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A B S T R A C T

As a crucial step of biological event extraction, event trigger identification has attracted much attention in recent
years. Deep representation methods, which have the superiorities of less feature engineering and end-to-end
training, show better performance than statistical methods. While most deep learning methods have been done
on sentence-level event extraction, there are few works taking document context into account, losing potentially
informative knowledge that is beneficial for trigger detection. In this paper, we propose a variational neural
approach for biomedical event extraction, which can take advantage of latent topics underlying documents. By
adopting a joint modeling manner of topics and events, our model is able to produce more meaningful and event-
indicative words compare to prior topic models. In addition, we introduce a language model embeddings to
capture context-dependent features. Experimental results show that our approach outperforms various baselines
in a commonly used multi-level event extraction corpus.

1. Introduction

With the rapid growth of biomedical text, there have been surge of
interests in the development of biomedical information extraction
techniques. Biomedical event detection (BEE) is one crucial task in the
construction of biomedical knowledge base and ontology, which facil-
itates following researches of biomedical science [1]. The goal of BEE is
to identify event triggers of specified types and their arguments in text.
Event triggers are generally nominalizations or verbs as the key words
evoking the corresponding events and arguments are entities con-
necting triggers with particular relation types. For example, in Table 1,
there is a target sentence drawn from multi-level event extraction
(MLEE) corpus [2], which includes a component entity “Reactive
oxygen species” and a Synthesis event mention, both triggered by the
word “produced”. Identifying this event is challenging for a BEE system,
because the same trigger word could present different event types in a
different context.

Biomedical event corpus are typically annotated in document con-
text. However, existing studies mainly focus on developing sentence-
level event extraction system. Both statistical methods and neural re-
presentation-based methods have been used. The former mainly rely on
kernel classification methods such as support vector machines [2–4]
with hand-crafted features, which require domain-specific knowledge
and feature engineering effort. In contrast, deep neural network

methods explore distributed representation to capture meaningful se-
mantic information [5–7].

Intuitively, the broader document-level context potentially contains
a more informative description of the main topics that a document talk
about. For humans, if we cannot figure out the meaning of an expres-
sion or make sure the idea conveyed in a limited context, we may try to
read more description in a wider document context to understand the
meaning. Such cases are indeed prominent in the biomedical domain, in
the sense that proper words and compound words occur more often
than in the News domains. Under this observation, we argue that ma-
chines can also take advantage of document-level context. For instance,
if we only examine the target sentence in Table 1 alone, it is hard to
determine whether “produced” triggers a Positive_regulation event,
which is defined as a process that increases the frequency, rate or extent
of gene expression, or whether it refers to a process of decomposition.
On the other hand, if we read the surrounding sentences or the whole
article and find it to be a production story of component ROS, it is more
confident to tag “produced” as a Synthesis event.

Upon such observation, there have been attempts [8–10] that con-
struct heuristic rules to capture cross-sentence information. These ap-
proaches often require off-the-shelf NLP tools to connect multiple sen-
tences (e.g., coreference resolution, dependency tree), which are prone
to involving propagated errors. Zhou and Zhong [11] alternatively ex-
ploit hidden topics of a sentence as distance features to improve BEE
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performance. However, sentence-level topics are limited and suffer
from word sparsity. In addition, topics infered by Latent Dirichlet Al-
location (LDA) [12] model are fixed when training downstream tasks.
Being not specific in event extraction, this two-stage procedure is hard
to take advantage of joint training of topic models and BEE.

To tackle the issues mentioned above, we propose a novel neural
framework, named topic informed neural model (TINM) for biomedical
event trigger detection. TINM is capable of identifying topic words,
practically indicative words for BEE, e.g., “produced” in T , via jointly
exploiting the document-level word co-occurrence patterns, such as
“damage” and “production” in S1. In addition, considering that many
triggers have only a few training instances that probably influence the
classification performance of neural methods, topic vectors can sever as
knowledge inferred from documents which are beneficial for alleviating
the data sparsity issue [3].

