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Abstract—Self-training is a useful strategy for semi-
supervised learning, leveraging raw texts for enhancing
model performances. Traditional self-training methods de-
pend on heuristics such as model confidence for instance
selection, the manual adjustment of which can be expensive.
In addition, characteristics of extra training sentences are
not considered beyond the baseline method. To address these
challenges, we propose a deep reinforcement learning method
to learn self-training strategy automatically. Based on the
neural representation of sentences and the hidden features
from classifiers, a deep Q-network based model is designed to
capture their linguistic characteristics and learn an optimal
policy for instance selection automatically. Results show that
our approach outperforms baseline self-training in terms of
better performances and stability.
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I. INTRODUCTION

Self-training is a commonly used semi-supervised learn-
ing strategy that has been used for various natural language
processing (NLP) tasks, such as named entity recognition
(NER) [1], part-of-speech (POS) tagging [2], [3] and
parsing [4], [5], [6], [7]. The basic idea is to augment
the original training set with a set of automatic predic-
tions. There have been different strategies for selecting
automatically labeled data, the most typical one being the
confidence values of the baseline models.

How to define and measure the confidence of predic-
tions is crucial for a successful self-training approach.
Traditional self-training solutions manually design task-
specific heuristics [8], [9], [10], [11], [12]. This can
lead to two drawbacks: 1) manual adjustment of instance
selection strategy can be rather costly; 2) for the best
effect on an unknown dataset, the source of information
is limited to model confidence and a few other simple
heuristics. However, linguistic characteristics of specific
test sentences cannot be easily captured.

We aim to address these issues by leveraging neural
models to represent test sentences, using reinforcement
learning to automatically learn an instance selection strat-
egy. In particular, by reordering sentences as text stream,
a self-training approach can be regarded as a decision pro-
cess, where each step decides whether the next incoming
automatically labeled instances should be selected. Since
no gold labels exist for instance selection, we use deep
Q-network (DQN) [13], [14], [15] to learn the selection
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strategy automatically, on the basis of the performance
improvements on a set of development data.

To better capture the linguistics of sentences in the
state of the DQN network, we designed a CNN model
to learn the neural representation of sentences and their
marginal probability distribution. The hidden features from
the taggers are also input to the DQN network to calculate
the Q-value for sentence selection.

A major advantage of our method as compared to tra-
ditional self-learning is that instance-level characteristics
can be combined with model-level confidence information
using a neural model that is adaptively trained using rein-
forcement learning. Such information combination allows
DQN to mitigate the bias between labeled and unlabeled
datasets. As a result, the selection of automatically labeled
instances is more helpful to improve the self-training
performance.

On standard NER and POS tagging tasks, our method
shows better performance compared to traditional self-
training. In particular, the sentences selected by our
solution provide more useful information to promote
the self-learning performance. We release our code at
http://github.com/CCSoleil/dqn_rlsl.

II. RELATED WORK

Self Training is a simple semi-supervised algorithm
that has shown its effectiveness in parsing [4], [5], [6],
[7], part of speech tagging [2], [16], [3], named entity
recognition [1], [17], sentiment classification [18], [19],
[20], and other NLP tasks. The performance of the self-
training algorithms strongly depends on how automatically
labeled data is selected at each iteration of the training
procedure. Most existing approaches set up a threshold and
treat a set of unlabeled examples as the high-confident pre-
diction if its prediction is above the pre-defined threshold
value. Such a selection metric may not provide a reliable
selection [21].

Some researchers explore extra metrics as an auxiliary
measurement to evaluate instances from unlabeled data.
For example, Ardehaly and Culotta [9] used coefficients
learned from the model on the source domain as a selec-
tion metric and report a positive effect when applying self
training in the target for hierarchical multi-label classifi-
cation task. Katz-Brown et al. [10] proposed to produce a
ranked list of n-best predicted parses and selected the one



Input: Train set 7', dev set D, unlabeled data U,
budget;
Output: tagger;
Initialize DQN; tagger « train(7, D);
i+ 0;b+0; 5« {};
while i < budget and U is not empty do
while b < batchsize do
x < a random instance from U;
U+ U\x; b b+1;
qualue < DQN (x, tagger);
if argmax(qualue) ==1 then
y < tag(tagger,T);
T+ TU(z,y); S« SU(z,y);
end

end

tagger < train(T, D);R < tagger(S);
DQN < updateDQN(tagger, R, S) ;
i—i+1;0+ 0,5« {};

end
Algorithm 1: DQN-based self-training

yields the best external evaluation scored on the down-
stream external task (i.e., machine translation). Rosenberg
et al. [8] examined a few selection metrics for object de-
tection task, and showed that detector-independent metric
outperforms the more intuitive confidence metric. Various
pseudo-labeled example selection strategies [11], [12] have
been proposed.

