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Improving Skip-Gram Embeddings Using BERT
Yile Wang , Leyang Cui, and Yue Zhang

Abstract—Contextualized embeddings such as BERT and GPT
have been shown to give significant improvement in NLP tasks. On
the other hand, static embeddings such as skip-gram and GloVe
still have desirable characteristics such as low computational cost,
easy deployment and freedom from severe contextualized variation
in representation. There has been some recent attempt enhancing
the skip-gram model by adding syntactic information of context
using GCN. We investigate the use of BERT embeddings instead for
stronger context representation, which contains not only syntactic
and surface features, but also rich knowledge from large-scale
pre-training. Results show that BERT-enhanced skip-gram embed-
dings outperform GCN-enhanced embeddings on a range of tasks.
Such embeddings also outperform recent effort distilling BERT
embeddings into context-independent vectors.

Index Terms—BERT, contextualized embeddings, skip-gram,
word embedding.

I. INTRODUCTION

WORD representation is a fundamental problem of NLP,
attracting interest from both the linguistic perspective

and the end-task perspective. Early research has considered
matrix factorization methods, such as latent semantic analy-
sis [1] and shallow window-based methods, such as [2]–[5].
With advances of neural networks, word embeddings have been
investigated as a part of neural language model training [6], [7].
In particular, the skip-gram model [6] is a widely-used method
that allows fast training by using noise contrastive estimation
(NCE) over a simplified log-bilinear language model. The main
idea is to train word embeddings by predicting target words using
its context words.

Recently, contextualized word representations such as
ELMo [8], GPT [9], [10], BERT [11] and XLNet [12] have
been shown a more effective input representation method for
downstream tasks. Compared with static word representation
methods such as skip-gram [6] and GloVe [7], contextualized
embeddings use a deep neural network to find a hidden-layer
word representation given a sentence (or multi-sentence) level
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context, which can differ for the same word according to dif-
ferent contexts. Contextualized embeddings are correlated with
syntactic [13], semantic [14] and factual knowledge [15], out-
performing static embeddings on a wide range of tasks such
as question answering [16], reading comprehension [17], com-
monsense reasoning [18] and natural language inference [19].

Despite the advantage of contextualized embeddings in task
performance, they have several limitations. For instance, the
models are large and complex neural networks containing bil-
lions of parameters. This can make them costly to use in terms
of both computing resources and disk space, and adds to the
cost for integrating them into NLP models compared to static
embeddings. In addition, the vector representation of each word
varies according to different model layers and context, and
can represent context words more than the current word [20].
This results in large variation between representations of the
same word across different sequence contexts, particularly for
low-resource classes [21], [22]. Such variation is beyond what
we can expect from the perspective of semantic polysemy. This
is not only undesirable linguistically but also has implications
on downstream tasks such as word alignment [23], [24].

In contrast, static embeddings are still valuable in at least
two aspects. First, they are light-weight compared with con-
textualized embeddings in terms of both the model size and
computation cost, without necessarily losing performance by
a large margin [25]. Second, they are directly useful for tasks
that are context-independent, which require a single fixed dense
embedding for each given word. As a result, there has been
recent attempt for deriving a static version of BERT embeddings.
To this end, Bommasani et al. [26] take a relatively simple
method, contextualized representations of words are calculated
over a large corpus, from which the representations of a certain
word over different network layers are averaged as a static
representation of the word. We treat this method as one baseline.

Another recent work improves skip-gram embeddings by en-
riching the representation of context words when training target
word embeddings. In particular, the skip-gram model uses static
embeddings to represent both context words and target words.
Instead, Vashishth et al. [27] apply a graph convolutional neural
network (GCN) [28] for integrating rich syntactic and semantic
features into the model, showing that such information from
context improves the output target embeddings. We consider
integrating BERT and skip-gram by using BERT instead of a
GCN for enriching the context during the training of a skip-gram
model. The advantage is at least two-fold. First, polysemous
words are represented using BERT embeddings, thereby reduc-
ing word sense ambiguities [29]. Second, syntactic and semantic
information over the entire sentence is integrated into the center
word representation [13], [14], thereby providing richer features
compared to a word window.
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Experiments over a range of intrinsic and extrinsic tasks show
that our method outperforms the skip-gram model, averaging
BERT, the method of integrating GCN and other static word em-
bedding models, which demonstrate the advantage of leveraging
contextualized embeddings to improve lexical semantics and
downstream tasks. To our knowledge, we are the first to system-
atically integrate contextualized embeddings for improving the
quality of static word embeddings. Our model and trained em-
beddings are released at https://github.com/ylwangy/bert2vec.

