
3612 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 8, AUGUST 2022

Optimizing Attention for Sequence Modeling via
Reinforcement Learning

Hao Fei, Yue Zhang , Member, IEEE, Yafeng Ren , and Donghong Ji

Abstract— Attention has been shown highly effective for model-
ing sequences, capturing the more informative parts in learning
a deep representation. However, recent studies show that the
attention values do not always coincide with intuition in tasks,
such as machine translation and sentiment classification. In this
study, we consider using deep reinforcement learning to automat-
ically optimize attention distribution during the minimization of
end task training losses. With more sufficient environment states,
iterative actions are taken to adjust attention weights so that more
informative words receive more attention automatically. Results
on different tasks and different attention networks demonstrate
that our model is of great effectiveness in improving the end task
performances, yielding more reasonable attention distribution.
The more in-depth analysis further reveals that our retrofitting
method can help to bring explainability for baseline attention.

Index Terms— Attention mechanism, deep reinforcement learn-
ing (RL), natural language processing (NLP), neural networks.

I. INTRODUCTION

THE attention mechanism has been applied to a range of
natural language processing (NLP) tasks, such as neural

machine translation [1], [2], dialog generation [3], machine
reading/comprehension [4], sentiment classification [5], and
text summarization [6]. It calculates the context representation
of a sentence as a weighted sum of individual components,
automatically selecting more important parts of an input
sequence. This coincides with the psycholinguistic intuition to
some extent, as humans often pay more attention to important
parts to form a whole picture of sentences.

Many types of attention have been extensively used for NLP
tasks, achieving competitive performances. Broadly speaking,
attention can be divided into soft attention [2], [7] and hard

Manuscript received 31 January 2020; revised 3 July 2020 and 1 November
2020; accepted 16 January 2021. Date of publication 10 February 2021; date
of current version 4 August 2022. This work was supported in part by the
National Natural Science Foundation of China under Grant 61702121 and
Grant 61772378, in part by the National Philosophy Social Science Major
Bidding Project under Grant 11&zd189, in part by the Research Foundation
of Ministry of Education of China under Grant 18JZD015, in part by the Key
Project of State Language Commission of China under Grant ZDI135-112,
and in part by the Guangdong Basic and Applied Basic Research Foundation
of China under Grant 2020A151501705. (Corresponding author: Yafeng Ren.)

Hao Fei and Donghong Ji are with the School of Cyber Science and
Engineering, Wuhan University, Wuhan 430072, China.

Yue Zhang is with the School of Engineering, Westlake University,
Hangzhou 310024, China.

Yafeng Ren is with the School of Interpreting and Translation, Guang-
dong University of Foreign Studies, Guangzhou 510420, China (e-mail:
renyafeng@whu.edu.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2021.3053633.

Digital Object Identifier 10.1109/TNNLS.2021.3053633

Fig. 1. Attention comparisons. Blue: ideal attention weights. Red: empirical
attention weights. The color depth indicates the weight. Example sentences
are partially displayed due to the space limitation.

attention [8], [9], according to whether or not entire elements
of input sequence is used to compute the alignment scores [1].
In addition, self-attention (SA) gives strong results on a wide
range of NLP tasks, in spite of its simplicity [10]–[12].
Hierarchical attention shows its power when dealing with
documental level textual modeling [13].

Though bringing considerable improvements on various
tasks in NLP, attention weights can fail to capture the most
informative part of the content and do not always satisfy
the needs of end tasks [14], [15]. Fig. 1 shows an example
of fine-grained sentiment analysis.1 Intuitively, the attention
mechanism should properly highlight the elements that are
task-related, as the examples marked in blue. Nevertheless,
the vanilla attention mechanism does not generate proper
attention for all the elements. In fact, a large proportion of the
words with higher attention weights is not important or task-
related, such as stop words, which are the examples visualized
with red. Besides, according to a recent study [16], around
30% highlighted words by neural attention is not coincident
with human attention. This negatively affects the final predic-
tion of the model. Such a phenomenon is more serious for long
sequences. Intuitively, the performance can be improved if the
attention distribution is effectively fine-tuned and optimized.

Some methods use direct supervision to modify attention
values [17], [18], but it can be highly costly and not feasible
to obtain ideal attention signals for all tasks. In attention
models, the weights obtained can be regarded as unsupervised
signals learned during the optimization of the end task. To this
end, reinforcement learning (RL) provides a practical tool that

1The examples are sampled from SemEval2014/2015 data sets.

2162-237X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Westlake University. Downloaded on January 03,2023 at 05:43:29 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-5214-2268
https://orcid.org/0000-0002-0291-4733

FEI et al.: OPTIMIZING ATTENTION FOR SEQUENCE MODELING VIA RL 3613

Fig. 2. Overall architecture of DRGA.

has been shown effective for various NLP tasks [19], [20].
In this article, we investigate the effectiveness of deep RL
for obtaining better attention weights, by designing a novel
sequential decision process that iteratively modifies original
attention weights given a baseline attention network.

In particular, as shown in Fig. 2, given a baseline network,
actions are dynamically taken to either increase or decrease
the attention score of each node. A delayed reward is used
to guide the learning of the policy network. With new con-
text representations calculated from revised attention weights,
the attention network can be optimized by backpropagation via
a policy gradient-based learning algorithm. Supervision from
end task loss at the global scope helps the model to revise
the baseline attention weights. The baseline attention network
fine-tuned by our RL framework during training can alone
make a better prediction at the inference phase. Similar to the
naive attention mechanism, the optimization of attention via
our RL framework are derived solely from loss minimization
of the end task, without using external guidance.

We compare RL-adjusted attention weights with the original
attention weights on four types of attention mechanisms,
including general attention [21], SA [10], hierarchical atten-
tion [13], and attention-based encoder–decoder [2]. Results
on various benchmark data sets show that our proposed
method brings strong performance gains in all different set-
tings, yielding more intuitively reasonable attention distribu-
tion. Further in-depth analysis proves that the explainability
of the attention mechanism largely depends on the exact
attention architectures and the end tasks. Our retrofitting

method can help to generate interpretable attention distri-
bution and bring explainability for baseline attention. Our
implementation codes are publicly available for research
purpose on https://github.com/Baxelyne/DRGA under Apache
License 2.0.

