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Abstract— Aspect-based sentiment triplet extraction (ASTE)
aims at recognizing the joint triplets from texts, i.e., aspect
terms, opinion expressions, and correlated sentiment polarities.
As a newly proposed task, ASTE depicts the complete sentiment
picture from different perspectives to better facilitate real-world
applications. Unfortunately, several major challenges, such as the
overlapping issue and long-distance dependency, have not been
addressed effectively by the existing ASTE methods, which limits
the performance of the task. In this article, we present an innov-
ative encoder–decoder framework for end-to-end ASTE. Specifi-
cally, the ASTE task is first modeled as an unordered triplet set
prediction problem, which is satisfied with a nonautoregressive
decoding paradigm with a pointer network. Second, a novel high-
order aggregation mechanism is proposed for fully integrating
the underlying interactions between the overlapping structure of
aspect and opinion terms. Third, a bipartite matching loss is
introduced for facilitating the training of our nonautoregressive
system. Experimental results on benchmark datasets show that
our proposed framework significantly outperforms the state-of-
the-art methods. Further analysis demonstrates the advantages
of the proposed framework in handling the overlapping issue,
relieving long-distance dependency and decoding efficiency.

Index Terms— Bipartite matching loss, encoder–decoder
framework, natural language processing (NLP), nonautoregres-
sive decoding, pointer network, sentiment analysis.

I. INTRODUCTION

ASPECT-BASED sentiment analysis (ABSA) aims to
mine the sentiment and opinion of targeted aspects

behind the texts. It has received much research attention in the
community of data mining and knowledge discovering [1]–[7].
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Fig. 1. Examples of aspect-based sentiment triplet (�aspect term, opinion
expression, and sentiment polarity�) extraction.

ABSA includes several closely related subtasks, such as aspect
term extraction (ATE), opinion terms extraction (OTE), and
aspect sentiment classification (ASC), which together depict
the complete sentiment from different aspects, where ATE
indicates what the targeted aspects are, ASC shows how their
sentiment polarities are, and OTE emphasizes why have such
polarities [8]. However, previous work focuses on handling the
above subtasks individually or jointly with two subtasks [1],
[9]–[14] but does not exploit the triadic relations among each
other. Peng et al. [8] pioneered the unified task, finding all
joint triplets (aspect terms, opinion terms, and the sentiment
polarities) of a given text, namely, aspect-based sentiment
triplet extraction (ASTE), as exemplified in Fig. 1. Unfortu-
nately, they adopt a two-stage framework and fail to obtain
competitive performance since such pipeline method is much
prone to error propagation [15]. More recently, some efforts try
to perform end-to-end ASTE with joint models using sequence
labeling [16], [17] and table-filling method [18]. However,
existing studies leave several important issues unaddressed,
which limits further task improvements.

First, there is a large number (around 38% according to
experiments) of the overlaps between aspect and opinion
terms in different triplets. Modeling of such overlapping cases
can be highly important to task performance. However, the
existing joint models solve the issue by sequential labeling
with sophisticatedly enhanced “BIO” tagsets, which can cause
large costs on label searching [19], [20]. Second, previous
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Fig. 2. Overall framework of the proposed method. The encoding module yields contextual representations, which are used for decoding module. The
decoder takes as input fixed length of triplet queries and performs nonautoregressive parallel decoding based on pointer network, during which the high-order
aggregation is performed. Finally, the system produces all possible sentiment triplets in one shot.

studies largely suffer from the long-range dependency problem
due to the sequential extraction model architecture [21]–[23].
While the table-filling method in [18] may handle the above
two issues to some extent, it has the cost of high model
complexity [i.e., O(n2)] and thus lower decoding efficiency.
Third, overlapping structures share rich mutual interactions
that may help to better induce sentiment polarities (e.g., with
better polarity consistency), which have not been exploited
effectively by the existing methods. For example, different
aspects under the same opinion expression may have the same
sentiment polarity, but the same aspect with different opinion
expressions can hold distinct sentiment tendencies.

We aim to address the above issues by using a novel
encoder–decoder framework [24], modeling the triplet extrac-
tion as a structure prediction problem. As shown in Fig. 2,
we use the transformer encoder [25] to obtain contextual
representations. In the decoder side, all possible triplets will
be produced jointly, where the start/end boundaries of aspect
terms and opinion terms are generated in parallel by a pointer
network (also known as pointer net), and the corresponding
sentiment polarities are decided. In particular, all the preidenti-
fied aspect–opinion pairs are grouped into clusters according to
their opinion-aware connectivity, which are then encoded and
aggregated by our high-order aggregation module (cf. Fig. 3)
for sentiment assignment. With this, our system can fully
explore the underlying interactions between the aspect–opinion
terms within the overlapping structures.

We observe that the outputs in the ASTE task have no
intrinsic order in nature. Taking the sentences (a) and (b) of
Fig. 1 as examples, although the aspect and opinion terms
appear in a different order in the text, the final opinion
triplets are kept (almost) the same and unordered. On the other
hand, in the autoregressive encoder–decoder architecture [24],
the permutation-sensitive cross-entropy loss imposes penalties
for the predicted triples out of positions. To combat that,
we first reformulate ASTE as an unordered triplet set pre-
diction problem, where specifically, the pointer net performs
decoding under nonautoregressive parallel scheme (cf. Fig. 2).
We then propose a bipartite matching loss (cf. Fig. 4) for the
learning of our nonautoregressive system, which is invariant
to the permutation of predictions and thus more capable of

evaluating the differences between the gold triplets and the
predicted triplets.

