layer normalization function
to obtain the hidden state hj

i .
The decoder is also composed of stacked layers, e.g., J . For

time step t, layer j not only consists of a self-attention sub-layer
and a FFN layer, but also a target-to-source attention sub-layer
between them: First, a self-attention sub-layer is calculated
by employing self-attention mechanism over the hidden states

in the previous target layer, which are {sj−1
1 , sj−1

2 , . . . , sj−1
t−1},

resulting in candidate hidden state s′jt . Then, a target-to-source
sub-layer is inserted after the first self-attention sub-layer. In
particular, s′jt is taken as query (Q), and the keys (K) and values
(V ) are projected from the source hidden states in the last layer
of the encoder. The attention weights {αj

t,1, α
j
t,2, . . . , α

j
t,m} are

used to gain source context cjt , which is a weighted sum of
source-side hidden states. Another candidate state s′′jt is calcu-
lated by employing self-attention mechanism over the source
context cjt and the candidate hidden state s′jt , which is produced
by the first sub-layer. Finally, a last feed-forward sub-layer is
connected with s′′jt through a residual connection, followed by
a layer normalization function to obtain the hidden state sjt .

The hidden state sjt , which is produced by decoder’s last
layer, is then followed by a linear layer, which is a simple,
fully connected neural network that projects the sjt into a vector
which has the same size with target-side vocabulary. A softmax
layer based on the decoder’s last layer sJt is used to produce a
probability distribution over the target-side vocabulary:

p(yt|y1, . . . , yt−1,x) = softmax(sJt ·W), (1)

where x denotes the source sentence, {y1, y2, . . . , yt} denote
the target words, and W is the parameter of the linear operation,
which is usually called “output embedding” and is usually tied
to the target-side word embedding (“input embedding”) in a
number of Transformer implementations [33].

III. BASELINES

A. Alignment Extraction in Transformer

A common way to extract target-to-source word alignment
from a Transformer model is to choose the source word that has
the maximum accumulated attention weight from the current
target word [8], [34], [35], i.e.,

γ(t) = argmax
i∈{1,...,m}

J∑

j=1

αj
t,i, (2)

where i is a candidate position of the aligned source word. For
decoding step t in layer j, αj

t,i is an average of all the target-to-
source attention weights, which are produced by all the attention
heads:

αj
t,i =

1

N

N∑

n=1

αj
t,i,n, (3)

where N denotes the number of attention heads and αj
t,i,n

denotes the target-to-source attention weight toward ith source-
side position produced by nth attention head in layer j at
decoding step t.

As also noted in Koehn et al. (2017), Li et al. (2019) and Ding
et al. (2019)’s work [17], [22], [36], word alignment derived
from a vanilla Transformer by the above method has a high
error rate, as illustrated in Fig. 1.
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Fig. 1. (a) accumulated attention weight matrix from French sub-word to-
kens to English sub-word tokens, with darker gray-level for higher weights;
(b) word alignments extracted from the accumulated attention weight matrix,
with thatched grids indicating erroneous alignment; (c) extracted word align-
ments compared to reference. The English word in the bracket under a French
word is its translation. “

√
” denotes a correct alignment link, “×” denotes an

incorrect alignment link.

B. Transformer With Dedicated Alignment Layer

Zenkel et al. (2019) [24] proposed to use a dedicated align-
ment layer for learning more accurate word alignment in Trans-
former. Their model architecture contains a standard Trans-
former for NMT and a separate alignment layer with inputs
connected to contextualized word representations in the Trans-
former model. As shown in Fig. 2, the alignment layer also uses
the target-to-source attention mechanism similar to that in the
decoder. The hidden states in the final layer of the decoder are
used as query vectorsQ, while the key and value vectorsK andV
are taken from the average of the source input word embeddings
and the hidden states on the final layer of the encoder:

V =

{
1

2
(hJ

1 + x1), . . . ,
1

2
(hJ

m + xm)

}
, (4)

andK = V . The output of the attention layer is then connected to
a fully connected linear layer and a softmax layer to compute the
probability of the target word, similar to that of the decoder. The
linear layer functions as the output embeddings for the alignment
layer.