Previous work have shown that document-level latent topics are
helpful for other tasks [13,14]. The usefulness of neural topic models,
nevertheless, have not been explored in existing event extraction re-
search, particularly in the biomedical domain. Our model is built upon
the success of variational neural topic models [15,16], enabling end-to-
end training of latent topic modeling and trigger detection. Experi-
mental results show that our model is superior to various baselines. The
quantitative and qualitative analysis reveals the capability of our model
in inferring coherence topic words that are meaningful and specific for
BEE.

2. Related work

Our work mainly follows the line of two prior work: event trigger
detection and topic modeling.

2.1. Event trigger detection

In general domain, existing work could broadly be categorized into
two areas. The first is statistical methods, which explore various fea-
tures with SVM model [2–4]. In contrast to sentence-level event de-
tection, [8] applies heuristic rules to model document information flow.
Huang and Rilo [17] proposes a bottom-up architecture integrating
textual cohesion properties into event extraction. They also observe
that a view of a larger context is beneficial for modeling the relevances
of entities and events. Yang and Mitchell [10] further improves statis-
tical method by considering cross-sentence event interactions with the
graph model. The second area includes representation methods. Most of

these work are based on CNN [18], RNN [6], enhanced with attention
mechanisms [5,7], or extend them with hierarchical attention over
document context [19]. Distinguished from them, we propose to use
document-level latent topic representations where topics are informed
jointly with trigger detection, resulting in an end-to-end training.

2.2. Topic model

Traditional LDA [12] is a hierarchical probabilistic model and it is
widely used in downstream applications, such as information retrieval
[20]. For event trigger detection, latent topics have been introduced as
a distance metric between sentences, aiming at including more training
instances [11]. However, they perform the topic model on sentence-
level, and thus hard to capture domain-general topics. The closest work
to ours is [21] that attempts to use topic features to improve event
extraction performance on standard News corpus. Despite the simple
formalism of their approach, it is difficult to integrate their sparse topic
features into a neural model. Recently, with the emergence of varia-
tional autoencoding (VAE) [22], posterior distribution can be ap-
proximated directly in neural networks. Therefore, neural topic models
(NTM) [15,16] have showed superior in perplexity and normalized
pointwise mutual information (NPMI) score over LDA. Different from
existing work, we study the effectiveness of VAE-style topic models that
learned together with trigger detection, whose effect and interpret-
ability in the biomedical domain is the focus of this work.

3. Backgound: Latent Dirichlet allocation (LDA)

Here, we briefly introduce the basic knowledge of LDA [12]. For-
mally, given a collection with D| | biological documents

…d d d{ , , , }D1 2 | | , LDA assume each document di is represented as a mix-
ture of topics = …( )K1 , where each topic k is a probability dis-
tribution over the vocabulary . Accordingly, the generative process of
LDA can be described in Algorithm 1. Latent variables d and zn re-
present the topic proportion of d, and the topic assignment for the
observed word wn, respectively. e is the hyper-parameter of the Di-
richlet prior. By representing LDA in a probabilistic graph view (Fig. 1),
we can write the marginal likelihood of document d as:

=p d e p e p w p z d( | , ) ( | ) ( | ) ( | )
n z

n z n
n

n
(1)

However, direct optimization of Eq. (1) is intractable due to the cou-
pling between the and under the multinomial assumption [23].

Table 1
A sample target sentence (T ) and its surrounding sentences (S1-S3) drawn from a
biomedical document. Trigger words and their event types are marked in un-
derlined. Words in black bold font are named entities. This table shows that
surrounding sentences provide more informative description of compound en-
tity ROS.

Target sentence
T : Reactive oxygen species (ROS) produced[ ]Synthesis in the course of cellular

oxidative phosphorylation...
Surrounding sentences
S1: The _excessive[ ]Positive r egulation production[ ]Synthesis of ROS can

damage[ ]Catabolism protein, lipids, nucleic acids, and matrix components.
S2: Oxygen metabolism[ ]Metabolism has an important role in the pathogenesis of

rheumatoid arthritis.
S3: They also serve as important intracellular signaling molecules...

Fig. 1. Probabilistic graph representation of LDA in a plate diagram. We assume
that there are D documents in a biological corpus, and each document contains
Nd words. e is the prior of the Dirichlet distribution. For latent topic proportion

d, LDA samples a word-level topic zn conditioned on a topic-word mixture
distribution . Finally, each word wi is generated based on the topic vector zn.
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Algorithm 1. Generative process of LDA.