II. RELATED WORK

Static Word Embeddings. Skip-gram (SG) and continuous-
bag-of-words (CBOW) are two models based on distributed
word-context pairs [6]. The former predicts the context words
using a center word, while the latter predicts a center word using
its context words. Wang et al. [30] claim that not all contexts are
equal and considered word order in the skip-gram model. Hall et
al. [31] and Levy et al. [32] further inject syntactic information
by building word embeddings from the dependency parse trees
over texts. GloVe [7] learns word embeddings by factorizing
global word co-occurrence statistics. Our model follows the
skip-gram framework. The main difference between our work
and the above methods is that center words are represented
using the contextualized information, rather than a lookup table
statically.

Contextualized Word Embeddings. ELMo [8] provides
deep word representations generated from LSTM based lan-
guage modeling, GPT [9], [10] improves language model pre-
training based on Transformer [33], BERT [11] investigates
self-attention-network for deep bidirectional representations,
RoBERTa [34] uses more data and optimizes the training of
BERT, Longformer [35] is designed for modeling long docu-
ments based on BERT, XLNet [12] takes a generalized autore-
gressive pretraining model based on Transformer-XL [36]. The
above models are designed to improve downstream tasks and
outperform static embeddings in extrinsic evaluation. However,
they are significantly larger in terms of the model size and slower
in terms of runtime complexity. We consider using BERT for
enhancing skip-gram.

Integrating Contextualized Information into Static Word
Embeddings. There have been a few investigations into in-
creasing the representation power of context embeddings in
the training of static word vectors. Melamud et al. [37] use a
bi-directional LSTM to replace the static context embedding
table for the model. However, rather using the static embeddings,
they used the contextualized LSTM embeddings for improving
downstream tasks such as sentence completion, lexical sub-
stitution and word sense disambiguation tasks. This is simi-
lar to subsequent work in contextualized word vectors. While
they did not report results on embedding evaluation bench-
marks, we reimplement their method and compare it with our
models.

SynGCN [27] use graph convolution network (GCN) to in-
tegrate syntactic context for learning context embeddings. Our
work is similar in calculating word representations using senten-
tial information. The main difference is that, while their model
uses dependency parse trees and graph convolution network
for better incorporating syntactic and semantic information, we

directly model the sequential context by using BERT contextu-
alized representation trained over large data.

Similar in spirit to our work, Rishi et al. [26] distill BERT
representations across different encoding layers as static em-
beddings of words. They find that the distilled embeddings give
comparable results to static embeddings in lexical semantic
tasks. In contrast to their work, we try to better make use
of the contextualized disambiguation power of contextualized
embeddings for enhancing static embedding training algorithms,
therefore building a model that more deeply integrates a contex-
tualized representation and a distributed vector learning model.

III. BACKGROUND

We take skip-gram [6] as our framework for training static
word embeddings, considering that a similar architecture has
been used by previous work [27], [37], which can serve as fair
baselines. BERT [11] is used as the contextualized embeddings
to replace the center word embeddings in our model. Below we
introduce both models.

Skip-Gram. Given a sentence s= w1, w2, . . ., wn(wi ∈ D),
we model each word wi by using its context words wi−ws,...,
wi−1, wi+1,..., wi+ws. The center word and context words
are projected into two types of embeddings vi and v′i+j (1 ≤
|j| ≤ ws), respectively, as shown in Fig. 1(a). Given a training
corpus with N sentences C = {sc = w1, w2, . . ., wnc

}|Nc=1, the
training objective is to minimize:

LSG = −
N∑
c=1

nc∑
i=1

∑
1≤|j|≤ws

log f(v′i+j , vi) (1)

herein f(v′i+j , vi) = p(wi+j |wi) represents the concurrence
probability of word wi+j given the word wi, which is estimated
by:

p(wi+j |wi) =
exp(v′i+j

�vi)∑
wk∈D exp(v′k

�vi)
(2)

In practice, we use negative-sampling to avoid the compu-
tation cost of Eq. 2 summing over the whole vocabulary (see
Eq. 15). During training, each word in the vocabulary uses the
same embedding tables V and V ′ across sentences.