There is a notable difference between the target-to-source
attention in the alignment layer and the target-to-source attention
in a standard Transformer model in the way they are trained. The
standard Transformer model is trained on the parallel training
data with the typical maximum likelihood translation objective.
After that, the parameters of the Transformer NMT model are
fixed and the alignment layer is trained on the same parallel

Fig. 2. Transformer with dedicated alignment layer.

training data with its own maximum likelihood translation ob-
jective:

Lword
t = − log(p(yt|sJt ,x)) (5)

where sJt is the hidden state on the final layer of the decoder
for the t-th word in the target side. The inputs of the alignment
layer, i.e., the Q, K, V vectors, are computed from the standard
Transformer which is kept fixed. As such, the alignment layer
learns the projection matrix for theQ,K,V vectors to capture the
correlation between source and target words. During inference,
the aligned source word of the current predicted target word yt
is obtained by choosing the source position with the maximum
attention weight calculated in the alignment layer. The multi-
head attention mechanism used in the alignment layer only has
one single attention head.

Zenkel et al. (2019) [24] also provide a method that directly
optimizes attention weights for each parallel sentence in the
test set during the decoding process. For each test sentence, the
attention weights are reset to the original attention weights as
inferred from the trained model and then updated towards the
current sentence: First, a forward pass is executed on the entire
network to obtain the attention weights in the alignment layer
for each word of the whole target sentence. Then the attention
weights are used and optimized to maximize the likelihood of
the target word using stochastic gradient descent (SGD).

Authorized licensed use limited to: Westlake University. Downloaded on January 03,2023 at 06:04:08 UTC from IEEE Xplore.  Restrictions apply. 



1804 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020

Fig. 3. Our model architecture. The parameters of the colored components are
initialized by the pre-trained cross-lingual masked language model.

This method optimizes for accuracy, but is hardly applied
in most of the real-world scenarios, because relying on back-
propagation or performing multiple steps of SGD to find appro-
priate attention weights for each sentence is time-consuming.
However, on some of the test sets, the optimization method can
obtain alignment accuracy even as good as GIZA++, which also
includes test set for updating model parameters. In this paper,
we also affirm the effectiveness of our methods when using this
optimization method during inference, which is discussed in
Section V-D. Since the method is similar to the notion of dynamic
evaluation proposed in Krause et al. [37], [38]’s work, we use
dynamic evaluation to refer this optimization method in the rest
of this paper.

IV. METHOD

We extend Zenkel et al. (2019) [24]’s method in two dimen-
sions: language model pre-training to utilize large amounts of
monolingual data and regularization of the alignment layer to
encourage concentration of alignment probabilities. As shown
in Fig. 3, we also use Transformer with a dedicated alignment
layer described in Section III-B as the model architecture, but
choose to initialize selected components of the model by a
pre-trained cross-lingual masked language model. In addition,
we introduce a concentration loss to regularize the original word

prediction loss and encourage word alignment distributions with
less ambiguity.

A. Pre-Training on Monolingual Data

Lample et al. (2019) [29] proposed a Transformer-based
cross-lingual masked language model,1 henceforth “XLM” in
this paper, for learning contextualized representations from
unpaired monolingual data of different languages. We choose
XLM as the pre-trained language model for two reasons. First,
it is based on the same standard Transformer architecture with
multi-layer multi-head self-attentions that is also used in the
translation part of our model. Second, XLM enables learning
of contextualized word representations from large amounts of
unpaired monolingual data of different languages that are able to
capture word similarity across languages [30], which intuitively
could be helpful for learning word alignment.

Following Lample et al. (2019) [29], BPE [39] codes are
learned from the combination C of the source (Cs) and target
(Ct) monolingual corpora with random sampling to ensure equal
balance between the source and the target. A shared vocabulary
is created for both the source and target languages and is used
in the XLM model, the NMT model, and the alignment layer.

The training samples are generated from C. Following Devlin
et al. (2019) [27], given a sentence c ∈ C, a modified version ĉ is
obtained by sampling 15% of the tokens from the input sentence
and replacing them with a [MASK] token 80% of the time, with
a random token 10% of the time, and kept unchanged 10% of
the time. The model is trained to predict the masked tokens:

L(θ;C) = 1

|C|
∑

c∈C

∑

m∈M

logP (cm|ĉ; θ), (6)

where M is the set of the masked positions in c, cm is the m-th
token in c and θ is the parameters of the XLM model, which
contains the parameters of Transformer’s encoder, language
embedding, positional embeddings and cross-lingual word em-
bedding.