3.1. Variational inference (VI)

As alternative to Gibbs sampling methods in traditional LDA [12].
Variational inference [24] approximate an intractable posterior dis-
tribution p d e( , | , ) with a tractable variational lower bound (also
called evidence lower bound (ELBO)):

=p d e q d p d e dlog ( | , ) ( | )log ( | , ) (2)

= +p d e
q d

D q d p d elog ( , | , )
( | )

( ( | )|| ( | , , ))q d( | ) KL (3)

p d e
q d

log ( , | , )
( | )

(ELBO)q d( | ) (4)

where q d( | ) is a tractable variational distribution (e.g., Dirichlet dis-
tribution), DKL is the KL divergence:

=D P Q P i P i
Q i

( || ) ( )log ( )
( )i

KL
(5)

By integrating Eq. (1), ELBO over document d can be expanded as:

= +p d e D q d p eELBO log ( | , , ) ( ( | )|| ( | , ))q d( | ) KL (6)

Intuitively, the first term in ELBO can be thought of as a re-
construction loss, ensuring that generated words are similar to the

original document. The second term, the KL divergence, encourages the
variational approximation to be close to the assumed prior p ( ). For
LDA, this optimization has closed form coordinate descent equations
due to the conjugacy between the Dirichlet and multinomial distribu-
tions.

Despite the effectiveness of VI-based LDA [25], it is difficult to ad-
just latent topics to be specific and suitable for event extraction due to
the unsupervised training process. In addition, the high dimensionality
of LDA hinders it from being used in deep neural models. To overcome
above issues, we then introduce a neural version of LDA that can be
trained jointly with the event model (Section 4.1).

4. Methods

In this section, we present our topic informed trigger extraction
framework. The overall architecture is shown in Fig. 2. There are two
major modules, including (1) a document-level neural topic model
(NTM), shown on the left of the figure, which aims to capture long-
range latent topics across documents and (2) a trigger detection
module, shown on the right of the figure, which produces tagging se-
quence for each local input sentence with designated topic informed.
These two components can be updated simultaneously via a joint
learning process, which is introduced in Section 4.3.

Fig. 2. Network structure of our joint model. Left is the neural topic model and right is the trigger detection model.
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4.1. Neural topic model (NTM)

Our neural topic model, based on variational autoencoder (VAE)
[22] and neural document modeling [16], consists of an encoder net-
work and a decoder network to resemble the document reconstruction
process. In particular, we represent each document x into a bag-of-
words (BoW) term xbow, which is a one-hot vector over the vocabulary

bow and is fed into the encoder network to obtain the continuous la-
tent vector z K (where K denotes the number of topics). We take
p z( ) as a Gaussian distribution µz ( , )2 ,

4.1.1. Bag of words encoder
In LDA, it assumes that the variational posterior q d( | ) is a Dirichlet

distribution and the potential complex posterior is thus simplified in
real applications. To better model q d( | ), we borrow the approximation
power of neural networks. In NTM, the posterior distribution q z x( | )BoW
is estimated by adopting an amortized variational inference (AVI) [26].
In particular, the variational parameters of distribution z, namely the
mean µ and standard deviation , are estimated from the input docu-
ment with three feed-forward networks (FFN):

= =µ f f f fx x( ( )), log ( ( ))µ e eBoW BoW (7)

where f x* ( ) is a multi-layer perceptron that linearly transforms inputs,
activated by a non-linear transformation:

= +f x xW b* ( ) ( ) (8)

here W is the matrix parameter of the MLP and b is the bias vector, is
an activation function which we adopt rectified linear units (ReLUs)
[27].

4.1.2. Bag of words decoder
Similar to topic models in LDA, the aim of the decoder network is to

reconstruct original document xBoW with vector z as input. Therefore,
the reconstruction likelihood p d e( | , , ) in Eq. (6) is replaced by
p x z( | )BoW in NTM. As presented in Algorithm 2, we use a feed-forward
network f and softmax function to transform a Gaussian random vector
z into a multinomial topic distribution vector d. Then an output net-
work f ( )d is used to project d to the vocabulary space, and each word
wn can be generated individually with the probabilistic softmax func-
tion. Note that weight matrix of f ( )d is the topic-word distributions

= …( )K1 . In the next section, we adopt the topic mixture d as the
topic representations to enhance event trigger detection.