BERT. BERT consists of a multi-layer bidirectional Trans-
former [33] encoder. The masked language model (MLM) objec-
tive is to predict certain masked words through its contextualized
representation, as shown in Fig. 1(b).

Formally, given a sentence s = w1, w2, . . ., wn, each wi is
transformed into input vector hi by summing up the static Word-
Piece [38] token embeddings Ewi

, the segment embeddings
SEwi

and the position embeddings PEwi
:

hi = Ewi
+ SEwi

+ PEwi
(3)

where SEwi
distinguishes the sentence location and PEwi

indicates character position.
The input vectors H = {h1, . . ., hn}, H ∈ Rn×d are then

transformed into queries Qm, keys Km, and values V m,
{Qm,Km, V m} ∈ Rn×dk :

Qm,Km, V m = HWm
Q , HWm

K , HWm
V (4)
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Fig. 1. Skip-gram, BERT and our proposed model. The blue blocks denote the representation of words.

where {Wm
Q ,Wm

K ,Wm
V } ∈ Rd×dk are trainable parameters,

m ∈ {1, . . .,M} represent the m-th attention head. M paral-
lel attention functions are applied to produce M output states
{O1, . . ., OM}:

Am = softmax (Q
mKm�√

dk
)

Om = AmV m
(5)

Am is the attention distribution for the m-th head and
√
dk

is a scaling factor. Finally, each head for Oi are concatenated to
obtain the final output of word wi:

oi = [O1
i , . . ., O

M
i ] (6)

Given a corpus {sc = w1, w2, . . ., wnc
}|Nc=1, the objective is

to minimize the loss of predicting a randomly chosen masked
word wmaski

in w1, w2, . . ., wi−1, 〈mask〉, wi+1, . . ., wn by its
output representation omaski

in Eq. 6:

LMLM = −
N∑
c=1

nc∑
i=1

log p(Ewmaski
|omaski

) (7)

where E is the token embedding in Eq. 3, p(Ewmaski
|omaski

)
is calculated as with Eq. 2:

p(Ewmaski
|omaski

) =
exp(Ewmaski

�omaski
)∑

wk∈D exp(Ewk

�omaski
)

(8)

IV. THE PROPOSED APPROACH

Given a sentence s = w1, w2, . . ., wn, we model a center word
wi and its context words wi−ws,..., wi−1, wi+1,..., wi+ws as in
the skip-gram model. To integrate contextualized embeddings,
we use BERT to replace the center word embeddings vi, so that
each center wordwi is represented in a sentential context. To this

end, a center word wi is first transformed into hi, which is the
sum of the token embedding Ewi

and the position embedding
PEwi

:

hi = Ewi
+ PEwi

(9)

Then h1, h2,..., hn are fed into a L-layer bidirectional Trans-
former block, as described in Eq. 4 and Eq. 5. In particular,
we use a pre-trained BERT [11] model to generate the output
representations oi, where numbers of layers L = 12, attention
heads M = 12 and model size d = 768.

A linear projection layer is used for transforming the output
oi ∈ Rd to ui ∈ Rdemb :

ui = Uoi (10)

where U ∈ Rdemb×d are model parameters.
In practice, WordPiece tokenization may contain subwords,

thus there exist multiple outputs for a certain complete word.
We apply the mean pooling operation to these outputs from
subwords to generate the final output for a single word.

To model co-occurrence between the center word wi and its
context words wi−ws,..., wi−1, wi+1,..., wi+ws, we maximize
the probability of the context words wi+j(1 ≤ |j| ≤ ws) given
the contextualized representation ui of the center word:

p(wi+j |wi) =
exp(v′i+j

�ui)∑
wk∈D exp(v′k

�ui)
(11)

Similar to Eq. 2, v′k are the context word embeddings forwk by
using a static embedding table. Again, we use negative-sampling
(Eq. 15) to avoid the computational bottleneck.