The entire encoder of the Transformer model is initialized
from the pre-trained XLM model. The input and output embed-
dings of the decoder are also initialized from the corresponding
parameters of the XLM model, with the remaining parameters
of the decoder initialized randomly. In addition, we also ini-
tialize the output embeddings of the alignment layer, i.e., the
linear projection matrix before softmax, with the pre-trained
XLM output embeddings. The effect of initializing the linear
projection matrix with the pre-trained XLM model is analyzed
in the experiments section. Inspired by Press et al. (2016) [33]
and Sennrich et al. (2017) [40], we tie the output embeddings in
the alignment layer with the output embeddings in the original
decoder of Transformer. With a combination of pre-trained
and randomly initialized parameters, the NMT model is fine-
tuned on the parallel training data using the standard maximum
likelihood translation objective. Although the improvement of
translation quality is not the focus of this paper, as to be shown in

1In their paper, this method is denoted as “XLM (MLM)”.

Authorized licensed use limited to: Westlake University. Downloaded on January 03,2023 at 06:04:08 UTC from IEEE Xplore.  Restrictions apply. 



SONG et al.: TOWARDS BETTER WORD ALIGNMENT IN TRANSFORMER 1805

the experiments section, fine-tuning from the pre-trained XLM
model results in improved translation quality.

The alignment layer is trained after the NMT training. For a
given sentence, the parameters of the Transformer NMT are fixed
and used to obtain both contextualized word representations of
the source sentence and the query vector of the alignment layer.
The use of pre-training method allows the model to learn more
robust representations from large amounts of monolingual data
than from the limited parallel data. As discussed in Section III-
B, for each proposed target word, its aligned source word can
be immediately obtained by choosing the source position that
has the maximum attention weight in the alignment layer. This
is in contrast to the traditional word alignment methods, such
as GIZA++ and FastAlign, in which the entire target sentence
needs to be generated before performing word alignment as a
downstream task.

B. Alignment Concentration

In the target-to-source attention layer of the Transformer
model, the source positions with higher attention weights pro-
vide more influence on the generation of the target word. Be-
cause of the context-dependent nature of sentence translation,
this typically results in a smooth distribution of attention weights
over the source words [41], [42], as illustrated in Fig. 1(a).
However, this can lead to poor word alignment [17], [22] as
its objective is to find the most relevant source words respon-
sible for generating the target word, since not all of the source
words are helpful. A characteristic of good alignment is that
the alignment distribution is concentrated on just one or a few
source words [25], [26].

To this end, we introduce a concentration loss based on
entropy to constrain the probability distribution of attention
weights. The entropy of attention distribution represents the
uncertainty in choosing the most relevant source word for the
current target word. The concentration loss is defined as follows
and is added as a part of the training objective function of the
alignment layer.

Lconcentration
t = −

m∑

i=1

(βt,i log(βt,i)), (7)

where βt,i is the attention weight of source position i in de-
coding step t, which is calculated by the attention mechanism
in the alignment layer. By minimizing the concentration loss,
we reduce the uncertainty of word alignment and encourage
the alignment distribution to be more concentrated. During the
training of the alignment layer, the objective function L consists
of two components:

L =

n∑

i=1

(Lword
t + λLconcentration

t ), (8)

where Lword
t denotes the original word prediction loss in the

alignment layer (Section III-B) and λ is the hyper-parameter that
balances the preference between the normal word prediction loss
and the alignment concentration loss.

V. EXPERIMENTS

We conduct experiments based on fairseq [43], an open source
implementation2 of Transformer [7]. All methods are evaluated
on the benchmark data sets of three language pairs: English-
Romanian (En-Ro), English-German (En-De) and English-
French (En-Fr). Alignment error rate (AER) [44] and BLEU [45]
are used for measuring word alignment accuracy and translation
quality, respectively.

A. Data

Bilingual Data: All the training data is obtained from and pre-
processed with the same open-source tool3 released in Zenkel
et al. (2019)’s work [24]. Specifically, the training data for
En-Ro, En-De and En-Fr has 0.4, 1.1 and 1.9 million parallel
sentences, respectively. The training data for De-En is taken from
Europarl v8 corpus. The training data for En-Ro and En-Fr are
taken from word alignment shared task of HLT-NAACL 2003
workshop. For FastAlign and GIZA++, the train set and test set
are merged and used for training, and the word alignment on the
test portion is taken out for evaluation. We randomly set aside
the 2,000 sentences of the training data for each language as the
development set.