Algorithm 2. Generative process of the neural topic model.

4.1.3. Object function
With above definition and replace the prior distribution of p e( | , )

to be p z( ), the variational objective function (ELBO) of NTM can be
constructed as:

= D p q pz z x x z( ( )|| ( | )) [ ( | )],q z xNTM KL BoW ( | ) BoWBoW (9)

where the first term is the Kullback-Leibler divergence loss, which

encourages the variational approximation to be close to the assumed
prior p z( ). We take p z( ) as a spherical Gaussian distribution 0 I( , ),
q z x( | )BoW and p x z( | )BoW are probabilities to describe inference (encode
network) and reconstruction process (decode network), respectively.
Using the reparameterization trick [22], we replace the expectation
with a single-sample approximation, so that:

= +µz (10)

where 0 I( , ) is sampled from an independent Gaussian distribu-
tion. All parameters derived from the networks f f f f f, , , ,µ e can then
be optimized simultaneously by performing stochastic gradient descent
on the variational objective function in Eq. (9).

4.2. Neural event extraction model

To predict the trigger words and their event types, we treat event
detection as a sequence labeling problem. Specifically, document d is
splitted into sentence segments with Stanford CoreNLP 1 and each
sentence is tokenized to N words …w w w{ , , , }N1 2 . We then map each
word wi in a sentence into labels under the BILOU-* scheme, where B/I/
L/O indicates the Begin, Inside, End and Outside of a trigger, respec-
tively, and U indicates a single word trigger. * is the event type added
along with BILOU tags.

To integrate topic information into the event model, we use d
(learned by NTM) as latent topic representations to capture document-
level semantics for event extraction.

4.2.1. Input representation
For each word wi, we use three types of continuous vectors as input

features:
Static word embeddings such as word2vec [28] using a word co-

occurrence training strategy on a large amount of raw texts, aims to
capture semantic relationships between words in a distributed fashion.
To reduce domain discrepancy, we employ BioWordVec2 as input fea-
tures, which is trained on PubMed text and MIMIC-III Clinical Data-
base.3 The shortage of static word embeddings is that words are always
mapped to the same vector in spite of their context words in practice.

Contextualized word embeddings, in contrast, compute a re-
presentation for a target word based on the particular context that the
words presented within a sentence. We use Bidirectional Encoder
Representations from Transformers (BERT) [29], the base model con-
sists of 12 layers of multi-head self-attention networks. BERT use a pre-
defined wordpiece vocabulary which means that one word may corre-
spond to multiple subword units. As a result, the input sentence s is first

tokenized into word pieces by using BERT tokenizer.4 Then, to match
the next sentence prediction strategy of BERT, special tokens [CLS] and

1 https://stanfordnlp.github.io/CoreNLP/.
2 https://github.com/ncbi-nlp/BioSentVec.
3 https://physionet.org/works/MIMICIIIClinicalDatabase/access.shtml.
4 https://github.com/google-research/bert/blob/master/tokenization.py.
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[SEP] are added to the start and end positions of the tokenized input
sequence. In order to effectively use multiple hidden states of BERT, we
obtain the word embedding v i

BERT by applying a mean pooling function
to its subword embeddings.

Entity type embeddings are important features for trigger detec-
tion, because a candidate event type is often related to several parti-
cular types of entities. We obtain the entity type embedding v i

ENT by
converting gold annotated discrete entity types (under BILOU scheme)
into low-dimensional vectors with a random initialized matrix. We use
a zero-vector to indicate word wi is not part of an entity. Note that the
embedding matrix is fine-tuned along with model training.

Finally, the overall word representation is the concatenation of:

=v v v v[ ; ; ]i i i i
STATIC BERT ENT (11)

4.2.2. Sequence encoder
By converting input sentences into dense representation

…v v v{ , , , }N1 2 , we employ a bidirectional gated recurrent unit (Bi-GRU)
as the encoder. Each word representation vi is mapped into forward and
backward hidden states (denoted as hi and hi , respectively) with the
following defined operations:

= fh v h( , ),i i iGRU 1 (12)

= +fh v h( , ).i i iGRU 1 (13)

where hi and hi are the previous step and next step hidden vectors,
respectively. The forward and backward representations are con-
catenated to serves as a bi-directional representation of wi,

=h h h[ ; ]i i i . We omit the detailed the description of Eqs. (12) and
(13) for simplicity.