Extensive experiments on four benchmark datasets show
that our framework significantly outperforms the previous
state-of-the-art methods, demonstrating that the proposed
nonautoregressive decoding and matching loss are highly
beneficial for the ASTE task. Further in-depth analysis is
conducted for revealing the advantages of our method in
different aspects. We show that our system can better handle
the overlapping issue and long-distance dependency problem
while maintaining stronger robustness and higher decoding
efficiency, compared with previous baseline methods.

We summarize our contributions in this work as follows.
1) We cast the ASTE task as a triplet set prediction problem

and handle it with a pointer-net-based encoder–decoder
framework. To our knowledge, we are the first presenting
an encoder–decoder-based model with pointer network
for end-to-end ASTE.

2) We propose a novel opinion-aware high-order aggre-
gation module for better sentiment classification (SC),
fully exploring the underlying interactions between the
aspect–opinion terms within the overlapping structure.

3) We model ASTE as an unordered triplet set prediction
and propose to perform nonautoregressive decoding with
the transformer-based pointer net. We further introduce a
bipartite matching loss for training the nonautoregressive
system.

4) Our system achieves state-of-the-art performances on
multiple benchmark datasets. Experimental analysis
shows that our system can better handle the overlap-
ping issue and long-distance dependency problem while
maintaining stronger robustness and higher decoding
efficiency compared with the previous methods.

II. RELATED WORK

A. Sentiment Analysis

Sentiment analysis and opinion mining, inferring the sen-
timent intensity given a text, as one of the hottest research
topics in the natural language processing (NLP) and data
mining community, has long gained much attention [1]–[3],
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[7], [26]. Later, the research focus has been shifted into
the ABSA (i.e., fine-grained sentiment analysis), determining
the sentiment polarities toward the specific aspects in the
sentence [27], [28]. Compared with the standard coarse-
grained level sentiment analysis, such a fine-grained analysis
shows more impacts on the real-world texts, such as social
media texts and product reviews, and thus can facilitate a
wide range of downstream applications [29]–[31]. Within
past decades, a large volume of sentiment analysis work
has been proposed [32]–[38]. Prior methods for sentiment
analysis (either at coarse- or fine-grained level) mostly employ
statistical machine learning models with discrete features
that are manually crafted [39]–[42]. Later, neural networks
together with continuous distributed features are extensively
adopted for enhancing the task performances for sentiment
analysis [32], [33], [43], [44].

Generally, there are three subtasks that closely relate to
ABSA, including the ATE, the OTE, and the aspect term
sentiment classification (ATC). Each of the subtasks answers
the question of fine-grained sentiment analysis in three dif-
ferent perspectives. For example, ATE indicates “WHAT”
the targeted aspects are, ATC shows “HOW” their sentiment
polarities are, and OTE emphasizes “WHY” have such polar-
ities [8], [45]. Currently, there are lines of efforts that are
extensively paid for those sentiment-based subtasks individ-
ually or in a combination of any two [1], [9]–[14]. In the
initial works, some memory-based models are proposed for SC
based on the preidentified aspects or targets [32], [46]. Later,
Toh and Wang [47] started the ATE task via a conditional
random field (CRF) model. Follow-up works are presented
to improve the ATE task by proposing more sophisticated
neural models [48]–[50]. Another line of effort is paid for
the extraction of opinion terms, mining the underlying causes
of the sentiments [51]–[54]. Later, the aspect and opinion
term coextraction task has been explored, which leverages
the mutual benefits of these two subtasks, i.e., detecting the
sentiment targets along with the corresponding reasons [1],
[9], [12], [55].

B. Aspect-Based Sentiment Triplet Extraction

In fact, these fine-grained subtasks (i.e., ATE, OTE, and
ATC) exploiting the triadic relations among each other
can be mutually complementary to each other. Therefore,
Peng et al. [8] unified these tasks into one complete solution,
i.e., ASTE. They show that by solving the one unified task, the
subtasks can be further improved. Intuitively, the ASTE task
explores the maximum mutual benefits of the above sentiment
subtasks. Unfortunately, Peng et al. [8] adopted a pipeline
method for the ASTE. In their framework, they perform aspect
terms with sentiment labeling extraction; the OTE is in the first
stage, and in the second stage, the aspect terms will be coupled
with the opinion terms, forming the final triplets. We note that
such a pipeline scheme may suffer from error propagation,
i.e., the semantic interactions between the two stages are not
explicitly modeled [15].