Monolingual Data: All the monolingual data is taken from
the NewsCommonCrawl corpus released for WMT tasks. Spe-
cially, the monolingual data for English, German and French
comes from WMT2014 to WMT2018 tasks, with 44.5, 86.8,
and 66.6 million sentences for each language, respectively. The
monolingual data for Romania is taken from WMT2015 with
2.7 million sentences. The tokens numbers for English, German,
French and Romania are 1.02 billion, 1.54 billion, 1.60 billion
and 64.9 million, respectively.

Test Data: We evaluate word alignment accuracy on publicly
available hand-aligned benchmark test sets for En-Ro, En-Fr,4

and En-De,5 with 248, 447 and 508 sentences respectively for
each language pair. Each language pair contains two directions
of word alignment tasks, we use En→De as the development
set to choose the value of the hyper-parameter λ when the
alignment concentration loss is used. The test sets for evaluating
translation quality are from the WMT news translation task,
which are “newstest2016,” “newstest2014” and “newstest2014”
for En-Ro, En-De and En-Fr respectively.

B. Experimental Settings

We use BPE [39] in all experiment settings. For each language
pair, the BPE codes are learned from the combination of the
source and target sentences of the parallel training data, and a
shared vocabulary is used for both the source and target. Both
the merge operation and the vocabulary size are set to 20 K for
each language pair.

We use the following configuration for all experiment settings.
Both the encoder and decoder use 6 layers of attentions with 8

2[Online]. Available: https://github.com/pytorch/fairseq
3[Online]. Available: https://github.com/lilt/alignment-scripts
4[Online]. Available: https://www-i6.informatik.rwth-aachen.de/

goldAlignment/
5[Online]. Available: http://web.eecs.umich.edu/∼mihalcea/wpt/index.html
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attention heads each. The size of embeddings and hidden states is
set to 512. The feed-forward layer has 2,048 cells and ReLU [46]
is used as the activation function. Adam [47] is used for training,
with warmup steps set to 4,000 and learning rate set to 0.0005.
We use label smoothing [48] with a confidence score of 0.9 and
the drop-out [49] probabilities are set to 0.3.

In order to use pre-trained XLM models for parameter ini-
tialization, we use the same number of hidden states, attention
layers, and attention heads in XLM models as in the Transformer
NMT models. The XLM models are trained using the toolkit
released by Lample et al. (2019) [29] with default settings,
except for the aforementioned configuration.

C. System Configurations

We compare our method with both the Transformer-based
word alignment methods and the traditional methods. For fair
comparison with traditional methods, following Zenkel et al.
(2019) [24] and Ding et al. (2019) [22], we conduct our ex-
periments under two kinds of settings: without using dynamic
evaluation and using dynamic evaluation.

Without using the dynamic evaluation method described in
Section III-B, which means the test sets are not used for updating
model parameters during the evaluation process. Under this
condition, we compare three Transformer-based word alignment
methods. One is the most common but naive way, the other two
are from Zenkel et al. (2019) [24] and Ding et al. (2019) [22],
which are two recent works on improving Transformer’s word
alignment. Zenkel et al. (2019) [24] achieves the best alignment
results among recent works on improving Transformer’s word
alignment. In this condition, we also compare with FastAlign-
online where the word alignments are obtained by using the
inference mode in the FastAlign toolkit [50].

Under the condition of using the dynamic evaluation method
described in Section III-B, which means the test sets are lever-
aged for updating model parameters during the evaluation pro-
cess, we compare our methods with Zenkel et al. (2019) [24],
GIZA++ [31] and FastAlign-offline. Under this condition, both
Zenkel et al. (2019) [24] and our methods optimize attention
weights towards each test sentence during inference.

Baseline 1: Extract Alignment from Vanilla Transformer: The
most common way of extracting word alignment from vanilla
Transformer, which is described in Section III-A, is used as a
naive baseline.

Baseline 2: Extract Alignment from Dedicated Alignment
Layer: Zenkel et al. (2019) [24] obtain the state-of-the-art align-
ment accuracy on benchmark data sets. We re-implement their
work as our second baseline. In addition, they also proposed
a method (we use “dynamic evaluation” to denote it in this
paper) that optimizes the attention weights of the alignment layer
towards each test sentence during inference, which is described
in Section III-B. We also re-implement this method in our
experiments to compare with GIZA++ and FastAlign-offline.