Note that our model is not a direct adaptation of the skip-gram
model by replacing one embedding table. The original skip-
gram algorithm uses the center word embedding table as the
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final output embeddings. However, to make the context words
predictable and enable negative sampling from the vocabulary,
we use BERT representation for the center word, and the context
word embedding table as the final output static embeddings.

Attention Aggregation. Not all context words contribute
equally to deciding the representation for a word. For example,
predicting the stop words (e.g., “the”, “a”) is less informative
than more meaningful words. One method to solve this problem
is sub-sampling [39]. A word wi is discarded with a probability
by:

P (wi) = 1−
√

t

f(wi)
(12)

where f(wi) is the frequency of word wi in the training corpus
and t is a chosen threshold, typically around 10−5.

Sub-sampling is used in the skip-gram model. However, it
cannot be directly used in our method because contextualized
representation can be undermined with words being removed
from a sentence. We choose instead to select more indicative
context words automatically while keeping the training sentence
complete. Formally, we apply the attention mechanism to aggre-
gate context words for each center word wj by using ui as the
query vector and v′j as the key vectors:

aj = ATT(ui, v
′
j) (13)

where ATT(·) denotes the dot-product attention operation [40].
The context embeddings are then combined using the corre-

sponding attention coefficient:

v′i_context =
∑

1≤|j|≤ws

ai+jv
′
i+j (14)

Training. The skip-gram models in Eq. 2 and Eq. 11
approximate the original training objectives in the cross-
entropy for w by using noise contrastive estimating. Given
{sc = w1, w2, . . ., wnc

}|Nc=1, the new objective is to minimize
a noise contrastive estimation loss function with negative sam-
pling:

L = −
N∑
c=1

nc∑
i=1

(
log σ(v

′�
i_contextui)

+

k∑
m=1

Ewnegm∼P (w)[log σ(−v
′�
negm

ui)]

)
(15)

where σ is the sigmoid function, wnegm denotes a negative
sample, k is the number of negative samples and P (w) is the
noise distribution set as the unigram distribution U(w) raised to
the 3/4 power (i.e., P (w) = U(w)3/4/Z).

The final embeddings v′ are optimized through stochastic
gradient descent. It has been shown that when k → ∞ the
gradient of the NCE loss equal the gradients of the cross-entropy
loss.

Testing. Following [27], the trained embeddings are tested
for lexical semantics tasks. First, the similarity score between
two words are calculated based on the cosine similarity between
their embeddings:

scoreword = cos(x, y) =
x�y

||x|| · ||y|| (16)

Second, the word analogy task investigates relations of the
form “x is to y as x∗ is to y∗,” where y∗ can be predicted given
the word vectors of x, y, and x∗ by 3CosAdd [41]:

y∗ = argmax
y′∈V,y′ =x∗,y,x

cos((x∗ + y − x), y′) (17)

The relation similarity score between x to y and x∗ to y∗ is
computed as:

scorerelation = cos((y − x), (y∗ − x∗)) (18)

Third, we can use the standard agglomerative clustering al-
gorithm over the resulting word vectors for solving the word
clustering task.

V. EXPERIMENTS

We compare the effectiveness of our method with both the
skip-gram baselines, the syntactic GCN method [27] and dis-
tilled embeddings from pre-trained model [26]. In addition, our
methods are also compared with the state-of-the-art methods on
standard benchmarks.

A. Experimental Settings

Datasets.
Training Corpus. Following Vashishth et al. [27], the

Wikipedia dump1 corpus is used for training static embeddings,
which consist of 57 million sentences with 1.1 billion tokens.
Sentences with a length between 10 to 40 are selected, the final
average length of sentences is 20.2.

Intrinsic Tasks. We perform word similarity tasks on the
WordSim-353 [42], SimLex-999 [43], Rare Word (RW) [44],
MEN-3K [45], and RG-65 [46] datasets, computing the Spear-
man’s rank correlation between the word similarity scoreword

and human judgments.
For word analogy, we compare the analogy prediction accu-

racy on the Google [6] datasets. We also compare the Spearman’s
rank correlation between relation similarity scorerelation and
human judgments on the SemEval-2012 [47] dataset.