Later, several joint methods are presented for better ASTE
performances. Chen et al. [16] introduced a hierarchical

sequence labeling model to tag the aspect terms, opinion
expressions, and the sentiment polarity. Xu et al. [17] con-
structed a position-aware tagging approach to extract the
triplets by encoding the interactions among the elements
within a triplet, which can help to improve the ASTE task.
Then, a table-filing framework is proposed by Wu et al. [18]
for searching out the aspect terms and opinion expressions
together with the correlated polarities in the rows and columns
of the table. Very recently, Chen et al. [56] transformed the
triplet prediction into a machine reading comprehension task
and solve it with an end-to-end manner and become the
current state-of-the-art model. However, as we pointed out
earlier, these works could be still incompetent on handling
some challenges in ASTE, such as triplet overlap issue, long-
range dependency issue, and modeling the mutual interactions
between the substructure of triplets, which hinders the further
ASTE task improvements. In this work, we aim to solve
these problems by modeling the task as an unordered triplet
set prediction and presenting a nonautoregressive framework
based on the pointer network.

C. Encoder–Decoder Framework

This work closely relates to the application of encoder–
decoder framework (also known as sequence-to-sequence
architecture) of neural models [24]. In the encoder–decoder
structure, the length of output sequence is not restricted to be
the same of the input sequence length such that the scheme can
be widely employed for the asynchronous sequence generation
tasks in NLP, such as neural machine translation [57]–[59],
text summarization [60]–[62], dialogue system [63]–[65], and
structure prediction [66]–[68]. In this work, we adopt the
pointer network [69] as our backbone model for generating the
start/end position of the aspect and opinion terms. A pointer
network is built based on the encoder–decoder paradigm,
functioning by learning the conditional probability of an output
at the positions corresponding to the input tokens. The pointer
network is advanced in making decisions by consulting all the
input elements in a global scope [66], [70], [71].

In general encoder–decoder architecture, the decod-
ing process mostly follows the ordered autoregressive
sequence [24], i.e., together with the cross-entropy loss. How-
ever, we further observe that the triplets have no intrinsic
textual order in the ASTE task. We thus propose to perform
nonautoregressive decoding [72]–[74], with the transformer-
based pointer net, outputting all the boundary positions in
parallel. We also introduce a bipartite matching loss for better
facilitating the model training.

III. PRELIMINARY

A. Task Formulation

The goal of ASTE is to detect all possible triples in a
given text, which is modeled as a �aspect-opinion-polarity�
set prediction problem. Technically, given an input sentence
S = {w1, . . . , wT }, a system is expected to output a set of
triplets Y = {. . . , yi , . . .} and yi = {< am, on, c >} ∈ A ×
O ×C , where A = {a1, . . . , aM} are all possible aspect terms,
O = {o1, . . . , oN } are the associated opinion expressions,
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and C = {Pos,Neg,Neu, ε}1 are the corresponding sentiment
polarity labels, with a dummy label ε indicating the invalid
relation between the aspect and the opinion term. Taking the
first sentence (a) in Fig. 1 as an example, the system should
output three triplets: “�The hot dogs, fabulous, positive�,”
“�the smoked salmon, fabulous, positive�,” and “�the service,
fabulous, positive�.”

B. Encoder–Decoder With Pointer Network

In the encoder–decoder framework, the decoder equipped
with pointer [69] picks elements from input tokens with
the highest probability at each decoding frame. The pointer
employs attention mechanism [57], [58] to select targets from
the input sequence. Technically, given the encoder represen-
tations H = [h1, . . . , hT ] of input tokens and the current
decoding representation si , we calculate and normalize the
relatedness score between si and each h j

vi j = Score
(
si , h j

)
= Tanh

(
sT

i W1h j + U T
1 si + UT

2 h j + b
)

oi j = Softmax
(
vi j

)
, j = [1, . . . , T ] (1)

where W 1,U, and b are parameters. We then take the position
j∗ with the maximal relatedness probability oi j∗ as the output
of the i th decoding step, formalized as

Pi = j∗ = Argmax
1≤ j≤T

(oi1, . . . , oiT ) (2)

where Pi denotes the position that the current pointer directs
to. Note that since each pointer decision is made by consulting
all input tokens, the model can utilize the global information.
We summarize the pointer procedure as follows:

Pi = Ptr(si |H). (3)

IV. FRAMEWORK

As shown in Fig. 2, our proposed framework has two main
components: the encoding module and the decoding module.
We employ transformer (Trm) [25] to produce contextual
representations of the input tokens. A transformer decoder
is then used to detect the start and end boundaries of the
terms of the aspect–opinion pairs based on the embeddings
of triplet queries. Finally, the high-order aggregation layer
further determines the sentiment polarities of each aspect–
opinion pair.

A. Encoding

1) Input Representation: The input representations are
derived from three sources. We first construct the vector
representation xwt of each word wt from pretrained embed-
dings [75]. We additionally represent the absolute position for
each word as an embedding x p

t for enhancement. Moreover,
a convolutional neural network (CNN) is used to encode
the characters inside each word into a character-level word

1Pos, Neg, and Neu are the abbreviation of three labels of sentiment polarity,
Positive, Negative, and Neutral.