4.2.3. Topic-aware gated decoder
Our model incorporates topical information by assimilating the

document-topic representation ( d) with a concatenation operating for
each word in the input sentence s. In particular, we adopt a GATE unit
similar to a GRU to allow hidden states hi to learn the degree of in-
fluence of topical information on the trigger detection model:

= + + +
= + + +
= + +
= +

y
y

z W U h V b
r W U V b

h W U r h b
h z h z h

( )
( )

ˆ tanh( ( ) )
(1 ) ˆ

i z z i z i z

i r r z i r

i h h i i h

i i i i i

d

d

d

1

1

(14)

where W, U and V are learnable parameters of the GATE unit. zt and rt
encode the update and reset activations, respectively, at timestep i. yi 1
is the predicted tag of the word wi 1 ensuring that the output tags se-
quence obeys the validity of BILOU tagging scheme (such that B-* fol-
lowed by U is not allowed). The new hidden state ht is connected to a
dense layer with linear transformation and softmax output to predict
the label of the current word:

= +P y w W h b( | ) softmax(Relu( )))i i y i y (15)

where Wy and by are model parameters.

4.3. Joint learning of topics and events

We treat the trigger detection and topic models as subtasks in a
multi-task learning setting, and train both in a joint manner. For the
trigger detection model, we minimize the cross-entropy loss over all
training instances:

=
= =

P y wlog( ( | ))
m

M

i

N

i iTD
1 1 (16)

where M denotes the number of training instances, N is the sentence
length. Note that for NTM, we optimize the negative lower bound NTM

in Eq. (9). Finally, we define the loss function of the overall framework
by combining the trigger detection and neural topic model loss func-
tions:

= +TD NTM (17)

where is the parameter balancing the effect of topic model and event
classification. Our two modules are jointly trained with their para-
meters updated simultaneously. In decoding, it is not necessary to run
the reconstruction process of NTM over the test set, we can use the
encoder output as topic features for trigger prediction.

5. Experiments

We first examine the performance of our model with comparison to
the state-of-the-art methods and ablation study. Then, we study whe-
ther our joint learning framework can produce coherent topics. Finally,
case study and error analysis are adopted to reveal different aspects of
our model.

5.1. Settings

We evaluate our method on the commonly used MLEE [2] corpus.
There are 3598 triggers in the training set and 1809 triggers in the test
set. The events in this corpus broadly cover 4 categories namely
“Planned”, “Anatomical”, “Molecular”, and “General”, which can be
further divided into 19 sub-categories as shown in Table 2. Following Li
et al. [7], we use the standard document splits as training and testing
sets, and choose 25% of training set as development set.

5.1.1. Hyperparameters
We tune all the hyper-parameters on the standard development set.

Dropout is adopted to mitigate overfitting, with a rate of 0.45 for word
embeddings and 0.15 for hidden states. All models are optimized using
the Adam optimizer [30], with an initial learning rate of 0.001 and
decayed at every 8 epochs with a rate of 0.9. The maximum training
epochs is set to 100. The hidden and batch sizes are set to 256 and 32,
respectively. For the number of topics, we follow previous settings [31]
set topic number K to 50. The trade-off term is set to = 0.8. Finally, to
combat unknown words during testing, we replace singleton words
with a UNK embedding, with a probability of 0.5.

Table 2
Statistics of event types in MLEE corpus.

Category Event type Total count

Anatomical Cell_proliferation 125
Development 300
Blood_Vessel_Development 890
Death 93
Breakdown 67
Remodeling 32
Growth 163

Molecular Synthesis 17
Gene_Expression 342
Transcription 23
Catabolism 24
Phosphorylation 29
Dephosphorylation 3

General Localization 415
Binding 158
Regulation 540
Positive_Regulation 966
Negative_Regulation 683

Planned Planned_Process 582
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5.1.2. Metrics
To compare our model with baselines, we use Precision (P), Recall

(R) and F-Measure (F1) as the major metric to evaluate model perfor-
mances, treating a trigger as correct when its offset and type are both
correct. We exploit pairwise t-test for measuring significance values.