II. RELATED WORK

A. Attention Mechanism

Attention showed its early potentials in NLP on neural
machine translation (NMT) [1]. Attention mechanisms have
subsequently been applied to various NLP tasks, including dia-
log generation [3], machine reading/comprehension [4], [22],
sentiment analysis [23], [24], text summarization [6], machine
translation [11], and information extraction [25], achieving
state-of-the-art accuracies. For example, Wang et al. [26] pro-
pose an attention network incorporating both word- and
clause-level attentions for aspect-based sentiment classifica-
tion. Shen et al. [10] propose an SA-based contextual informa-
tion CNN network for text classification. The transformer-style
SA network employs multiple dimensions and multiple heads,
resulting in boosted task performances [11], [12].

Recently, research efforts are paid to retrofit the vanilla
attention mechanism. For example, Niculae and Blondel [17]
use a smoothed max-operator as the replacement of softmax
attention to give more interpretability without sacrificing the
performance of the attention mechanism. Shen et al. [27]
integrate both soft and hard attention into one context fusion
model, “reinforced SA,” for natural language inference and
semantic relatedness tasks. In contrast, we let the attention
module sufficiently and directly access the end task loss under
both the global and the local scope, and calculate revised atten-
tion weights dynamically using an RL framework, to better
capture informative elements. On the other hand, the capacity
of attention representation of transformer has been much
studied (e.g., the syntax-aware feature induction [28]–[30]).
In this article, we show that the transformer attention can also
be enhanced via our framework.

This work is also relevant to the recent hot topic that
whether the attention mechanism carries interpretability power
with intuition [16]. Some studies prove that the attention
network can help to yield better task performances while
inducing attention distribution with intuition [31]–[34]. Others
argue that attention does not necessarily correspond to impor-
tance, and the explainability of the attention mechanism is
denied [35], [36]. In this article, we try to give an answer to
the question of attention explainability through our retrofitting
RL framework.

B. Deep RL

This work also belongs to the application of deep RL
for NLP. RL for NLP task recently attracts enormous inter-
est [19], [20], [27]. For example, He et al. (2016) [37]
use RL to fine-tune a bilingual machine translation model.
Yu et al. (2017) [38] propose an RL-based reading method,
which skims the insignificant slots to achieve higher time effi-
ciency. Yin et al. (2018) [19] introduce a deep RL framework
for the Chinese zero pronoun resolution.

Authorized licensed use limited to: Westlake University. Downloaded on January 03,2023 at 05:43:29 UTC from IEEE Xplore. Restrictions apply.

3614 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 8, AUGUST 2022

Some work employs RL to enhance machine learning meth-
ods rather than certain tasks. For example, Fang et al. [39]
investigate RL for active learning, Wu et al. [40] inves-
tigate RL for cotraining, and Chen et al. [41] investigate
RL for self-training. Our work more closely relates to the
work of Indurthi et al. [42], who exploit deep RL over base-
line hard-attention mechanisms for improving NMT on long
sequences [42].

In this article, we employ policy gradient for sampling
actions, which can maintain the exploration and avoid getting
stuck at an intermediate state [43], [44]. For continuous control
of continuous attention weights, we use the probabilistic policy
gradient algorithm [45] with action sampling from a Gaussian
distribution.

III. FRAMEWORK

We formulate attention distribution amendment as a sequen-
tial decision process and employ RL since: 1) it provides a
sequential-decision scheme at the token level for dynamical
optimization without any supervision and 2) it takes into
account sufficient environment states when making every
decision. Our RL method uses the environment as a consultant
at each time step to dynamically revise weights, by modeling
weight-assigning as a sequential decision process, which can
be more intuitive and reasonable.

The architecture of our method is shown in Fig. 2. We name
the framework as deep RL guided attention (named DRGA).
It consists of three components: an attention network, a policy
network, and an adjusting module. The attention network
computes initial attention scores for an input sequence. Then,
the RL agent generates modification actions according to the
environment states. Finally, the adjusting module revises the
weights according to the action values. The revised attention
weights will be used for the attention network to calculate
attention context representation for making prediction of a
specific task. The policy network obtains rewards from the
attention network’s prediction, which, in return, guides the
learning of the policy for adjusting attention weights.

A. Policy Network
Formally, we design the RL agent as policy network

πθ(s, a) = P(a|s; θ), where s stands for the state, a represents
the action, and θ indicates the parameters of the model. Instead
of using a deep Q-network, which learns a greedy policy for
discrete actions, we employ the policy gradient algorithm [44]
for sampling actions, due to the need for continuous control
of attention weights. We adopt a stochastic policy, sampling
actions with probabilities from a Gaussian distribution at each
step, which can maintain exploration and prevent the agent
from getting stuck at an intermediate state.

1) State: At each time step t ∈ {1, 2, . . . , n}, a state st

consists of the word vector wt ∈ R
Dw of the current element,

the hidden representation ht ∈ R
Dh of the current element, a

weighted representation h∗t ∈ R
Dh of the current element,

the sum of the original weighted element hs ∈ R
Dh , the con-

catenation of all element representation ha
t = [h1; . . . ; hn] ∈

R
n∗Dh , and the query representation u ∈ R

Du . The word vector
wt can be obtained from a lookup table, and the hidden

representation ht can be obtained via a sequential network,
e.g., recurrent neural network. The word vector wt and the
hidden representation ht of the current element provide basic
information of the element itself. The weighted representation
of the current element h∗t = αt ∗ ht is the dot product of the
original weight and the hidden representation, alternatively.
The weighted sum hs = ∑

t αt ∗ ht , together with the
query representation u, offers the global context information.
Formally, the state for the policy network is defined as follows:

st =
[
wt ; ht; h∗t ; hs; ha

t ; u
]
. (1)

Thus, given a sentence (a sequence of tokens) X =
{x1, . . . , xn}, there will be a corresponding sequence of envi-
ronment states S = {s1, . . . , sn}. S is fed into the agent for
generating the corresponding action at .