Fig. 3. High-order aggregation layer for sentiment polarity detection.

representation xc
t . Finally, the total input representation is the

concatenation of all above elements

xt = [
xwt ; x p

t ; xc
t

]
(4)

where [;] refers to the concatenation operation.
2) Contextual Encoder: Transformer has been shown

prominent on learning the interaction between each pair of
input words, leading to better contextualized word represen-
tations [25]. We here use a multilayer transformer encoder.
Technically, transformer attention computes the relatedness
between K and Q via self-attention mechanism

α = Softmax

(
Q · K T

√
dk

)
· V (5)

where dk is a scaling factor, and the queries Q, values V , and
keys K are the same of input representations x. All the vectors
produced by m parallel attention heads are concatenated
together to form a unified representation

H = [α1; . . . ; αm] · W2 + bα. (6)

We summarize all the encoding step as follows:
H = {h1, . . . , hT } = Trmenc(x1, . . . , xT ) (7)

where hi is the desired contextual encoding representations.

B. Decoding

Each step at the corresponding decoder frame outputs the
corresponding decoding representation si . We treat the ASTE
task as an unordered set prediction problem, thus requiring the
decoder to yield all the output triplets in a parallel manner.
Also, the transformer becomes our first choice as it is able to
perform nonautoregressive decoding. The transformer decoder
can also retrieve features from bidirectional contexts with
maximum information integration.

1) Decoding Input: Our nonautoregressive transformer
decoder generates all the outputs in one shot by taking all
the decoding input. Instead of using the representations from
the encoder side, we maintain a set of triplet queries in a
fixed size D as decoding inputs. The size D refers to the
maximum volume of the triplets that we expect the system
to generate. We set D significantly larger than the potential
number of triplets in the sentence in advance. We transform the
triplet queries {q1, . . . , qD} into trainable vectorial embeddings
{eq

1 , . . . , eq
D}.
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To further enhance the capability of the pointer, we add
another set of position embeddings {e p

1 , . . . , e p
D} for each

decoding step, induced the same way as for encoding part.
We concatenate the triplet query embedding and the position
embedding as the unified decoding input

ei = [
ep

i ; eq
i

]
. (8)

2) Nonautoregressive Pointer Decoder: We use an n-layer
stacked transformer as the nonautoregressive decoder

{s1, . . . , sD} = Trmdec(e1, . . . , eD) (9)

where si is the decoding representation. Each frame (i.e., the
pointer) in transformer decoder independently derives a pair of
aspect (A) and opinion (O) terms, where each term involves
the start (s) and end (e) index to correspond to the position
of certain input token wt . Specifically, there are total four
independent positions [i.e., P(A,s), P(A,e), P(O,s) and P(O,e)]
that the pointer should direct to.

We first perform a nonlinear transformation on decoding
representation si to obtain independent position feature repre-
sentations by using four separate feedforward networks (FFNs)

sA,s
i = FFN(si )

sA,e
i = FFN(si )

sO,s
i = FFN(si )

sO,e
i = FFN(si ). (10)

We then put the pointer calculation [via (3)] on these
position feature representations to output these positions

P A,s
i = Pointer

(
sA,s

i |H
)

P A,e
i = Pointer

(
sA,e

i |H
)

P O,s
i = Pointer

(
sO,s

i |H
)

P O,e
i = Pointer

(
sO,e

i |H
)
. (11)

We resolve the aspect and the opinion terms via their
position indices and further construct the representations of
these terms

r A/O
i =

[
hP A/O,s

i
; hP A/O,e

i
; hA/O,∗; hA/O,l

]
(12)

where hP (/O,s/e)
i

is the boundary representation of the terms,

hA/O,l is the embedding vector for the span width, and hA/O,∗

is the span attention representation over the term tokens

vt = V · tanh(W3 · ht )

αt = Softmax(vt)

h(A/O,∗) =
P (A/O,e)

i∑
t=P (A/O,s)

i

αt · xt (13)

where W3 and V are parameters.

3) High-Order Aggregation Layer: After the prediction of
aspect–opinion term pairs by the nonautoregressive decoder,
we next perform the sentiment polarity classification for each
pair. As we rendered in Section I, there is a high chance that
the aspect and opinion terms overlap with each other. These
overlapping aspect–opinion pairs can share rich interaction
information, which may provide clues to predicting sentiment
polarity. For instance the third sentence (c) in Fig. 1, all
the aspects triggered by the opinion word “nice” hold the
same positive sentiment, while those aspects under opinion
expression “too steep price” share the same negative sentiment.

We here propose a high-order aggregation module for fully
leveraging the underlying common information within the
structures. Technically, we view each aspect–opinion pair
[denoted as πi (A∗, O†)] as a node, and whenever a term (either
the aspect or the opinion term) in πi also cooccurs in other pair
π j , we assign an edge between these two nodes. In this way,
we form an undirected graph G = (V , E), where V is a set of
pair nodes and E is a set of bidirectional edges between nodes.
We first concatenate the representations of aspect terms and
opinion terms as the pair node representation r P

i = [r A
i ; r O

i ]
and then employ a GCN encoder to model the graph G

gi = σ
(
W4 r P

i + b
)

(14)

r P,∗
i = ReLU

⎛
⎝ ∑

j∈N (i)

r P
j � gi

⎞
⎠ (15)

where N (i) are neighbors of the node πi and W is the parame-
ter. � is an elementwise multiplication. σ and ReLU are non-
linear activation functions. Thereafter, we put a softmax layer
on the resulting pair representation, i.e., c = Softmax(r P,∗

i ),
to generate the final sentiment label for the i th triplet.