There has been a line of work discussing the limitations of
word similarity and word analogy [48]–[51]. Following [52],
[53], we also perform word concept categorization tasks which
involves grouping nominal concepts into natural categories. For
instance, eat, breathe and drink should belong to BodyAction
class. In our experiments, we evaluate on AP [54], Battig [55]
and ESSLI (including both Noun and Verb subsets) [56] datasets.
Cluster purity is used as the evaluation metric.

Extrinsic Tasks. We conduct three downstream tasks by using
different word embeddings, including chunking, POS tagging
and NER. To directly compare the difference of word vectors,
we do not fine-tune the embeddings during training.

The chunking task is evaluated on a CONLL-2000 shared
task [57]. Following Reimers and Gurevych [58], we use the
sections 15-18 for training, 19 for development and 20 for
testing. F1-score is used as the evaluation metric.

We use OntoNotes 4.0 [59] as the named entity recognition
dataset. F1-score is used as the evaluation metric.

1https://dumps.wikimedia.org/enwiki/20 180 301/
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Fig. 2. Development experiments: (a) embedding dimension, (b) window size, (c) attention aggregation and (d) base models.

We use the WSJ portion of Penn Treebank [60] for POS
tagging, adopting the standard splits by using sections 0-18 as the
training set, 19-21 as the development set and 22-24 as the test
set. Token-level accuracy is used to evaluate the performance.

For the external tasks, we adopt the BiLSTM-CRF
model [61]–[63], which has been shown a strong baseline for
sequence labeling.

Hyper-Parameters Settings. The dimension of word embed-
ding vectors demb is 300, the window size for context words ws
is set as 5, the number of negative samples k is 5, which are
selected using development set, the initial learning rate for SGD
is 0.08 and gradients are clipped at norm 5.

B. Development Experiments

We select one million sentences from the Wikipedia corpus for
development experiments, investigating the effect of embedding
dimension, context window size, attention aggregation and the
base models for generating center word embedding.

Embedding Dimension. Fig. 2(a) shows the results for dif-
ferent word embedding dimension demb. The model with 100
dimensional embeddings gives a lower result, which is likely
because the model underfits with too few dimensions. The model
with 500 dimensions gives similar final results compared with
300 dimensions, while having more parameters and taking more
training and testing time. We thus select the dimension of 300,
which is the same as most existing work.

Window Size. The window size ws affects the amount of
information used for explicit co-occurrence-based training, but
with BERT context embeddings, each context word hidden
vector contain information over the whole sentence. We compare
the effect of different window sizes ranging from 1 to 8. The
results are shown on Fig. 2(b). When ws is 1, we only consider

the relationship between the center word embedding and its
two neighbor hidden vectors. The performance is 54.8. As the
window size increases, the model gives better results. However,
when the window size is 8, the model costs twice as much
training time but does not give further improvements compared
with a window size of 5. Therefore we set the window size to 5,
which is the same as skip-gram.

Attention Aggregation. Fig. 2(c) shows the results of skip-
gram and our model with or without attention aggregation. Our
model stably outperforms skip-gram. This shows the advantage
of using BERT to represent context. Without attention aggrega-
tion, our model treats all context words equally. It gives slower
convergence with a best development result of 65.5, lower than
66.3 with attention aggregation. This shows the effectiveness of
differentiating context words [39].

Base Models. Fig. 2(d) shows the results of different base
models for center word representation generation. Also, we
compare the BERT model with different model sizes (BERTbase

(110 M) v.s BERTlarge (340 M)). We can find that GPT2
performs worse than the other models, which may be because it
only use the unidirectional information. The BERT, XLNet and
ELMo models do not show significant difference. BERTlarge

performs slightly better than BERTbase with much more pa-
rameters but costs more training time. Overall, considering both
model performance and training efficiency, we use BERTbase in
our experiments.