5.2. Event trigger detection results

We first introduce systems of our implementations for comparison.
Joint-GATE-Document is the proposed model that jointly train

document-level latent topics (Section 4.1) and trigger detection (Sec-
tion 4.2).

Joint-GATE-Sentence is similar to Joint-Document, but latent to-
pics are learned on the sentence-level.

We also compare our method with several state-of-the-art trigger
detection methods, which can be divided into statistical methods and
representation methods. The statistical methods include:

(1) Pyysalo-SVM [2] is a typical feature-based method, which per-
forms trigger prediction using a Support Vector Machine (SVM).

(2) Knowledge-SVM [3] is also a feature-based method using SVM but
additionally incorporating biomedical domain knowledge by pre-
training a neural language model.

(3) Topic-Semi [11] is a rule-based semi-supervised method, which
uses sentence-level topic features that are automatically learned by
LDA on raw texts to include more training instances.

(4) TwoStage-SVM [4] is the state-of-the-art statistical method, which
first extracts most useful features then classifies event types using
SVM.

The neural representation methods are listed as follows: (1)
Dependency-CNN [18] is the representation-based model, which trains
word embeddings by integrating dependency relations into a CNN.
Event triggers are decided by a feed-forward network. (2) Attention-
GRU [5] utilizes argument information by exploiting a supervised at-
tention mechanism. (3) LSTM-CRF [6] is a globally normalized neural
method, which integrates different types of word embeddings and
sentence embeddings. (4) Contextual-GRU [7] is the current state-of-
the-art method, which takes an encoder-decoder architecture to sum-
marize sentence-level information. They also investigate event label
interactions by proposing a GRU-like decoder. All the above methods
work on the sentence-level only.

To compare with existing document-level event detection method,
we introduce Attention-Document [19], which is a recently proposed
neural model that hierarchically integrate document-level information
with gated multi-level attention. We obtain the result by running their
released code on the MLEE corpus.

5.2.1. Comparisons
Table 3 shows the comparisons of the main results of our model

with the baselines on the MLEE test set. We can observe that:

1. Feature-based methods (the first group) perform worse than neural-
based methods (the second group) on the average F1-scores (77.70%
to 79.25%). Despite the representation strength of the neural net-
works, it is noticeable that a carefully designed feature-based
method TwoStage-SVM gives a result of 79.75% which is on par
with the second group. It is thus worthy of investigating how to
combine two typical models for further improvements.

2. Joint-GATE-Document achieves an F1-score of 82.32%, which
outperforms the sentence-level topic baselines Topic-Semi
(76.89)% and Joint-GATE-Sentence (81.33)%. These results de-
monstrate that the topic representations inferred by document
context are highly beneficial for trigger detection.

3. Compared with the existing document-level method, our Joint-
GATE-Document noticeably outperforms Attention-Document by
1.96% F1-score ( <p 0.03). We attribute the advantages of the
neural topic model over the hierarchical attention to the ability to
find most indicative words (e.g., increase, exhibited) that are helpful
for trigger detection. In contrast, softmax-based attention mechan-
isms are distributions over the entire document context, which
might inevitably include noise.

4. Finally, Joint-GATE-Document shows better performance than the
current best model Contextual-GRU, with a 2.11% improvement on
recall and 1.74% on F1-score ( <p 0.05), which sets a new state-of-
the-art on the MLEE corpus. We evaluate the contributions and ef-
fects of the various components of our framework in the following
subsection.

5.3. Ablation study

In this subsection, we perform ablation experiments on the MLEE
test set (Table 4). As can be seen, the F1-score is slightly degraded
without integrating the tag embedding predicted by the previous step.
This is reasonable because the model may predict an invalid BILOU
sequence if each softmax layer decides tags individually. On the other
hand, contextual labels are important clues to capture interactions be-
tween events (e.g., Negative_regulation event tends to co-occur with
Positive_regulation event). We can also observe that entity type embed-
dings contribute to the model performance, notably for precision (with
0.80% degradation), demonstrating the effectiveness of alleviating false
positive event types.