C. Training

Our training target is to narrow the gap between the gold
annotations with the predicted ones. As mentioned earlier,
the cross-entropy loss is sensitive to the permutation of the
predictions, which does not fit the nonautoregressive decoding
of unordered set prediction. We consider a loss function for
generating the optimal bipartite matching between predicted
and ground-truth triples. Let us review the predicted triplet
structure Y = {yi}D

i=1 with indexes

yi =
{(

P (A,s)
i , P (A,e)

i

)
,
(

P(O,s)
i , P (O,e)

i

)
, ci

}
(16)

where P is the distribution of its position index P and c is
the distribution of the label id c. We then write the gold one
as

ŷi =
{(

P̂(A,s)
i , P̂(A,e)

i

)
,
(

P̂(O,s)
i , P̂(O,e)

i

)
, ĉi

}
(17)

in the gold set Ŷ = {ŷi}K
i=1, where K 	 D. We align

the length of gold triplet sets Ŷ with the predicted one Y
(i.e., into the size of D) by padding Ŷ with empty triplets
that comprise dummy positions and null sentiment labels,
φ = {(ε, ε), (ε, ε), ε}. Next, we divide the loss calculation
into two steps: 1) searching for an optimal matching between
the gold triple set and the predicted triple set and 2) computing
the loss between the matched pairs.
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TABLE I

STATISTICS OF DATASETS. NOTE THAT # DENOTES THE NUMBER OF THE ITEMS. Sent., Asp., Opn., AND Ovlp ARE THE ABBREVIATIONS OF “SENTENCE,”
“ASPECT,” “OPINION,” AND “OVERLAPPING,” RESPECTIVELY. Avg.Asp.Len AND Avg.Opn.Len INDICATE THE AVERAGE LENGTH OF THE ASPECT

AND OPINION TERMS, RESPECTIVELY, WHILE Avg.Pair.Dist IS THE AVERAGE DISTANCE BETWEEN THE TERMS IN ONE PAIR

Fig. 4. Illustration of the bipartite matching between gold triplet set and
predicted triplet set.

1) Matching: We aim to find a permutation of elements ψ	

with the lowest cost via the following matching mechanism:

ψ	 = Argmin
ψi ∈
(D)

D∑
i=1

Scoring
(
yi , ŷψi

)
(18)

where 
(D) is the complete space of D-size permutation.
The distance between the gold ŷi and the predicted one yψi is
measured via scoring function

Scoring
(
yi , ŷψi

) = −�ci 
=ε
(

ĉi ⊗ ci + P̂ A,s
i ⊗ P A,s

i

+ P̂ A,e
i ⊗ P A,e

i + P̂ O,s
i ⊗ P O,s

i

+ P̂ O,e
i ⊗ P O,e

i

)
(19)

where ⊗ refers to the operation of the summation after
elementwise multiplication between the distributional item
(i.e., P) and the one-hot representation of the scalar item
(i.e., P̂). The searching can be satisfied by the Hungarian
algorithm [76]. Fig. 4 shows the bipartite matching step.

2) Computing Loss: With the best matching pairs between
the gold and predicted triplets, we next compute the loss

L(
Y, Ŷ

) = −
D∑

i=1

(
log ĉi ⊗ cψ	i + log P̂ A,s

i ⊗ P A,s
ψ	i

+ log P̂ A,e
i ⊗ P A,e

ψ	i
+ log P̂ O,s

i ⊗ P O,s
ψ	i

+ log P̂ O,e
i ⊗ P O,e

ψ	i

)
(20)

where ψ	i is the optimal matching index of the i th triplet
via (18).

V. EXPERIMENTAL SETUP

A. Datasets

The experiments are performed based on the ASTE bench-
mark datasets, assembled by Peng et al. [8]. The data are
derived from SemEval tasks [28], including 2014 restaurant
(14res), 2014 laptop (14lap), 2015 restaurant (15res), and
2016 restaurant (16res). Each dataset comes with its own
training set, development set, and test set. To make a fair
comparison with existing baselines, we follow the same data
preprocessing in [8]. The detailed statistics of the four datasets
are listed in Table I.

B. Baseline Methods

To verify the effectiveness of our proposed framework,
we make comparisons with the previous state-of-the-art
methods designed for sentiment-oriented extraction tasks.
We divide the baselines into two groups, namely, pipeline
methods and end-to-end methods.

1) Pipeline Models: The models are given in the following.
1) CLMA+ is a revision of CLMA model [1], which is

constructed for aspect and opinion terms coextraction
by leveraging the attention mechanism.
Peng et al. [8] revised the model as the first stage
of terms extraction and then determined the sentiment
polarity at the second stage to form triplets.

2) RINANTE+: Peng et al. [8], following the same way as
of CLMA+ model, upgraded the RINANTE model [9]
that performs term coextraction for ASTE.