C. Baselines

• SG,CBOW are the skip-gram and continuous-bag-of-
words models by Mikolov et al. [6]. For skip-gram, a common
practice is to use the center word embedding as the primary
output. For fair comparison against our model, we also show the
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TABLE I
MAIN RESULTS ON WORD SIMILARITY AND ANALOGY TASKS. THE ELMO, GPT2, BERT AND XLNET MODELS USE 512, 768, 768 AND 768 DIMENSIONAL

EMBEDDINGS, RESPECTIVELY, WHILE OTHERS USE 300 DIMENSIONAL VECTORS. † AND ‡ INDICATE STATISTICAL SIGNIFICANCE COMPARED TO BOTH SG AND

BERTavg MODELS ACCORDING TO [48], [64] WITH p < 0.01 AND p < 0.05, RESPECTIVELY

results from the context word embedding, which is denoted as
SG(context).
• GloVe is a log-bilinear regression model which leverages

global co-occurrence statistics of corpus [7].
• FASTTEXT takes into account subword information by

incorporating character n-grams into the skip-gram model [65].
• Deps modifies the skip-gram model using dependency

parse trees to replace sequential contexts [32].
•BERT. We investigate three ways to distill BERT [11] into

static embeddings for lexical semantics tasks. The first method,
called BERTtoken, ignores the contextualized parameters and
uses the mean pooled subword token embeddings from E in
Eq. 3 as a set of static embeddings. The second method, called
BERTword, takes each single word as a complete sentence and
output its word representation as a static embeddings. The third
method, called BERTavg , takes the average of output oi in Eq. 6
over training corpus. The methods are similar to [26] but the
results directly comparable with our method due to the use of
the same training corpus.
• ELMo,GPT2 and XLNet. Similar to BERT, we also

investigate the token embeddings, word embeddings and the
average of output representation from ELMo [8], GPT2 [10] and
XLNet [12] models. The baselines are ELMotoken, ELMoword,
ELMoavg , GPT2token, GPT2word, GPT2avg , XLNettoken,
XLNetword and XLNetavg , respectively.
• Context2vec. Melamud et al. learns the context embed-

ding by using single layer bi-directional LSTM [37], the original
model was trained on the two-million-word ukWaC corpus [66].
We reimplement their method and train on the same Wikipedia
corpus for fair comparison.
• SynGCN. Given a training sentence, Vashishth et al. [27]

use GCN to calculate context word embeddings based on the
syntax structure.

The above baselines can be categorized into three classes,
as shown in the first column in Table I. In particular, the first

category of methods are static embeddings, where word vectors
come from a lookup table. In the second category, static embed-
dings from contextualized word embedding models are used. In
the last category, contextualized information is integrated in the
training of skip-gram embeddings.

D. Results

Table I shows the main results on word similarity and analogy
tasks. The models that we compare are all evaluated on the same
dataset under the same settings, which means that they can be
slightly different from the results reported in the original papers.
In general, the models that integrate contextualized information
into static embeddings performs better than the others. How-
ever, compared with LSTM and GCN, our model with BERT
representation gives the best results. Overall, our model gives
the best performance on 5 out of 7 datasets. In particular, it
outperforms the best performing baselines by a large margin on
WS353 and Google datasets, obtaining 4.5% and 3.1% absolute
improvements, respectively.

We find that within WS353, our model gives much more
improvements on the WS353R (relatedness) subset than the
WS353S (similarity) subset [67]. In the WS353S dataset, the
word pairs belong to the same semantic category. Examples
include 〈dog, cat〉 and 〈money, dollar〉. We find that such words
typically share the same context words explicitly, and therefore
the baseline SG model can more easily differentiate them. In con-
trast, in the WS353R dataset, the word pairs has semantic rela-
tions rather than being synonyms. Examples include 〈computer,
keyboard〉 and 〈baby, mother〉. Such words may not have the
same context explicitly, although the context may have similar
themes and meanings. Therefore, using BERT to represent the
surrounding words gives the model better disambiguation power.

Among the static word embedding baselines, the skip-
gram and CBOW models give relatively similar results. The

Authorized licensed use limited to: Westlake University. Downloaded on January 03,2023 at 05:37:33 UTC from IEEE Xplore.  Restrictions apply. 