In order to demonstrate the efficiency of the GATE function, we test
the case when GATE is removed from our model. We hence use a simple
linear transformation layer with tanh activation to compare the dif-
ference. From Table 4, we can see that there are 0.85% degradation in
precision and 0.42% degradation in recall, respectively, when GATE
function is replaced with a linear transformation. This shows that the
design of the GATE is effective for balancing the weight of contextual
features and topic representations.

We additionally design two baselines to verify the usefulness of
latent topics and joint training strategy. In Table 4, “-NTM” indicates
our model without topic features, while “-Joint NTM” indicates a pi-
pelined training approach where NTM is pre-trained on MLEE

Table 3
Comparison of our model and baselines in MLEE test set. Models with “*” in-
dicate that results are obtained by reimplementing their models.

Model P (%) R (%) F1 (%)

Pyysalo-SVM 70.79 81.69 75.84
Knowledge-SVM 75.35 81.60 78.32
Topic-Semi 82.26 72.17 76.89
TwoStage-SVM 80.06 78.87 79.75
Dependency-CNN 73.56 83.62 78.27
Attention-GRU 80.65 79.09 79.87
LSTM-CRF 78.08 77.89 78.28
Contextual-GRU 80.74 80.42 80.58
Attention-Document* 79.42 81.33 80.36
Joint-GATE-Sentence 81.58 81.08 81.33
Joint-GATE-Document 82.11 82.53 82.32

Table 4
Ablation results on the MLEE test set.

Model P (%) R (%) F1 (%)

Full model 82.11 82.53 82.32
-previous tag 81.64 82.45 82.04
-entity type 81.31 82.42 81.86
-GATE function 81.26 82.11 81.68
-NTM 81.38 80.94 81.16
-Joint NTM 81.62 81.06 81.34
-BERT 80.45 81.30 80.87
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documents, and then the trigger model uses NTM encoder outputs as
fixed topic representations. From Table 4, we can observe that the F1-
score is significantly lower (by 1.16%) when topic features are removed
( <p 0.03), in particular droping 1.60% in recall, demonstrating that the
proposed neural topic model can boost the overall results by finding
challenging triggers. We also observe that pipelined neural topics only
bring small improvement (i.e., 0.17%) over “-NTM”. This suggests that
the joint training of topics and triggers is crucial to better consume the
effectiveness of latent topic representations.

Lastly, without the BERT embeddings, it leads to mostly 1.55%
degradation from our full model. This result indicates that by pre-
training the masked bidirectional language model on a large amount of
corpus [29], the contextualized word embeddings can capture deep
generalizable semantic and syntax information across domains, which
can be transferred to event extraction.

5.4. Study on learned topics

We have shown that latent topics are useful for event trigger de-
tection. In this subsection, we analyze whether our model can learn
meaningful topics.

5.4.1. Topic evaluation
Automatically evaluating topics is a challenging task, and conse-

quently there have been efforts in developing evaluation metrics that
attempt to match human judgment of topic quality [32].

Lau et al. [33] showed that among all the competing metrics, nor-
malized pointwise mutual information (NPMI) between all the pairs of
words in a set of topics matches human judgment most closely. The
measurement of NPMI is:

=t
P t t

NPMI( )
log

log ( , )i j M j i

P t t
P t P t

i j, ;

( , )
( ) ( )

i j
i j

(18)

For each topic t , the top M most probable words are selected to com-
pute NPMI. In this work, we choose M to be 10 and coherence results
are reported on the MLEE test set.

For comparison, we consider LDA (implemented with a gensim
LdaMulticore package5), BTM6 [34] (a state-of-the-art topic model
specifically for short texts), and NTM [16]. For LDA and BTM, we run
Gibbs sampling with 500 iterations. From the results in Table 5, we can
observe that our model outperforms all the topic models compared by
large margins, which implies that jointly exploring trigger detection can
in turn help produce coherent topics.

5.4.2. Impact of topic numbers
Fig. 3 shows the event extraction F1-scores of Joint-GATE-Sen-

tence (JGS) and Joint-GATE-Document (JGD) respect to topic num-
bers. As we can see, the curves of both the models are not monotonic
and JGS peaks at 40 topics while JGD achieved the best 82.32% F1-
score at 50 topics, indicating that document-level context can benefit

more from larger topic numbers. It can be observed that JGD yields
consistently better F1-scores than JGS, which demonstrates the robust
performance of JGD over varying number of topics.