Since the reference word alignment is based on words, not
BPE tokens. To map sub-word alignment to word alignment,
we consider that a source word is aligned to a target word if
any of their sub-word units are aligned. This method is used in

Zenkel et al. (2019) [24]’s work, we use it in our work for a
fair comparison. We will study other alternative methods that
can map sub-word alignment to word alignment in our future
work.

Traditional Methods: We also compare our methods with
traditional methods, which are GIZA++,6 FastAlign-offline and
FastAlign-online.7

GIZA++, in its off-the-shelf form, cannot produce word align-
ment on a standalone test set. Although it is possible to align
unseen test data using Giza++, but the documentation is hard to
find and it is unpleasant to use.8 A common way of obtaining
the word alignment of unseen test data is to include the test
sets in the training data first, then the alignments are produced
during training after which the test portion is taken out for
evaluation.

FastAlign provides both offline and online modes: For
FastAlign-offline, the alignment results are obtained in the same
way as with GIZA++. For FastAlign-online, the parameters are
trained only on the train set. The alignment results of test sets
are inferred by using the trained model parameters. Different
from GIZA++ and FastAlign-offline, test set is not used for
training.

Our System: As described in Section IV, we extend the
method of Zenkel et al. (2019) [24] with two improvements:
leveraging monolingual data through a pre-trained XLM model
and modeling alignment concentration in the alignment layer.
For each language pair, one XLM model is used for both trans-
lation directions. For example, the same XLM model is used
for En→Ro and Ro→En. The value of the hyper-parameter λ in
Equation 8 is empirically set to 15 according to the experiment
on development set. In addition, when comparing with GIZA++,
for fair comparison, we make use of the dynamic evaluation
method introduced in section III-B, which optimizes attention
weights for each test sentence during decoding and is used in
Zenkel et al. (2019) [24].

D. Results

Not using dynamic evaluation: Under the condition of not
using the dynamic evaluation method described in Section III-B,
meaning that the model parameters will not be updated accord-
ing to each test sentence during the evaluation process, Table I
shows the comparison of our methods with different systems.
Compared with the naive baseline (“Baseline1”), our methods
reduce the averaged AER scores by 8.1, 24.4 and 22.1 points on
En-Ro, En-De and En-Fr, respectively. Compared with Zenkel
et al. (2019) [24] (“Baseline2”), the reductions of averaged AER
scores are 3.7, 4.1 and 7.7 points. Our re-implementation of
Zenkel et al. (2019) [24] is verified to produce comparable
alignment accuracy as reported in the original paper. In addi-
tion, our methods outperform Ding et al. (2019) [22] on the
same data sets by an average of 7.5, 11.3 and 8.4 AER points.
Our methods can outperform FastAlign-online on En-Ro and

6[Online]. Available: https://github.com/moses-smt/giza-pp
7[Online]. Available: https://github.com/clab/fast_align
8[Online]. Available: https://github.com/moses-smt/mgiza/blob/master/

mgizapp/scripts/force-align-moses.sh
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TABLE I
AER [%] SCORES OF DIFFERENT METHODS UNDER THE CONDITION OF NOT USING DYNAMIC EVALUATION, THE LOWER THE BETTER. AER OF DING et al.

(2019) [22] AND ZENKEL et al. (2019) [24] ARE QUOTED FROM THEIR PAPER. OTHER SYSTEMS ARE DESCRIBED IN SECTION V-C. “AVG” IS THE AVERAGED AER
SCORES OF BOTH LANGUAGE DIRECTIONS FOR EACH LANGUAGE PAIR. “BIDIR” IS THE AER SCORE OF THE SYMMETRIZED ALIGNMENT RESULTS, WHICH ARE

OBTAINED BY COMBINING BOTH UNI-DIRECTIONAL ALIGNMENT RESULTS OF EACH LANGUAGE PAIR USING THE GROW-DIAG-FINAL HEURISTIC POSTPROCESSING

STEPS DESCRIBED IN OCH AND NEY (2003) [26]. “EN→RO” DENOTES THE WORD ALIGNMENTS OBTAINED IN THE ENGLISH TO ROMANIA TRANSLATION TASK. †
DENOTES THE DEVELOPMENT SET WHICH IS USED FOR CHOOSING λ EMPIRICALLY