2) Action and Adjusting Strategy: Given a sequence of
states S, a corresponding action sequence A = {a1, . . . , an}
is sampled based on the probability density of the Gaussian
distribution [43], [45], [46]. The output of the agent is a
description of the Gaussian distribution for the action

π(st; θ) = N (μ(st , θ), σ (st , θ))

at ∼ π(st ; θ) (2)

where μ and σ are the mean and standard deviation.
We employ a layered feedforward network (FFN) to out-
put parametric policy, from which the unary action will be
sampled. We then squash the action between [−1, 1]: at ←
sigmoid(at)− 1.

The agent keeps sampling for the whole sentence. Once all
the actions for the input sequence are decided, the adjusting
module increases or decreases the corresponding attention
score based on the action values. Specifically, a new weight
score is the sum of the original value and the corresponding
action value. Therefore, if an action value ai > 0, the resulting
score will be increased, and vice versa. To make the agent
more flexible to the situation, we adopt a trainable parameter
β (0 < β ≤ 1) as the scale. β is initialized with a specific value
and decreases gradually as training progress goes forward.

Specifically, given an original attention vector α =
{α1, . . . , αn} and the actions A = {a1, . . . , an}, the adjustment
is defined as follows:

α∗i =
{

αi + ai ∗ β, α∗i > 0
e−INF, α∗i ≤ 0.

(3)

Then, we linearly normalize the attention values to ensure
equal-to-one sum

α′t =
α∗t∑
α∗t ′

. (4)

The revised attention scores α′ = {α′1, . . . , α′n} are passed to
the attention network.

3) Reward: Once the attention network makes a prediction
based on the revised attention representation, the posterior
output probability P(y|X) is computed. Note that the pol-
icy network cannot update its parameters after each action.
Instead, updates are executed only after the entire sequence
of elements is processed. Therefore, a delayed reward is used
to guide the policy learning, where P(y|X) is used by the

Authorized licensed use limited to: Westlake University. Downloaded on January 03,2023 at 05:43:29 UTC from IEEE Xplore. Restrictions apply.

FEI et al.: OPTIMIZING ATTENTION FOR SEQUENCE MODELING VIA RL 3615

policy network to compute reward RL for leading to task-
relevant attention. To obtain a delayed reward based on the
attention network’s prediction, we perform action sampling
over the entire sequence.

The reward is crucial for the RL agent to optimize its policy.
To encourage the agent to make proper adjustments, we add
an additional term to regulate the number of highly weighted
elements. Considering that the salient words in a sequence
should be neither too many nor too few, we employ a unimodal
function f (x) = x + L0/x , which has a minimum value at
x0 = √L0. Thus, the reward is

RL = log P(y|X)− γ (L/N + N · L0/L) (5)

where L denotes the length of the sequence, N is the number
of highly weighted elements,2 and γ is a harmonic factor to
balance the two parts. The second term encourages N to be√

L0 · L, which means that, for instance, when L0 = 0.01,
a sequence with a length of L = 10 has around one salient
element.

4) Objective: We train the policy gradient agent using the
REINFORCE algorithm [47], which aims to maximize the
expected reward

J(�) = E(st ,at)Pθ (st ,at) R(s1a1 · · · sT aT)

=
∑

s1a1···sT aT

∏
t

p(at |st; θ)RL (6)

where p(a|s; θ) indicates the probability of a generated action
a. Thereafter, we apply the likelihood ratio for calculating the
gradients of the policy network

	�J(�) =
∑

t

RL	� log p(a|s; θ). (7)

In our work, the policy gradient provides timely direct
supervision from the end task for each time-sequential modifi-
cation. Also, the policy gradient enables the additional reward
to function and the continuous control of actions.

B. Attention Network
The attention network is used to: 1) produce initial attention

weights (a probability distribution) for a sequence of elements
and 2) make a prediction for a specific task given a final
attention based representation.

The task-specified network takes an input sequence X =
{x1, . . . , xn} and obtains word embeddings wi (1 < i < n). The
network then encodes them into hidden representation hi ∈
{h1, . . . , hn}. A task-related vector representation of a query
representation is given as u ∈ R

Du . Thereafter, hi is passed
to the attention module to obtain a weighted representation c
(also hs) and attention weights α, via the following equations:

vi = f (u, hi) (8)
α = softmax(v) (9)
c =

∑
i

αi hi . (10)

The weights α are then adjusted by the agent of DRGA.

2The tokens are first sorted by their attention values within the sequence
from the largest to the smallest, before the accumulated values are calculated
token by token. An accumulated threshold δ is set based on the specific data
set, and those tokens beneath the threshold are taken as highlighted ones.

In some cases, models involve multihead [11], multi-
layer [48], or multidimension [11] attention. For multilayer
and multihead, attention weight is a K × N matrix (K
is the number of layers or heads and N is the attention
length), which can be regarded as K independent attention
arrays. DRGA adjusts the K attention arrays one by one. For
multidimensional attention, it is an H×N array. Each element

αi in attention is an H -dimension vector. DRGA revises the
vector via
α∗i =
αi+
ai∗β, where
ai ∈ R

H is the corresponding
action vector.

The attention network calculates the context representation
c′ using the revised attention weights α′ and hidden represen-
tation hi via (10). The predicted probability P(y|X) of a task
can be output based on the context representation

P(y|X) = softmax(fnet(c′)) (11)

where fnet(·) denotes a specific network used.

C. Training

A cross-entropy loss function is employed to train the
attention network

L = −
∑
X∈D

K∑
1

p̂(y, X) log P(y|X) (12)

where p̂(y, X) is the gold distribution of X .
In our framework, the attention network can be equipped

with different types of attention implementation. We will
elaborate on the details for different attention in the next
section.

The policy network and the attention network are jointly
trained. However, directly training the whole framework with
cold-start would be difficult. Recently, pretraining has been
proven crucial in RL. Thus, we pretrain the policy network
and the attention network separately. In particular, we first
pretrain the attention network until it is close to convergence.
Then, we pretrain the policy network while keeping the
parameters of the other model fixed. Finally, we jointly train
all the components. The training process is demonstrated in
Algorithm 1.