3) Li-unified-R+ is derived from the Li-unified-R
model [12], which is a unified model that contains two-
layer stacked long short-term memory (LSTM) for ATE
and sentiment polarity classification. Peng et al. [8]
modified Li-unified-R as Li-unified-R+ to extract
opinion terms and then make pairing to obtain
sentiment triplets.
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TABLE II

RESULTS ON FOUR DATASETS. SCORES IN GRAY COLOR BACKGROUND ARE FROM OUR REIMPLEMENTATION, WHILE OTHERS
ARE RETRIEVED FROM THE CORRESPONDING RAW PAPERS WITHOUT MODIFICATION

4) Two-Stage Model (TSM): Peng et al. [8] proposed a
TSM for sentiment triplet extraction, i.e., from aspect–
opinion term coextraction to term pairing.

2) End-to-End Models: The models are given in the
following.

1) HSLM: Chen et al. [16] introduced a hierarchical
sequence labeling model to tag the aspect terms, opinion
expressions, and sentiment polarity in a joint manner.

2) JET: Xu et al. [17] proposed a position-aware joint
model based on sequential labeling for ASTE.

3) GTS is a table-filling framework proposed by
Wu et al. [18], which searches out the aspect terms
and opinion expressions together with the correlated
polarities in the rows and columns of the table.

4) BMRC: Chen et al. [56] transformed the triplet predic-
tion into a machine reading comprehension task and
solved it with an end-to-end manner. The method brings
new state-of-the-art results to this task.

C. Implementations

We use 300-D word embeddings initialized with pretrained
Glove [77]. The triplet query and position embedding are

randomly initialized with 300-D and 30-D, respectively. The
convolutions in character CNN are with window sizes [3, 4, 5],
each consisting of ten filters. The transformer encoder and
decoder are all with three layers, having the default hidden
size of 768-D. All hidden sizes of the rest representations are
set with 250-D. The GCN in the high-order aggregation layer
is set with two layers. The maximum triplet length D is set
as 8,2 which is a tradeoff between effectiveness and efficiency
by our preliminary experiments. We use mini-batch with a size
of 16, training with unlimited iterations but with early stopping
strategy. We adopt the Adam optimizer with an initial learning
rate as 1e−4 and an L2 weight decay of 5e−5. The environment
is with Intel i9 CPU and NVIDIA GeForce RTX 3090 GPU
card with 11-GB graphic memory. The implementation of our
system is with the PyTorch library.3

D. Evaluations

We use precise (P), recall (R), and F1 score (F1) to mea-
sure the performance. Note that a predicted triplet is correct

2According to our statistics, the maximum triplet size in all sentences is
less than 8.

3https://pytorch.org/
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only if aspect term, opinion term, and sentiment polarity are
all correct at the same time. We tune our framework on
the development sets for obtaining the best hyperparameters,
which are then adopted on the corresponding test sets. Each
of our model is trained ten times and all the scores are
presented after the significance test ( p ≤ 0.03). We also
verify the performances by using the pretrained contextualized
BERT language model4 [78], [79], and the ELMo language
model5 [80].

VI. RESULTS AND DISCUSSION

A. Main Results

We perform evaluations on the ASTE task and the satellite
subtasks concerning ASTE, i.e., aspect extraction (AE), SC,
opinion extraction (OE), and aspect and opinion pair extraction
(AOP). Experimental results are presented in Table II, from
which we can correspondingly gain several observations.

First, the performances of ASTE are much better by the end-
to-end (or joint) models than those by the pipeline methods,
across all the four datasets. This corresponds much to the
prior research findings [16]–[18], as the joint prediction of the
subtasks can greatly ease the error propagation issues existed
in the cascade procedure. We notice that such performance
improvements are not significant for standalone jobs, such as
AE and OE. This verifies the longstanding viewpoint that the
joint tasks can be best accomplished with the joint modeling,
rather than the pipeline methods [8], [11], [12].

Second, we look into the variances of the performances
among different combinations of the tasks, finding that the
performances of the satellite subtasks within the ASTE task
by the end-to-end models are significantly higher than that of
the separate subtasks by the pipeline methods. For example,
the F1 scores of the AE + SC task by the best pipeline
method (i.e., TSM) are 74.19%, 62.26%, 64.29%, and 70.67%,
on the four datasets. By simultaneously modeling the OE
subtask, i.e., with the model capturing the additional opinion
information, the F1 scores of the same AE + SC task by the
best joint method (i.e., GTS) are increased to 74.63%, 63.72%,
65.65%, and 71.05% on each dataset. This can be viewed as
the direct evidence to support the usefulness of the ASTE
task that integrates the satellite subtasks into a complete job,
introducing additional sentiment-relevant clues for facilitating
the overall sentiment extraction.