TABLE II
AER [%] SCORES OF DIFFERENT METHODS UNDER THE CONDITION OF USING DYNAMIC EVALUATION. GIZA++ AND FASTALIGN-OFFLINE RESULTS ARE QUOTED

FROM ZENKEL et al. [24]. † DENOTES THE DEVELOPMENT SET WHICH IS USED FOR CHOOSING λ EMPIRICALLY

En-De, the reductions of averaged AER scores are 5.3 and 4.2
points respectively. Surprisingly, even without using test sets
for training, on two of the three language pairs, our methods
can outperform “FastAlign-offline,” which includes the test set
during training (See Table II).

The comparison between “Baseline2” and “Pre-training”
shows that the pre-trained XLM models produce an average
reduction of AER on three language pairs of 3.2, 3.2 and 6.3
points, respectively. By adding the training regularization, the
averaged AER is further reduced by 0.5, 0.9 and 1.4 points on
En-Ro, En-De and En-Fr, respectively.

In addition to the significant improvements on the averaged
AER scores of each language pair, we observe that the AER
score on the symmetrized alignments (See the “Bidir” column in
Table I), which are obtained by combining both uni-directional
alignment results of each language pair using the grow-diag-
final heuristic rule described in Och and Ney (2003) [26],
also improves, although to a less degree. However, in real-
time applications, only uni-directional alignments are feasible
and our results indicate that alignments in one direction are
adequate.

Using dynamic evaluation: Table II shows the comparison of
AER scores under the condition of using the dynamic evaluation
method described in Section III-B, meaning that the model
parameters will be updated according to each test sentence dur-
ing the evaluation process. Both “Baseline2” and our methods
optimize attention weights toward each test sentence during
inference under this setting.

Compared with our re-implementation (“Baseline2”), our
methods have better results (both averaged AER scores and
AER scores of symmetrized word alignments) on all of the
three language pairs. Compared with the results reported in
Zenkel et al. (2019) [24], our methods have better symmetrized

alignment results on En-Ro and En-De,9 where the reductions
are 1.0 and 1.5, respectively. Moreover, our methods have better
averaged AER scores on all of the three language pairs, where
the reductions are 3.4, 4.1 and 2.4 points, respectively.

By adding the pre-trained XLM models (see “+ Pre-training”)
and the training regularization (see “+ Concentration”) to “Base-
line2” progressively, the AER scores reduce constantly, showing
that our methods can stably improve alignment quality, which
is consistent with the results in Table I.

Our methods achieve better averaged AER scores than
GIZA++ on En-Ro, while on the other two language pairs,
GIZA++ is better. Our methods outperform FastAlign-offline
on two of the three language pairs, which are En-Ro and En-De.
Regarding the AER scores of symmetrized alignments, our
methods outperform GIZA++ on En-Ro and En-De, and obtain
better or equal results compared with FastAlign-offline on all
the three language pairs.

For En-Fr in Table I and En-De in Table II, the best uni-
directional results are from traditional methods, however the best
symmetrized results are from the Transformer-based methods.
Zenkel et al. (2019) also found the neural approaches profit more
from symmetrizing both directions compared to the statistical
approaches, which is similar to our findings. According to their
speculation, the neural alignment models always use all the
source words but only the generated target words, which might
be a contributing factor to the strong reduction in error rates by
combining two uni-directional results. This may also have some

9Our re-implementation of Zenkel et al. (2019) [24] under the setting of not
using dynamic evaluation is verified to produce comparable or better results
compared with the results reported in their paper (See Table I). However, under
the setting of using dynamic evaluation, our results are not comparable to their
results due to different training hyper-parameters used in their experiments and
in ours, such as learning rate, warmup steps, etc.
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TABLE III
THE ABLATION STUDY, “THIS WORK” REFERS TO THE SAME SYSTEM SHOWN IN THE LAST LINE OF TABLE I. “W/O INITIALIZATION” REFERS THAT THE LINEAR

PROJECTION MATRIX IN THE ALIGNMENT LAYER IS NOT INITIALIZED WITH THE OUTPUT EMBEDDING MATRIX IN THE PRE-TRAINED XLM MODEL

TABLE IV
PRECISION, RECALL AND F-MEASURE SCORES [%] OF THE TWO SYSTEMS

USED IN TABLE III

correlations with the method we used to obtain word alignment
from sub-word alignment. We will study the effect of different
mapping methods in our future work.