IV. EXPERIMENTS

A. Experimental Setup

We conduct experiments on four typical attention archi-
tecture, including SA [10], task-specific attention [21], hier-
archical attention [13], and attention-based encoder–decoder
models [2]. Experiments are performed on three tasks, includ-
ing fine-grained sentiment analysis, text classification, and
NMT. The performances of classification tasks are compared
and reported in accuracy.3 We test the performances of our
method ten times on all the corresponding test sets, and all the
results are presented after Significance Test with p ≤ 0.015.
In our experiments, the quantity and the split setting (into
train/dev/test subset) on each benchmarks data sets strictly
follow the corresponding baselines.

3To make fare comparisons with baselines, we use only the accuracy
measurement, which is the conventionally employed in baselines.

Authorized licensed use limited to: Westlake University. Downloaded on January 03,2023 at 05:43:29 UTC from IEEE Xplore. Restrictions apply.

3616 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 8, AUGUST 2022

Algorithm 1 Training Procedure for DRGA
Require:

1) Pretrain the attention network via Eq. (12);
2) Fix the parameters of the attention network and pretrain
the agent via Eq. (7);
3) Co-train the overall framework under following steps
until convergence.

Ensure:
1: for each input sequence si do
2: Feed the X into attention network;
3: Compute attention weights α for si by attention network

via Eq. (8) and Eq. (9);
4: for each time step t in sequence do
5: Prepare the states st in Eq. (1);
6: Sample an action at via Eq. (2);
7: end for
8: Adjust original attention values by Adjusting module via

Eq. (3) and Eq. (4);
9: Calculate the new attention context representation for

attention network via Eq. (10);
10: Make prediction in attention network, and minimize the

loss in Eq. (12);
11: Compute reward for RL agent via Eq. (5);
12: Update the parameters for both attention network and RL

agent via Eq. (12) and Eq. (7).
13: end for

We employ the simple MLP as the RL agent. We set
the dimension of both hidden states of the agent and word
vectors as 300. The word vectors are initialized with Glove
pretrained embeddings.4 We use Adam [49] with a learning
rate of 0.0005. Dropout is used for the attention network with
a 0.5 keeping rate. All experiments are conducted using an
Intel Core i7 7700HQ CPU with 8-GB memory. We exploit
different coefficient factors for different tasks and data sets
after fine-tuning the corresponding development sets.

B. Baseline Attention
1) SA: In (8), for SA, the query u stems from the input

sequence itself, that is, ei = f (hi , hi). SA has the capability
of modeling the dependencies between tokens from the same
sequence. We validate DRGA with five types of networks,
including LSTM [50], CNN [51], CICNN [52], DiSAN [10],
and transformer5 [11], respectively. Besides, we also compare
our model with a differentiated attention learning model by
Zhou et al. [18].

The experiments for SA are conducted on four benchmark
data sets for text classification, including Movie Review
(MR) [53], Stanford Sentiment Treebank (SST) [54], Subjec-
tivity (SUBJ) [55], and AGnews [56].

2) Task-Specific Attention: We test DRGA on general
attention-based networks, in which the query u of the atten-
tion module is task-specific. We choose three attention-based
networks for fine-grained sentiment analysis, including LSTM
[57], IAN [21], and W&C-ATT [26]. The experiments are

4http://nlp.stanford.edu/projects/glove/
5We only use the transformer encoder for classification tasks.

TABLE I

RESULTS WITH DIFFERENT SETTINGS OF RL AGENT ON LSTM + SA
WITH DRGA. # LAYER DENOTES THE TOTAL LAYERS OF MLP.

HIDDEN DENOTES THE SIZE OF HIDDEN LAYER. # PARAM
DENOTES THE TOTAL NUMBER OF TRAINABLE PARAMETERS

based on the data sets of SemEval2014 Task 4 (3-class) and
SemEval2015 Task 12 (2-class), respectively. Both include two
domains: laptop and restaurant.

3) Hierarchical Attention: For validating the effectiveness
of DRGA on hierarchical attention, we choose two types of
networks as baselines. The experiments are based on three
benchmark data sets on document level text classification,
including IMDB (10-class) and Yelp Data Set Challenge
(5-class) in 2013 and 2014. We compare the performance of
different models, including UPA [48] and HUAPA [13].

4) Attention-Based Encoder–Decoder: To evaluate the com-
patibility of DRGA on sequence generation, we perform
experiments on the encoder–decoder structure. The experi-
ments are conducted on the NMT task, based on the corpora
of WMT14 English–German and WMT15 English–German,
which are English to German translation data sets. We first
use a typical attention-based seq2seq (Att-seq2seq) model pro-
posed by Luong et al. [2] as our baseline. Besides, we employ
transformer [11] and Hard-Attention (HardAtt) [42] for NMT
tasks. The performance is reported in perplexities (Ppl) and
BLEU.

C. Development Experiments

We conduct several development experiments on the SUBJ
development data set, based on the LSTM + SA with DRGA.

1) Regulating Factors: In our framework, the adjusting
scale β is designed for the adjusting increment, and the
harmonic factor γ is used for balancing the RL agent reward.
They can be properly initialized for better performance.
We compare the performances of DRGA under different com-
binations of β and γ by development experiments. Besides,
β regulates the adjusting rates; therefore, we investigate the
impact of β on the converging time.

From the results shown in Fig. 3, we can find that γ
influences the performances of DRGA since it controls the
number of highly weighted tokens. When γ is set as 0.2,
DRGA achieves the best accuracy. An initial value of 0.4 gives
the best performance. Besides, when the initial value of β is
above 0.4, the time for the model to converge is shortened to
around 50 min.

Authorized licensed use limited to: Westlake University. Downloaded on January 03,2023 at 05:43:29 UTC from IEEE Xplore. Restrictions apply.

FEI et al.: OPTIMIZING ATTENTION FOR SEQUENCE MODELING VIA RL 3617

Fig. 3. Influences of regulating factors. (a) Accuracy over β and γ . (b) Training time over β. (c) Accuracy over
√

L0. (d) Accuracy over δ.