1324 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

TABLE II
WORD CONCEPT CATEGORIZATION RESULTS

context embeddings perform worse than the center embeddings
in skip-gram model. The FASTTEXT model gives the best result
for word similarity tasks by leveraging subword information.
The syntax-based embeddings Deps outperforms other static
embeddings on the SemEval-2012 dataset. The reason can be
that the syntax-based embedding encodes functional similarity
rather than topical similarity [68], which is more suitable for
the relation similarity tasks, including relation classes such as
“part-whole” (e.g., 〈car, engine〉 is more similar to 〈hand, finger〉
than 〈bottle, water〉) and “cause-purpose” (e.g., 〈anesthetic,
numbness〉 is more similar to 〈joke, laughter〉 than 〈smile,
friendship〉).

With regard to contextualized embedding models, the static
token embeddings (e.g., BERTtoken) and the average of output
representations (e.g., BERTavg) outperform static methods in
general. In particular, BERTavg gets the best result on RG65
dataset. This shows the effectiveness of sentential information.
Our method outperforms these methods for using contextualized
embeddings, showing the usefulness of integrating contextual-
ized embeddings into static embedding training based on the
distributional hypothesis. The single word-based representation
methods performs relatively worse than the token-based or
average-based methods, especially for GPT2 and BERT models,
which indicates that treating each words as a sentence is not
effective for obtaining static embeddings.

Table II shows the results on word concept categorization.
Similar to the results of word similarity and analogy, our model
gives significant improvement over the SG and BERTavg base-
lines, obtaining competitive results against other methods. Over-
all, our model gives the best averaged performance, showing
the advantages of integrating both contextualized and word
co-occurrence information.

Note that the results that we obtain are not the absolute
best results on many datasets. For example, Rescki et al. [69]
obtain a Spearman’s rank correlation of 76.0 on the SimLex-
999 dataset, and Pilehvar et al. [70] obtain a Spearman’s rank
correlation of 92.0 on the RG65 dataset. These state-of-the-art
results are obtained by using different external resources, such as
WORDNET and 4LANG concept dictionary for Rescki et al. [69]
and WIKTIONARY for Pilehvar et al. [70], which makes direct
comparison with the methods unfair. Therefore, we did not
include all state-of-the-art results in Table I and II.

E. Extrinsic Results

There has been debate about the correlation between in-
trinsic evaluation and extrinsic evaluation [71], [72]. The

TABLE III
RESULTS ON EXTRINSIC TASKS. THE BERTavg MODEL USE 768 DIMENSIONAL

EMBEDDINGS. SG, SYNGCN AND OURS USE 300 DIMENSIONAL EMBEDDINGS

general conclusion is that contextualized embeddings signifi-
cantly outperform static embeddings [8], [11], although there
has been recent argument that given sufficient training data
static embeddings do not necessarily underperform contextu-
alized embeddings by a large margin [25]. We conduct extrinsic
evaluation on chunking, NER and POS-tagging. The results are
shown in Table III. The baseline model skip-gram, the syntactic
GCN baseline and the BERTavg are compared. From the table
it can be seen that the methods give relatively similar results,
with our method outperforming the baselines in general, giving
the best results on NER task, although the improvement are not
significant as in the intrinsic evaluation.

VI. ANALYSIS

Below we investigate the main reason behind the effectiveness
of our method.

Fine-grained Result. Table IV shows the word similar-
ity results of some representative word pairs. BERTtoken and
BERTword do not capture the relatedness of 〈dividend, payment〉
and 〈murder, manslaughter〉 due to lack of consideration of con-
text information, showing discrepancy between human judge-
ment and model scoring. BERTavg improves the performance.
Almost all the models give better results for word pairs that
have higher co-occurrence frequencies. For example, the phrase
“benchmark index” and “board recommendation” appear 8 and
29 times in corpus, respectively. In addition, the same neigh-
boring words appearing in more sentences may have more
similar averaged contextualized representations, thus resulting
in the fact that BERTavg gives higher similarity scores compared
with human judgement. SynGCN tends to underestimate the
relationship between word pairs compared with other models,
which shows negative influence of differentiating syntactic con-
texts. Overall, the results of our model are closer to human
judgement.