Most importantly, our proposed framework outperforms
all the competitors with considerable gaps. We see that the
winning scores by our model against the baselines are con-
sistently preserved in all the satellite subtasks among all the
datasets. In brief, our model achieves the overall 68.82%,
53.76%, 60.25%, and 68.03% F1 scores on each dataset.
This proves the effectiveness of our proposed pointer-net-
based nonautoregressive framework for ASTE task. Besides,
the contributions for the F1 score improvements are derived
from both the higher precision rate and recall rate, simultane-
ously, which demonstrates the advantages of our framework.
On the one hand, our neural pointer-net-based architecture

4https://github.com/google-research/bert, uncased base version.
5https://allennlp.org/elmo

TABLE III

ABLATION RESULTS ON OUR FRAMEWORK. VALUES ARE IN F1 SCORE
FOR ASTE TASK. “LSTM DECODER + CE LOSS” MEANS USING

A SEQUENTIAL LSTM AS THE DECODER AND REPLACING

THE BIPARTITE MATCHING LOSS WITH A CROSS-ENTROPY

LOSS (I.E., IN ORDERED TRIPLET PREDICTION). “HO
AGGREGATION” REFERS TO THE HIGH-ORDER

AGGREGATION MECHANISM

contributes to the high precision, while on the other hand,
the nonautoregressive framework with unorder set prediction
by the bipartite matching loss results in the high recall rate.

B. Model Ablation

We perform the ablation study to assess the contribution of
each aspect in our method. We mainly focus on four aspects:
1) input features; 2) model architecture design; 3) the proposed
high-order aggregation module; and 4) the effectiveness of the
external contextualized word representations. Table III shows
the experimental results.

We first replace the pretrained word embedding GloVe with
the randomly initialized one via the Xavier algorithm [81]. The
overall performance drops. Also, without neither the character
representations from CNN nor the position embeddings, the
results are worse, interestingly with the position information
(both on encoding and decoding side) showing more impacts
to our system. This can be intuitive because the position clues
contribute more to the pointer-net-based system.

Next, we replace the transformer encoder with a bi-
directional LSTM for computational linguistics (BiLSTM)
encoder (in our practice, we fine-tune the performances with
the best configurations) and find slight performance drops.
We then use the sequential-like LSTM as our decoder for
yielding the triplets (where it turns to be the autoregressive
decoding), and we see that the system starts performing poorly,
with an average drop of 1.03% (62.72–61.69) F1 score. Based
on the LSTM decoder architecture, we further substitute the
bipartite matching loss with cross-entropy loss. The overall
performance drops grow to averaged 1.56% (62.72–61.16) F1
score. This proves the effectiveness of our nonautoregressive
framework with the bipartite matching loss for unorder set
prediction.

We ablate the high-order aggregation mechanism and find
that the overall performances decrease significantly, e.g., aver-
aged 1.21% (62.72–61.51) F1 drop, which demonstrates the
effectiveness of the proposed mechanism. In the high-order
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aggregation module, we construct edges in the graph by
checking whether either the aspect term or the opinion term
cooccurs in other pair. Here, we take a further step, exploring
the influences if we form the edges depending only on the
aspect term overlapping or only on the opinion term over-
lapping. We find that the performances in either standalone
“Asp.-edge graph” or “Opn.-edge graph” are inferior to that
in the complete graph. Also, we see that the graph with edges
from only the overlapping opinion terms is more beneficial to
the task by the counterpart from the overlapping aspect terms.

Finally, we equip our framework with the contextualized
language models, e.g., ELMo and BERT. Unsurprisingly,
we receive significant performance gains, i.e., with averaged
63.68% by ELMo and 64.58% BERT. The tendencies are
quite coincident with the recent findings that employ the
contextualized language models, which can lead to large task
improvements [18], [78].

C. Analysis

1) Overlapping Triplet Extraction: As we emphasized ear-
lier, the triplet overlaps much with each other on the datasets,
which largely influences the overall results of ASTE. Now,
we study to how our framework can better fight against
the triplet overlapping phenomenon. We conduct experiments
based on the four datasets and make comparisons with
baselines. We show the results in Fig. 5. Our framework
achieves significant improvements over the baseline systems
on handling the overlapping issues. Specifically, almost all the
baselines fail to recognize the overlapping triplets when the
overlapping number is 6, while our model gives comparatively
well results. When the bipartite matching loss is unavailable
and the design of unorder triplet set prediction shifts to the
standard pointer network-based extraction model, we corre-
spondingly find the comparative and clear performance drops.
This reveals the usefulness of our proposed framework. Note
that even with the standard pointer network-based framework,
we still outperform the baselines by a large margin.

2) Influence of Term Span Length: In an extraction task,
longer term spans involve more varying boundary tokens,
which correspondingly brings more challenges to the extractor.
We here study the impacts of different lengths of term spans
by different models. We perform experiments on the 14res
test set, and the results are shown in Fig. 6. In general, the
performances of all the models decrease when the lengths
of span terms grow. The joint methods show stronger capa-
bilities than the pipeline model (i.e., TSM) on handling the
increase of span widths. However, we see that the table-
filling-based joint model GTS performs consistently better
than the sequential-labeling model JET. More importantly, our
proposed framework outperforms all the baselines. Meanwhile,
the improvements become more significant even when the span
length goes larger. This reflects the ability of our model that
employs the pointer network as the extraction backbone.

3) Impacts of the Distance Between Aspect and Opinion
Terms: Long-range dependencies are a longstanding problem
in information extraction. When two observed mentions (here
the aspect and opinion terms) are separated farther away,

Fig. 5. Comparisons on different overlapping triplets. “Our(CE)” refers
to our framework where the bipartite matching loss is replaced with cross-
entropy loss, and the nonautoregressive transformer decoder is substituted with
a sequential LSTM decoder.