TABLE II

RESULTS OF SA WITH DRGA. IN EACH GROUP, “+DRGA” MEANS

INTEGRATING THE ATTENTION-BASED NEURAL NETWORK WITH

DRGA. RESULTS OF BASELINE METHODS WITH MARK * ARE
OBTAINED BY RUNNING THEIR RELEASED SOURCE CODE.

OTHERS ARE REPRINTED FROM THE ORIGINAL PAPER

We introduce L0 to guide the learning of salient words
number and the accumulated threshold δ for filtering highly
weighted elements. They should be decided according to the
development data set. From the figure, we can see that, with√

L0 = 0.2 and δ = 0.85 on the SUBJ data set, DRGA
achieves the best result.

TABLE III

RESULTS OF TASK-SPECIFIC ATTENTION WITH DRGA

TABLE IV

RESULTS OF HIERARCHICAL ATTENTION WITH DRGA

The above analysis shows that these regulating factors
should be fine-tuned for DRGA to reach the best performance
on different data sets for different tasks.

2) Settings of RL Agent: To avoid complex optimization,
we employ the light-weighted FFN as the RL agent. We now

Authorized licensed use limited to: Westlake University. Downloaded on January 03,2023 at 05:43:29 UTC from IEEE Xplore. Restrictions apply.

3618 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 8, AUGUST 2022

TABLE V

RESULTS ON NMT TASKS

explore the performances of different numbers of parameters
and the FFN topology of the RL agent. From the results
shown in Table I, we can see that more parameters or more
hidden layers do not always improve the performance. By
using a two-layer FFN with 300-dim hidden size, the RL agent
gives the best performance while keeping a comparably simple
architecture. Overall, we see that a simple light-weighted MLP
network can bring good improvements for baseline attention.

D. Quantitative Results
The final experimental results are shown in Tables II–V. For

the task of text classification on data sets with SA, both LSTM
and CNN achieve competitive results, as shown in Table II.
By integrating DRGA, the performances of almost all the
SA baselines are improved on each data set. These results
demonstrate the effectiveness of the DRGA for optimizing the
SA. We also compare our model with Zhou et al. (2018),
which use two-branch architecture to shift the attention to
different parts of a sentence. Our proposed method achieves
better accuracies compared with the method of Zhou et al.
(2018). Table III shows the results for fine-grained sentiment
analysis. Similar observations are found using DRGA for task-
specified attention networks. DRGA improves the accuracy of
the task in three baselines for four data sets.

As shown in Table IV, DRGA improves the UPA model
on the IMDB data sets by 1.8% and the Yelp 2013 data sets
by 1.2% and helps HUAPA by 1.2% on IMDB and by 0.2%
on Yelp 2014. We find that the improvement of DRGA for
hierarchical attention is not as significant as that for SA and
generic attention. The possible reason is the complexity of
hierarchical attention, which has its own iterative modifica-
tions. Nevertheless, DRGA still brings overall improvement
on the majority of data sets. Table V shows the results of
attention-based seq2seq with DRGA. DRGA gives the same
level of improvement for sequence generation models, helping
the Att-seq2seq by 2.6% BLEU on WMT14, 1.8% BLEU on
WMT15, and transformer by 1.2% and 2.1% BLEU.

E. Qualitative Results
We present qualitative analysis on how DRGA optimizes

the attention mechanism by visualizing the attention weights
α. The weights from the original attention are compared with
the revised one by DRGA.

Table VI shows the results. First, we observe that the
attention distribution revised by DRGA is more reasonable
compared with the original attention model. Intuitively, when
the original attention weight is generally functional, DRGA

guides the attention module to give higher attention values
to more task-related tokens, which consequently improves the
performances. Attention weights of stop words, which are less
informative for the task, are effectively weakened by DRGA.
The optimization effect is more evident for long sentences due
to the restraint of the additional term of reward, as described
in subsection of Reward.

Incorrectly assigned higher attention values from the origi-
nal attention module are properly revised by DRGA thanks
to its ability to sufficiently interacting with the sentence
environment. This can be found in the example of trans-
former6 for classification task in Table VI. Informative phrases,
such as best, artful large, and soon, are expected to have
larger weights. While the transformer fails to achieve this,
DRGA highlights the relevant words. Therefore, the attention
distribution is much more concise and accurate. Besides,
we track down the transition of attention weights, as shown
in Table VII. We can find that the transitions from the
original attention weights to final revised weights are sta-
ble and continuous, and some important words for the task
receive increasingly more proper attention when the iteration
increases. The above visualization shows the effectiveness of
the proposed model.

F. Revisiting Informative Elements

DRAG can quantitatively improve the end task perfor-
mances by reassigning the weights. To see how many sen-
tences are optimized, we compared the original highlighted
token numbers from the attention module and the highlighted
token numbers that are revised by DRGA, in a fine-grained
scope. We make comparisons between LSTM + SA and
DRGA on four data sets. The results are shown in Table VIII.
We find that, for each data set, DRGA decreases the count of
originally highlighted words, with a maximum reduction rate
of 23.8% on the SST data set and 18.3% on the AGnews data
set.

To understand what types of information DRGA prefers to
penalize or increase, we investigate the top-25 words whose
weights are modified the most by DRGA. The results are
shown in Fig. 4. We find that: 1) parts of the most highly
selected words are stop words, such as a, that, and with,
which can be uninformative for the task and 2) DRGA adjusts
the weights’ distribution for frequently highlighted tokens to
a more reasonable proportion. Thus, salient words, such as
interesting, great, and best, are further highlighted.

G. Attention Explainability

Finally, we try to investigate the explainability of the
attention mechanism. The attention interpretability can be
expressed as follows: if the learned attention weights agree
with natural measures of features importance, the alterna-
tive of counterfactual attention distribution will correspond-
ingly change the model output distribution most [34]–[36].
Under such assumption, following Serrano and Smith [36],

6The attention weights of the transformer are multidimensional, and we
squash them into scalar values when we visualize them.