For word analogy, we compare the performance of models
according to different types of word pairs. Table V shows the
results. BERTtoken and BERTword perform relatively worse
on “capital-country” and “city-state” compared to skip-gram
because it does not model context information. BERTavg im-
proves the results by a large margin, giving comparable results
on grammatical related word analogy such as “plural” due to the
use of sentential information. SynGCN performs relatively well
on grammatically related word pairs by using syntax structures.
However, it does not perform as well on “capital-country” and
“nationality-adjective” compared with the sequential context
based skip-gram model. In contrast, our model takes the advan-
tages of both syntactic and semantic patterns by using BERT,
and gives the best overall performance.
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TABLE IV
WORD SIMILARITY COMPARISON BETWEEN HUMAN AND MODELS. THE SCORES OF HUMAN ARE NORMALIZED TO (0,1). THE NUMBERS IN THE PARENTHESES

DENOTE THE DIFFERENCE OF COSINE VALUES AND HUMAN JUDGEMENTS

TABLE V
WORD ANALOGY PREDICTION ACCURACY ON GOOGLE DATASETS ACCORDING TO DIFFERENT TYPES OF WORD PAIRS

Fig. 3. Visualization of word pairs with the male-female (a-i) and positive-negative (j-l) relationship.
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TABLE VI
NEAREST NEIGHBORS FOR WORDS “LIGHT” AND “WHILE”

Fig. 4. Attention distribution visualization of the sentences.

Word Pairs Visualization. Fig. 3(a)-(i) shows the t-SNE [73]
visualization results for word pairs with the male-female rela-
tionship. For example, the pronoun pair 〈he, she〉, the occupation
pair 〈policeman, policewoman〉 and the family relation pair
〈grandpa, grandma〉 all differ only by the gender characteris-
tics. In particular, the skip-gram, CBOW, GloVe, FASTTEXT
and SynGCN baselines all capture the gender analogy through
vector space topology to some extent. However, inconsistency
exists between different word pairs. For BERT based vectors,
BERTavg performs better than the others, which shows the
importance of contextualized information. Overall, the outputs
of our method are highly consistent, better demonstrating the
algebraic motivation behind skip-gram embeddings compared
with the fully-static skip-gram algorithm. This demonstrates
the effect of contextualized embeddings in better representing
semantic information.

Given that different words can occur with different frequency
in the corpus, we also show more results for words with positive-
negative relationship in Fig. 3(j)-(l). Similar to the findings
in previous word pairs, the results become better form SG to
BERTavg and our model, which shows the advantages of our
model again.

Nearest Neighbors. Table VI shows the nearest neighbors to
the words “light” and “while” according to cosine similarity.
In particular, for the noun “light,” static embeddings yield many
noise and unrelated words such as “uv,” “stevenson,” “exclud-
ing,” “baha’i” and “prostějov,” which may occur in the context
of “light”. In contrast, our method captures the main meaning
and generates cleaner results.

For word “while,” static methods yield words that tend to
co-occur with the word “while,” such as “preparing,” “still,”
“taking” and “instead”. In contrast, SynGCN returns words
that are semantically similar, namely those that are related to

time. In contrast with the baselines, our method returns multiple
conjunctions that have similar meanings to “while,” such as
“whilst,” “whereas” and “although,” which better conforms to
the intuition, demonstrating the advantage of using contextual-
ized to address word sense ambiguities.

Attention Distribution Visualization. Fig. 4(a) and Fig. 4(b)
show the attention weights in Eq. 13 when different words are
used as the center word for the sentences “football is the most
popular sport in Brazil” and “seven police officers and four
workers were killed”. As expected, for each center word, the
most relevant context word receives relatively more attention.
For example, the word “football” is more associated with the
words “popular” and “sport,” the word “the” is more associated
with nouns, and the nouns “police officers” and “workers” get
the most attentions. No word pays attention to the word “the”
in the context words, which is a stop word, and the words
“seven,” “and” and “four” get the least attentions, which are
numeral-measure words and conjunction.

VII. CONCLUSION

We investigated how to make use of BERT embedding for
better training skip-gram embeddings. Compared with recent
work using GCN to the same end, we show that BERT serving
as context embeddings give a balance between syntactic and
surface features, selecting useful context more effectively. Our
method gives the best results on a range of benchmarks. Fu-
ture work includes the investigation of sense embeddings and
syntactic embeddings under our framework.
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