5.4.3. Sample topics
To further analyze whether our model can produce coherent topics

qualitatively, Table 6 shows the top 10 words of the latent topics re-
flecting “breast cancer” discovered by various models from the corpus.
As can be seen, traditional LDA yields non-topic words include “lung”,
“group” and “known”. We define non-topic words to be words that
cannot clearly demonstrate the corresponding topic. For the results of
BTM and NTM, non-topic words are also involved. Compared with
other results, the topic generated by our model appears to be more
coherent. For instance, “mitochondrial” and “proliferation” are indicative
words for the topic.

5.5. Case study

In this subsection, we study the effectiveness of our model compare
with baselines by selecting two representative cases, from which dif-
ferent aspects of models are reflected.

As shown in Table 7, case one is a situation where the word
“therapies” triggers a new Negative_regulation event, which has not been
observed in training set. This can be viewed as an out-of-label (OOL)
problem. Due to the fact that Planned_process occurs many times in the
training set with “therapies”, our baseline, without the GATE me-
chanism, has challenges in capturing generalizable features between
local representations and global topics, resulting in simple memoriza-
tion of training instances. In contrast, our proposed GATE model dy-
namically weights the impact of input features, which correctly classi-
fies the trigger.

In case two, “antagonised’ has not appeared as a trigger in the
training set, which results in an out-of-vocabulary (OOV) issue. Thanks
to the use of contextualized word embeddings, our baseline model can
identify that word “antagonised” involves an event, but misclassified it
to a Regulation event. We found that the softmax probabilities of
Regulation and Negative_regulation were 0.35 and 0.31, respectively,
indicating that the baseline model was uncertain between these two
types. In contrast, with the help of latent topics, the joint model is able
to consider silent features from the surrounding sentences (e.g., in-
dicative word “inhibited” in the previous sentence), and thereby cor-
rectly infers the event type.

5.6. Error analysis

We take several classification results as examples for error analysis.
It is observed that one typical type of incorrect prediction is that the
differences among some event types are an underlying factor. For

Fig. 3. Learning curve in terms of topic numbers.

Table 5
Topic coherence score comparison on MLEE test set. Higher scores indicate
better coherence.

Models NPMI scores

LDA 0.11
BTM 0.14
NTM 0.16
Our model 0.19

5 https://pypi.org/project/gensim/.
6 https://github.com/xiaohuiyan/BTM.
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example, the trigger “proteolysis” in the sentence “... angiogenesis and
extracellular matrix proteolysis.” should be tagged as Breakdown.
However, failing to understand the biological characteristics of “an-
giogenesis”, our model mistakenly recognizes this candidate as
Catabolism. In future work, we would explore external knowledge, such
as entity description, to assist informing our model such distinct fea-
tures.

Other types of error come from failure to capture phrase-level se-
mantics. Taking “Adenovirus-mediated gene transfer of endostatin in
vivo results in...” as an example, without instances annotated in
training set where the phrase “gene transfer” triggers a Planned_process
event, our model incorrectly tag these two words with the label O. Such
error can be potentially alleviated from two perspectives: first, our
neural topic model can be enhanced by relaxing the bag-of-words as-
sumption to phrase-discovering topic models [35]; on the other hand, a
more resource-intensive direction is to pre-train contextualized em-
beddings such as BERT by explicitly incorporating phrase-level
knowledge [36], which is worthy of investigation in future work.

6. Conclusion

We have presented a novel joint training framework for learning
latent topics and event triggers of a biomedical document. Unlike pre-
vious methods that focus on sentence-level event extractions, we in-
vestigate the usefulness of document-level context by leveraging a
neural topic model based on variational autoencoding approaches. In
addition, to balance the influences of two sources, we propose a novel
gated function to dynamically integrate contextual features and topic
representations. Empirical comparisons with state-of-the-art methods
on the MLEE corpus demonstrate the validity and effectiveness of our
model. Further analysis interprets the superiority to discover topic
words that are indicative for biomedical event extraction.
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