Authorized licensed use limited to: Westlake University. Downloaded on January 03,2023 at 05:43:29 UTC from IEEE Xplore. Restrictions apply.

FEI et al.: OPTIMIZING ATTENTION FOR SEQUENCE MODELING VIA RL 3619

TABLE VI

VISUALIZATION OF ATTENTION WEIGHTS FOR BASELINE ATTENTION MODELS BEFORE AND AFTER THE OPTIMIZATION FROM OUR FRAMEWORK

TABLE VII

TRANSITION OF ATTENTION WEIGHTS BY TANSFORMER+ DRGA BASED ON THE EXAMPLE SENTENCE FOR CLASSIFICATION TASK

TABLE VIII

COMPARISONS OF HIGHLIGHTED TOKEN NUMBERS BETWEEN

BEFORE AND AFTER DRGA

we explore the relative importance when the attention distri-
bution has been changed. Using i to denote the token with
the highest attention αi in the sentence, we compare how i
influence the model’s output distribution, by comparing the
importance of i with the other random attended element r ,
which is drawn uniformly from the same sentence. Concretely,
we measure the difference of two Jensen–Shannon (JS) diver-
gences

JS = JS(p, q{i})− JS(p, q{r}) (13)

where JS(p, q{i}) is the JS divergence of the model’s original
output distribution p and the output distribution q{i} after
removing the learned most important token i in attention, and
the second JS divergence is the counterpart after removing the
r in its attention. Intuitively, if i is truly the most important
element, the change of output distribution by removing i can
be the greatest, and correspondingly, we can expect
JS to be
positive. Based on several different attention architectures and
data sets, we plot
JS against
α = αi − αr .

Fig. 4. 25 most modified words on SUBJ.

As shown in Fig. 5, several interesting patterns can be
found. First, for all the vanilla attention, only
α larger
than 0.6 can activate above-zero
JS, while
α threshold
is around 0.2 in the attention improved by DRAG, which
means that the retrofitted attention network can help to cor-
rectly adjust the most intuitive token i . Second, the same
attention in different data sets can yield distinct capability
of explainability, which can be found in Fig. 5(a) and (b),
where DiSAN has different
α threshold on the SST and
SUBJ data sets. We can also notice that vanilla attentions
can lead to negative
JS [e.g., in Fig. 5(a)], indicating task-
unrelated attention weights. Finally, our DRAG framework is
more useful in optimizing sequence-to-sequence attention in

Authorized licensed use limited to: Westlake University. Downloaded on January 03,2023 at 05:43:29 UTC from IEEE Xplore. Restrictions apply.

3620 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 8, AUGUST 2022

Fig. 5. JS divergence gap (
JS) (Y -axis) between attention distribution against
α of attention weight (X-axis) between the most important token i and
random selected token r . The results at the topper row in blue color are from the raw attention model, and the results at the corresponding bottom row in green
color are from the attention retrofitted by DRAG. (a) DiSAN-SST. (b) DiSAN-SUBJ. (c) IAN-Sem14. (d) IAN-Sem15. (e) Trm-WMT14. (f) Trm-WMT15.
(g) DiSAN-SST. (h) DiSAN-SUBJ. (i) IAN-Sem14. (j) IAN-Sem15. (k) Trm-WMT14. (l) Trm-WMT15.

NMT tasks since
α threshold is the lowest (around 0.15).
The above analysis shows that DRAG can bring explainability
attentions with more intuition.

V. CONCLUSION

We retrofitted the attention mechanism for sequence model-
ing in NLP, investigating a principled solution of deep RL for
optimizing attention by adding a policy network on top of a
baseline attention network for adjusting the attention weights
automatically. Without introducing external supervision, our
method gives more interpretable attention distribution over
four types of attention networks, yielding better task perfor-
mances. Future work includes how to improve the training
efficiency of the RL method, as well as more NLP applications
by the proposed method.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their detailed comments, which have helped us to improve
the quality of this work.

REFERENCES
[1] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by

jointly learning to align and translate,” 2014, arXiv:1409.0473. [Online].
Available: http://arxiv.org/abs/1409.0473

[2] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” 2015, arXiv:1508.04025.
[Online]. Available: http://arxiv.org/abs/1508.04025

[3] L. Shang, Z. Lu, and H. Li, “Neural responding machine for short-text
conversation,” 2015, arXiv:1503.02364. [Online]. Available: http://arxiv.
org/abs/1503.02364

[4] M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi, “Bidirectional
attention flow for machine comprehension,” 2016, arXiv:1611.01603.
[Online]. Available: http://arxiv.org/abs/1611.01603

[5] Z. Lei, Y. Yang, and M. Yang, “Sentiment lexicon enhanced attention-
based LSTM for sentiment classification,” in Proc. Assoc. Advancement
Artif. Intell., 2018, pp. 8105–8106.

[6] W. Wang, S. J. Pan, D. Dahlmeier, and X. Xiao, “Coupled multi-layer
attentions for co-extraction of aspect and opinion terms,” in Proc. Assoc.
Advancement Artif. Intell., 2017, pp. 3316–3322.

[7] K. Xu et al., “Show, attend and tell: Neural image caption generation
with visual attention,” 2015, arXiv:1502.03044. [Online]. Available:
http://arxiv.org/abs/1502.03044

[8] R. Aharoni and Y. Goldberg, “Morphological inflection generation with
hard monotonic attention,” 2016, arXiv:1611.01487. [Online]. Available:
http://arxiv.org/abs/1611.01487

[9] J. Serrà, D. Surís, M. Miron, and A. Karatzoglou, “Overcom-
ing catastrophic forgetting with hard attention to the task,” 2018,
arXiv:1801.01423. [Online]. Available: http://arxiv.org/abs/1801.01423

[10] T. Shen, T. Zhou, G. Long, J. Jiang, S. Pan, and C. Zhang,
“Disan: Directional self-attention network for RNN/CNN-free language
understanding,” in Proc. Association Advancement Artif. Intell., 2018,
pp. 5446–5455.