Effect of initializing the linear projection matrix in the align-
ment layer: As described in Section IV-A, the output embeddings
of the alignment layer are tied to the output embeddings of the
original decoder, both of them are initialized with the output
embeddings of the pre-trained XLM model. We did an ablation
study to particularly analyze the effect of initializing the linear
projection matrix of the alignment layer, which is shown in
Table III. Without initializing the output embeddings of the
alignment layer with the pre-trained model, the AER scores
increase with varying degrees in different language pairs, which
means worse alignment qualities.

Precision, recall and F-measure: Although AER is a good
measure, but looking at the precision and recall of the alignments
is also important, which are stated in Table IV. By comparing
different measures of the two systems used in Table III, we can
find that AER scores are generally consistent with precision
or F-measure scores. Lower AER scores appear together with
higher precision or F-measure scores, indicating better word
alignment qualities. The only exception is En→Fr, however, the
gap of AER score between the two systems are small, as well as
the gap of precision score, we can consider the results are within
a reasonable fluctuating range.

Effect of taking different values for λ: As described in
Section IV-B, we use a hyper-parameter λ to balance the prefer-
ence of normal word prediction loss and alignment concentration
loss. En→De is used as development set to choose λ which will
be used for all language directions. Fig. 4 gives a comparison
of AER scores when λ takes different values. In particular, we
introduce the alignment concentration loss into “Baseline2,”
taking different values for λ during the training of the alignment
layer, as a result, the trained models achieve different alignment
accuracy. The minimum AER score is achieved when λ is set to
15 and this setting is used for all language directions.

Decoding Speed and Translation Quality: As described in
Section 2, both Zenkel et al. (2019) [24] and our methods use an

Fig. 4. AER on En→De task (development set) when introducing alignment
concentration as the training regularization into “Baseline2”. λ is a hyper-
parameter, which is described in Equation 8. Horizontal axis denotes different
values of λ and vertical axis denotes AER scores.

TABLE V
DECODING SPEED (TOKENS/SEC.) TESTED ON TRANSLATION TEST SETS OF

THREE LANGUAGE PAIRS. TRAINING TIME IS NOT INCLUDED IN THIS TABLE

alignment layer to derive word alignment as part of the decoding
process. The amount of computation in the alignment layer dur-
ing decoding is much smaller than training. During the training
process of the alignment layer, both the attention weights and
the word prediction loss need to be calculated. During decoding,
only the attention weights need to be calculated, which is used
to obtain the aligned source word of current target-side word.
The word prediction loss in the alignment layer does not need
to be calculated during decoding, which takes up most of the
computation in the alignment layer during training.

Table V shows a comparison of decoding speed, which is
tested on the test sets of WMT translation tasks on three language
pairs. The difference between “Baseline1” and our method
comes from the forward computation to get the attention weights
in the alignment layer. On Tesla M40 GPU card, with batch size
set to 1 and beam size set to 4, the averaged decoding speed of our
algorithm is 80.87 tokens/sec, as opposed to 91.31 tokens/sec
in the vanilla Transformer. The relative reduction of decoding
speed is 12.9%.

As described in Section IV-A, the alignment layer is trained
after the NMT training is finished. Since the parameters of the
Transformer are fixed during the training of the alignment layer,
the translation quality is exactly the same before and after the
training of the alignment layer. Table VI shows the comparison
of translation quality. Although this work focuses on improving
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Fig. 5. Word alignments derived from different En→Fr systems. Thatched grids denote alignment errors.

TABLE VI
COMPARISON OF BLEU SCORES ON WMT TEST SETS

the performance of word alignment, our experiments show that
the benefits from XLM also extend to translation quality.

Case Studies: Fig. 5 shows a comparison of word alignments
derived from different En→Fr systems. “Baseline1” incorrectly
aligns several target words. “Baseline2” can correct many of
the alignment errors. However, the French word “situation”
is still not correctly aligned to the English word “status” be-
cause “status” is not a frequent translation of “situation” in
the bilingual training data (the bilingual corpus only contains
316 co-occurring instances of these two words). In contrast,
“status” and “situation” appeared 226,247 and 435,609 times
in the monolingual text of English and French, providing much
more opportunities for learning their relationship [30]. Our
method leverages monolingual data of both the source and target
languages by pre-training a XLM model and use it for the
initialization, as a result, “situation” is correctly aligned to the
source word “status”.