Fig. 6. Influence of aspect/opinion term span length.

the extraction becomes harder. We explore the effects of
such long-range dependency issues. Technically, we vary the
distances between aspect and opinion terms of the models
and observe the change of performances. Fig. 7 shows the
results based on the 14res test set. We see that the overall
performances of all the models get worse once the distance
increases. Our framework with the pointer mechanism can
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Fig. 7. Results in different aspect–opinion distance.

Fig. 8. Comparisons in terms of the decoding speed.

alleviate such performance descending. There are two major
reasons. The first is the pointer network design, where each
pointing decision is made by the consultant of all the input
words at the global level. The second is the leverage of
the transformer model as the decoder for the nonautore-
gressive prediction of unorder triplet set. The self-attention
with multiple head mechanism in the transformer encoder
enables it more effectively to retrieve informative features from
bidirectional contexts.

4) Decoding Efficiency: One of the major advantages of our
nonautoregressive encoder–decoder framework is its decoding
efficiency. Theoretically, our framework yields all the possible
results without relying on the input sequence length, giving
O(1) time consumption on decoding. Here, we study the model
running speed during the decoding phase against the baseline
joint models for ASTE. We present the inference speeds
(i.e., sentence per second) of all the models in Fig. 8. Unsur-
prisingly, our framework shows the lowest time consumption
on decoding compared with JET and GTS. We note that
both JET and table-filling-based method GTS is much time-
consuming, as it takes O(n2) time complexity to iteratively
enumerate the aspect terms and the opinion terms for pairing
them, while ours is time-independent.

5) Training With Bipartite Matching Loss: The main moti-
vation of our proposal of the bipartite matching loss is to
achieve the unorder triplet set prediction, along with the
nonautoregressive decoding architecture. Here, we study the
influence of the loss functions toward the training process.
We mainly make a comparison between the bipartite matching
loss and the cross-entropy loss. Fig. 9 plots the training curves
on each of the four datasets. We correspondingly have two

Fig. 9. Training curves on each dataset.

major observations. First, we see that the overall converging
F1 results by the bipartite matching loss are higher than the
results by the cross-entropy loss. Second, the times for the
model to converge are overall shorter with bipartite matching
loss than that with cross-entropy loss, which can be learned
from the patterns in the figures.

D. Case Study

Finally, we perform a case study by comparing our model
with two strong baselines JET and GTS. Fig. 10 shows the
results of three different sentences, including the overlapping
situation, based on the 16res data. First, we can find that,
generally, our model yields the fully correct predictions to the
gold-standard triplets. Note that two strong baseline systems
either miss the prediction of several triplets or produce wrong
opinion terms or incorrect sentiment polarities. For example,
in the first and second sentences, both JET and GTS fail to
recognize the full numbers of triplets. This is large because
the architecture of the autoregressive modeling in baselines.
In the second sentence, we find that the sequence-labeling-
based model JET wrongly extracts the single token “busy”
as opinion term and meanwhile recognizes incorrect pair
between aspect–opinion terms (i.e., “margaritas” and “busy”).
The GTS model can detect more triplets than JET, partially
due to the table-filling modeling on exhaustively enumerating
all possible aspect–opinion term pairs. However, it still fails
to correctly predict all possible sentiment triplets. For the
third sentence, two baselines commit these errors, where,
however, our encoder–decoder-based model equipped with a
pointer network can recognize all the triplets and precisely
capture the negated opinion. Besides, both JET and GTS make
mistakes frequently in determining sentiment polarity, while
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Fig. 10. Results of case study by different models based on three test sentences randomly selected from the 16res data. Correct predictions are followed
with green check marks and incorrect ones are with red cross marks.

our model shows high effectiveness on this. We give the major
credit to our proposed high-order aggregation module, which
can effectively exploit the shared information between the
overlapped pairs of aspect and opinion terms.

VII. CONCLUSION AND FUTURE WORK

We present a novel framework for end-to-end ASTE based
on the encoder–decoder architecture. We model the task
as an unordered triplet set prediction problem and perform
nonautoregressive decoding with the transformer-based pointer
network. A high-order aggregation module is presented to
fully explore the underlying interactions between aspect and
opinion terms for SC. We also introduce a bipartite matching
loss for better training our nonautoregressive system. Exper-
imental results on four benchmark datasets show that our
proposed framework significantly outperforms previous state-
of-the-art methods. Ablation studies uncover the contribution
of each part of the proposed framework. A list of analyses
demonstrates the advantages of our model in multiple aspects,
including stronger robustness on term span length, relieving
long-range dependency issue, better handling the overlapping
problem, and highly decoding efficiency, compared with the
previous methods.

As future work, considering the significant advantages on
such triplet task modeling, we believe that our proposed
nonautoregressive encoder–decoder system can be extended
to many other applications that follow the triplet extraction
scheme, e.g., relation extraction and semantic role labeling, for
better task performances. Besides, we think that the integration
of external structural information will further facilitate the
extraction of the triplets, e.g., syntactic constituency tree for
enhancing the recognition of terms and syntactic dependency
tree for better exploring the relation of term pairs.
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