[11] A. Vaswani et al., “Attention is all you need,” in Proc. Conf. Workshop
Neural Inf. Process. Syst., 2017, pp. 5998–6008.

[12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in
Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics, 2019,
pp. 4171–4186.

[13] Z. Wu, X.-Y. Dai, C. Yin, S. Huang, and J. Chen, “Improving review
representations with user attention and product attention for sentiment
classification,” in Proc. Association Advancement Artif. Intell., 2018,
pp. 5989–5996.

[14] T. Alkhouli, G. Bretschner, and H. Ney, “On the alignment prob-
lem in multi-head attention-based neural machine translation,” 2018,
arXiv:1809.03985. [Online]. Available: http://arxiv.org/abs/1809.03985

[15] T. Alkhouli and H. Ney, “Biasing attention-based recurrent neural
networks using external alignment information,” in Proc. 2nd Conf.
Mach. Transl., 2017, pp. 108–117.

[16] C. Sen, T. Hartvigsen, B. Yin, X. Kong, and E. Rundensteiner, “Human
attention maps for text classification: Do humans and neural networks
focus on the same words?” in Proc. 58th Annu. Meeting Assoc. Comput.
Linguistics, 2020, pp. 4596–4608.

[17] V. Niculae and M. Blondel, “A regularized framework for sparse
and structured neural attention,” in Proc. Conf. Workshop Neural Inf.
Process. Syst., 2017, pp. 3338–3348.

[18] Q. Zhou, X. Wang, and X. Dong, “Differentiated attentive representation
learning for sentence classification,” in Proc. 27th Int. Joint Conf. Artif.
Intell., Jul. 2018, pp. 4630–4636.

[19] Q. Yin, Y. Zhang, W. Zhang, T. Liu, and W. Yang Wang, “Deep
reinforcement learning for chinese zero pronoun resolution,” 2018,
arXiv:1806.03711. [Online]. Available: http://arxiv.org/abs/1806.03711

[20] T. Zhang, M. Huang, and L. Zhao, “Learning structured representation
for text classification via reinforcement learning,” in Proc. Assoc.
Advancement Artif. Intell., 2018, pp. 6053–6060.

[21] D. Ma, S. Li, X. Zhang, and H. Wang, “Interactive attention networks for
aspect-level sentiment classification,” 2017, arXiv:1709.00893. [Online].
Available: http://arxiv.org/abs/1709.00893

[22] B. Zhang, D. Xiong, J. Xie, and J. Su, “Neural machine translation with
GRU-gated attention model,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 31, no. 11, pp. 4688–4698, Nov. 2020.

Authorized licensed use limited to: Westlake University. Downloaded on January 03,2023 at 05:43:29 UTC from IEEE Xplore. Restrictions apply.

FEI et al.: OPTIMIZING ATTENTION FOR SEQUENCE MODELING VIA RL 3621

[23] H. Fei, Y. Ren, and D. Ji, “Implicit objective network for emotion
detection,” in Proc. 8th Natural Lang. Process. Chin. Comput., 2019,
pp. 647–659.

[24] H. Fei, Y. Zhang, Y. Ren, and D. Ji, “Latent emotion memory for multi-
label emotion classification,” in Proc. 34th AAAI Conf. Artif. Intell.,
2020, pp. 7692–7699.

[25] H. Fei, Y. Ren, and D. Ji, “Dispatched attention with multi-task
learning for nested mention recognition,” Inf. Sci., vol. 513, pp. 241–251,
Mar. 2020.

[26] J. Wang et al., “Aspect sentiment classification with both word-level
and clause-level attention networks,” in Proc. 27th Int. Joint Conf. Artif.
Intell., Jul. 2018, pp. 4439–4445.

[27] T. Shen, T. Zhou, G. Long, J. Jiang, S. Wang, and C. Zhang, “Reinforced
self-attention network: A hybrid of hard and soft attention for sequence
modeling,” 2018, arXiv:1801.10296. [Online]. Available: http://arxiv.
org/abs/1801.10296

[28] M. Ahmed, M. R. Samee, and R. E. Mercer, “You only need attention to
traverse trees,” in Proc. 57th Annu. Meeting Assoc. Comput. Linguistics,
2019, pp. 316–322.

[29] Y. Wang, H.-Y. Lee, and Y.-N. Chen, “Tree transformer: Integrating tree
structures into self-attention,” in Proc. Conf. Empirical Methods Natural
Lang. Process. 9th Int. Joint Conf. Natural Lang. Process. (EMNLP-
IJCNLP), 2019, pp. 1061–1070.

[30] H. Fei, Y. Ren, and D. Ji, “Retrofitting structure-aware transformer
language model for end tasks,” 2020, arXiv:2009.07408. [Online].
Available: http://arxiv.org/abs/2009.07408

[31] Y. Zhuang and H. Wang, “Token-level dynamic self-attention network
for multi-passage reading comprehension,” in Proc. 57th Annu. Meeting
Assoc. Comput. Linguistics, 2019, pp. 2252–2262.

[32] O. Kovaleva, A. Romanov, A. Rogers, and A. Rumshisky, “Revealing the
dark secrets of BERT,” in Proc. Conf. Empirical Methods Natural Lang.
Process. 9th Int. Joint Conf. Natural Lang. Process. (EMNLP-IJCNLP),
2019, pp. 4356–4365.

[33] A. Warstadt et al., “Investigating BERT’s knowledge of language: Five
analysis methods with NPIs,” in Proc. Conf. Empirical Methods Natural
Lang. Process. 9th Int. Joint Conf. Natural Lang. Process. (EMNLP-
IJCNLP), 2019, pp. 2870–2880.

[34] S. Wiegreffe and Y. Pinter, “Attention is not not explanation,” in Proc.
Conf. Empirical Methods Natural Lang. Process. 9th Int. Joint Conf.
Natural Lang. Process., 2019, pp. 11–20.

[35] S. Jain and B. C. Wallace, “Attention is not explanation,” in Proc. Conf.
North Amer. Chapter Assoc., 2019, pp. 3543–3556.