Zhou et al. [22] explore a guided search algorithm to
find informative unlabeled data subsets in the self-training
process. The experimental results demonstrate that the
proposed algorithm is in general more reliable and more
effective than the standard self-training algorithm. These
heuristic choices however require careful parameter tuning
and domain specific information.

Most recently, Levati et al. [23] proposed an algorithm
to automatically identify an appropriate threshold from
a candidate list for the reliability of predictions. The
automatic selected threshold is used in the next iteration
of self-training procedure. They scored each candidate
threshold by evaluating whether the mean of the out of bag
error between the examples with reliability score greater
than the considered threshold is significantly different
from the mean of the out of bag error of all the examples.
Our work is in line, but extends the role that the neural
network plays in guiding self-training.

Our work also belongs to a recent strand of work on
meta learning [24], [25], [26], [27], [28], [29], [30], most
of which leverage deep reinforcement learning. Fang et
al. [15] leveraged a deep Q-network to learn the query
policy for active learners. The substantial difference is that
active learning needs to query human experts or oracles
to provide gold labels, whereas self-training associates
instances with automatic prediction labels. Wu et al. [31]
investigated reinforced co-training for clickbait detection
and text classification. Their approach learns how to
choose predefined unlabeled subsets based on model-level

confidence (i.e., the probability distributions of two base
classifiers). Our work is different from theirs in three
aspects. First, we adopt a stream-based learning strategy,
randomly sampling every batch of instances. Second, we
adopt a binary Q-value in DQN model instead of k values.
Third, the state of DQN in our work is richer because our
model uses not only the probability output of the baseline
classifier, but also the representations of instances and
internal neural features from the base classifier. Therefore,
our model can potentially exploit more information to
learn a stable strategy for instance selection. To our knowl-
edge, we are the first to use meta learning for enhancing
self-training.

III. LEARNING HOW TO SELF-TRAIN

We design a deep reinforcement learning neural network
to train the self-training function that can select high
quality unlabeled instances automatically to improve the
performance.

A. DQON-based self-training

Algorithm 1 shows pseudocode for DQN-based self-
training, which consists of three main steps. First, it
randomly accesses a batch of unlabeled instances, using
the DQN model to assign confidence scores (qualue) for
each instance. Second, it makes decisions about instance
acceptance or rejection. Once an instance is accepted, its
prediction will be included to the training set 7'. Third,
the tagger and the DQN are retrained using the updated
training set and performance rewards. This process repeats
until the predefined budget is used up or the algorithm
traverses all the instances.

B. Model Structure

Fig. 1 shows the the three-layered neural network for
Q-function (qualue in Algorithm 1) learning. The input
layer is the state representation. In particular, a state s
consists of four elements (hs, he, hy, hy), where hg is
the content representation of the arriving instance, h. is
the tagging confidence of the instance, h,, is the marginals
of the predictions for this instance, and h; is the hidden
features from the baseline neural tagger. h, is the instance-
level linguistic characteristics, h., hy, h; are model-level
characteristics.

As shown in Fig. 1, each instance is represented by
concatenated word embeddings. This representation vector
is passed through a convolution neural network (CNN)
with the convolution size being (3, 4, 5), and 128 filters
for each size. Each filter uses a linear transformation with
a rectified function. The filter outputs are then merged
using a max-pooling operation to yield a hidden state hg,
resulting a vector of size 384 that represents the content
of this instance.

The confidence of the tagger for an instance h, is
defined based on the most probable label sequence for
this instance. We adopt a Bi-LSTM-CREF tagger [32] as the
baseline tagger and the confidence value can be calculated
via forward-backward algorithm. This value also can be
defined for different taggers.
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Figure 1. The neural network for Q-function.

The marginals of the prediction for an instance is
also passed to a CNN, with the filter number being 20
and the convolution size being 3. These feature maps
are then sub-sampled with mean pooling to capture the
average uncertainty in each filter. The pooling result h,
is used to represent the predictive marginals. Finally,
s = (hs,he, hp,hy) is fed to the second layer with a
rectified function, the dimension of which is 256. The
output feature is then used to calculate the expected Q-
value in a softmax layer of size 2, indicating whether an
instance should be selected or not.

In order to include richer model-level characteristics, we
extract the last hidden layers from the tagger to represent
the view of the tagger for the arriving instance.

C. Training DON

DQN learns an optimal policy = via a Q-function:
Q™ (s,a) — R, where s is the current state, a is the
action, and R is the cumulative reward after taking a from
s. Q™(s,a) can be iteratively updated using the rewards
obtained from the sequence of actions, based on the Bell-
man equation. Formally, Q™ (s, a) = E“[Zthi Yy ss =
s,a; = al], where v € [0,1] is the discounting rate and r;
is the reward at the ¢-th step.