VI. RELATED WORK

Traditional alignment methods, such as GIZA++ [25], [31]
and FastAlign [50], can give accurate word alignments. Unfor-
tunately, they cannot produce immediate word alignment along
with NMT’s decoding procedure, word alignment is produced
only when all the words in the target sentence are present,
making them difficult to use synchronously with Transformer’s
decoding, which is important to downstream tasks (e.g., the
dictionary-guided translation scenarios). Also, GIZA++ (as a
over-the-shelf program) is hard to be utilized just as an aligner.

In recurrent neural network (RNN) based NMT [4], [5], atten-
tion corresponds to word alignment well. Some previous work
has shown that translation quality benefits from supervising its
attention with external word alignment [51], [52].

In Transformer, recent work try to improve alignment in a
variety of ways. On leveraging external alignment as supervision

for providing source aligned word during training, Alkhouli
et al. (2018) [10] add a special attention head whose source
context is computed only over the aligned source words. Li
et al. (2019) [17] use additional parameters to predict the aligned
source word during training, which is used to infer during
decoding. Our work does not rely on external word alignment
learned from bilingual data, which are limited in quantity and
quality. In fact our method can make use of large amounts of
monolingual data, which can provide much richer knowledge.

Ding et al. (2019) [22] propose methods to interpret word
alignment from Transformer without using additional param-
eters and external supervisions. The method works well in
convolution neural network (CNN) based NMT [6], but the
performance is lacked in the Transformer because of the afore-
mentioned gap between the attention mechanism and word
alignment. Zenkel et al. (2019) [24] propose to add a separate
alignment layer to the Transformer architecture and learn to
focus its attention weights on relevant source words for a given
target word in an unsupervised way. We augment the original
word prediction loss of alignment layer with an additional
alignment concentration loss, which models the natural char-
acteristics of word alignment and is consistent with the features
used in traditional methods.

As is in previous works, our work takes representations from
Transformer’s encoder and decoder for modeling alignment in
Transformer. What’s different in our work is that monolingual
data is first used to provide better representations for learning
word alignment in the Transformer. In addition, none of the
above methods make use of the natural characteristics of word
alignment [25], which is specially considered in our method.

Pre-training methods are widely used in language understand-
ing tasks, which can transfer knowledge from rich-resource pre-
training task to the low-resource downstream tasks. ELMo [53]
generalizes contextual word representations by combining hid-
den states and word embeddings produced by a Bi-LSMT [5]
language modeling task, OpenAI GPT [28] pre-train Trans-
former based language model instead of Bi-LSMT. To learn
better bi-directional representations, BERT [27] uses Trans-
former encoder to train masked language model (MLM) task,
XLM [29] extents BERT to enable training on cross-lingual
corpora consists of monolingual data of different languages.
MASS [54] predict the masked tokens in the decoder side
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through a standard Transformer encoder-decoder architecture,
which injects the pre-trained model with parameters of both the
encoder and decoder.

These pre-training models are commonly used as language
representations in NMT training on bilingual data. In our work,
we make use of the representations learned from large amount of
monolingual data for enhancing the correlation between source
and target words, which is specially modeled in the alignment
layer.

VII. CONCLUSION

We proposed methods to improve word alignment in Trans-
former on two dimensions: a) parameter initialization from a pre-
trained cross-lingual language model, to leverage large amounts
of monolingual data for learning robust contextualized word
representations, and b) regularization of the training objective to
favor more concentrated word alignment, as a way to incorporate
prior knowledge of desirable alignment. On benchmark data sets
of three language pairs, our methods consistently achieve lower
alignment error rate compared to previous works on improving
the Transformer’s word alignment. Surprisingly, even without
optimizing attention weights towards test sets, our methods
outperform FastAlign in some cases, which includes test set
during training. Besides, when using test sets for parameter
updating, which is the same setting as GIZA++, our methods
can achieve better results than GIZA++ on certain test sets. In
future work, we will continue to investigate ways along these two
dimensions to make better use of monolingual data and prior
knowledge in neural word alignment. We will also study the
effect of different methods which can map sub-word alignment
to word alignment.
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