[36] S. Serrano and N. A. Smith, “Is attention interpretable?” in Proc. 57th
Annu. Meeting Assoc. Comput. Linguistics, 2019, pp. 2931–2951.

[37] D. He et al., “Dual learning for machine translation,” in Proc. 13th Annu.
Conf. Neural Inf. Process. Syst., 2016, pp. 820–828.

[38] L. Yu, W. Zhang, J. Wang, and Y. Yu, “SeqGAN: Sequence generative
adversarial nets with policy gradient,” in Proc. 31st AAAI Conf. Artif.
Intell., 2017, pp. 2852–2858.

[39] M. Fang, Y. Li, and T. Cohn, “Learning how to active learn: A deep
reinforcement learning approach,” 2017, arXiv:1708.02383. [Online].
Available: http://arxiv.org/abs/1708.02383

[40] J. Wu, L. Li, and W. Yang Wang, “Reinforced co-training,” 2018,
arXiv:1804.06035. [Online]. Available: http://arxiv.org/abs/1804.06035

[41] C. Chen, Y. Zhang, and Y. Gao, “Learning how to self-learn: Enhancing
self-training using neural reinforcement learning,” in Proc. Int. Conf.
Asian Lang. Process. (IALP), Nov. 2018, pp. 25–30.

[42] S. R. Indurthi, I. Chung, and S. Kim, “Look harder: A neural machine
translation model with hard attention,” in Proc. 57th Annu. Meeting
Assoc. Comput. Linguistics, 2019, pp. 3037–3043.

[43] T. Degris, P. M. Pilarski, and R. S. Sutton, “Model-free reinforcement
learning with continuous action in practice,” in Proc. Amer. Control
Conf. (ACC), Jun. 2012, pp. 2177–2182.

[44] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[45] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” in Proc. Int. Conf. Learn. Represent., 2016, pp. 1–14.

[46] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and
M. A. Riedmiller, “Deterministic policy gradient algorithms,” in Proc.
Int. Conf. Mach. Learn., 2014, pp. 387–395.

[47] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Mach. Learn., vol. 8, nos. 3–4,
pp. 229–256, May 1992.

[48] H. Chen, M. Sun, C. Tu, Y. Lin, and Z. Liu, “Neural sentiment
classification with user and product attention,” in Proc. Conf. Empirical
Methods Natural Lang. Process., 2016, pp. 1650–1659.

[49] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” 2014, arXiv:1412.6980. [Online]. Available: http://arxiv.org/abs/
1412.6980

[50] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[51] Y. Kim, “Convolutional neural networks for sentence classifica-
tion,” 2014, arXiv:1408.5882. [Online]. Available: http://arxiv.org/abs/
1408.5882

[52] X. Wu, Y. Cai, Q. Li, J. Xu, and H.-F. Leung, “Combining contextual
information by self-attention mechanism in convolutional neural net-
works for text classification,” in Proc. Int. Conf. Web Inf. Syst. Eng.,
2018, pp. 453–467.

[53] B. Pang and L. Lee, “Seeing stars: Exploiting class relationships for
sentiment categorization with respect to rating scales,” in Proc. Annu.
Meeting Assoc. Comput. Linguistics, 2005, pp. 115–124.

[54] R. Socher et al., “Recursive deep models for semantic compositionality
over a sentiment treebank,” in Proc. Conf. Empirical Methods Natural
Lang. Process., 2013, pp. 1631–1642.

[55] B. Pang and L. Lee, “A sentimental education: Sentiment analysis using
subjectivity summarization based on minimum cuts,” in Proc. 42nd
Annu. Meeting Assoc. Comput. Linguistics ACL, 2004, pp. 271–278.

[56] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional net-
works for text classification,” in Proc. Conf. Workshop Neural Inf.
Process. Syst., 2015, pp. 649–657.

[57] Y. Wang, M. Huang, X. Zhu, and L. Zhao, “Attention-based LSTM for
aspect-level sentiment classification,” in Proc. Conf. Empirical Methods
Natural Lang. Process., 2016, pp. 606–615.

Hao Fei received the B.E. degree from Xidian Uni-
versity, Xi’an, China, in 2016, and the M.E. degree
from Wuhan University, Wuhan, China, in 2018,
where he is currently pursuing the Ph.D. degree with
the School of Cyber Science and Engineering.

He has been working on natural language process-
ing and deep learning, especially focusing on
language structure parsing, sentiment analysis, and
information extraction. He has had his work pub-
lished at top-tier journals and conferences, including
ACL, AAAI, WWW, and EMNLP.

Yue Zhang (Member, IEEE) received the B.E.
degree in computer science from Tsinghua Uni-
versity, Beijing, China, in 2003, and the M.S.
and Ph.D. degrees from Oxford University, Oxford,
U.K., in 2006 and 2009, respectively.

He was an Assistant Professor with the Sin-
gapore University of Technology and Design,
Singapore, from 2012 to 2018. He is currently
an Associate Professor with Westlake University,
Hangzhou, China. His research interests include nat-
ural language processing, text mining, and machine
learning.

Yafeng Ren received the Ph.D. degree from Wuhan
University, Wuhan, China, in 2015.

He was a Post-Doctoral Research Fellow with the
Singapore University of Technology and Design,
Singapore, from 2015 to 2016. He is currently an
Associate Professor with the Guangdong University
of Foreign Studies, Guangzhou, China. He has been
working on natural language processing over the past
ten years, and has published 20 related papers in
journals and conferences, including AAAI, EMNLP,
and COLING. His research interests include opinion
mining, biomedical text mining, and bioinformatics.

Donghong Ji received the B.E., M.E., and Ph.D.
degrees from the Computer School, Wuhan Uni-
versity, Wuhan, China, in 1988, 1991, and 1995,
respectively.

He was a Post-Doctoral Research Fellow with
Tsinghua University, Beijing, China, from 1995 to
1998. From 1998 to 2008, he was a Researcher with
the Institute for Infocomm Research, Singapore. He
is currently a Professor with Wuhan University.
His interests include natural language processing,
machine learning, and data mining.

Authorized licensed use limited to: Westlake University. Downloaded on January 03,2023 at 05:43:29 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