Following Minh et al. [13], we train DQN using
an experience replay mechanism. The current state, its
actions and corresponding rewards are recorded in a
memory. The parameters of the DQN are learned us-
ing SGD to match the Q-values predicted by the DQN
and the expected Q-values from the Bellman equation,
r; +ymax, Q(s;11,a;0). Samples are randomly selected
from the experience memory to update the parameters of
DQN by minimizing the loss function:

L(0) = (r -+ 7 max Q(s',a') — Q(s,))?

Here s’ is the new state after executing a from s. The
training procedure is repeated with incoming instances. We
conduct a significance test on the performance difference

among a series of consecutive actions to decide whether
an episode should be terminated. If the performance
difference of the tagger is insignificant, we restart a new
episode.

Rewards. If an instance is not selected, the reward is
set to 0; otherwise, the reward of a select action is defined
as the performance difference of the tagger after a batch
of instances are added to the training set.

IV. EXPERIMENTS

We conduct a series of NER and POS tasks to evaluate
our proposal.

A. Data

For the NER experiments, we use the training, de-
velopment and evaluation data sets from the CoNLL
2002/2003 shared tasks [33], [34] for four languages:
English, German, Spanish and Dutch. We follow existing
corpus partitions, with train used for policy training,
testb used as development set for computing rewards,
and final results are reported on testa.

The Europarl-v7 raw dataset [35] for machine transla-
tion is selected as the unlabeled data for the aforemen-
tioned four languages. A pretrained embedding for each
language [36] is used in the experiments.

For the POS experiments, we use the SANCL2012
dataset [37]. In this dataset, the OntoNotes are used as the
labeled data, and gweb-newsgroups, gweb-reviews, gweb-
emails, gweb-weblogs are selected as unlabeled data.

B. Baselines and Training Settings

We implement two baseline solutions, i.e., a random
sampling solution (denoted as RD) and a confidence-based
self-training solution (denoted as TSL). For both RD and
TSL, the tagger is initialized with the same instances as
the DQN-based approach. For RD, a stream of unlabeled
sentences are randomly selected and predicted by the
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Figure 2. Self-training for POS tagging (training)

Newsgroup | Reviews | Weblogs | Emails | Average English | Dutch | Spanish | German | Average
NO SL 94.69 92.40 9494 | 93.20 | 93.81 NO SL 92.44 82.54 84.52 78.00 84.38
RD 94.81 92.63 9494 | 9340 | 93.94 RD 92.43 82.62 84.40 77.93 84.35
TSL 94.83 92.65 95.00 | 9341 93.97 TSL 92.64 83.01 84.65 78.35 84.66
DQN 94.87 92.71 95.04 9347 | 94.02 DQN 92.74 83.57 84.80 78.68 84.95
Table T Table II

POS TAGGING PERFORMANCES

tagger. For TSL, the confidence score of an unlabeled
sentence x; with n tokens is {/max, P(y|z;).

For the DQN solution, an episode of DQN terminates
when the latest 10 rewards is smaller than a given thresh-
old (0.001), indicating insignificant performance change.
To optimize the weights of the DQN, the DQN for each
task is trained for 10,000 episodes. In the experiments, the
batch size is set to 32, ~ is set to 0.99, the replay buffer
size is set to 1,000 and e-greedy sampling is used.

In the NER experiments, we use the state-of-the-art
BiLSTM-CNN-CRF NER tagger' [32] as our baseline
model. In the POS experiments, a CRF model is used
to implement the POS tagger, since it gives competitive
results and run faster.

C. Self-training for NER

Table II shows the results. In general, RD does not
outperform NO SL. TSL is better than both NO SL and
RD, in particular improving an Fl-score of 0.3 compared
with NO SL. DON behaves consistently with the best
performances on all the four datasets. Compared with NO
SL, DON has an 0.57 improvement of F1-score on average.
In particular, the improvement of Fl-score over NO SL
is more than 1.0 for Dutch. Compared with TSL, DON
is significantly better on all four language datasets. In
addition, we find that DQN is more stable than RD and TSL.
After adding more unlabeled sentences, the F1-scores of
the two baselines drop dramatically, whereas DON still has
a stable performance.

D. Self-learning for POS tagging

The results are shown in Table I. We can observe that
our DQN-based solution has a better performance than

Thttps://github.com/guillaumegenthial/sequence_tagging

NER PERFORMANCES

the two baseline solutions in each domain. In particular,
for the Reviews scenario, the accuracy of the our DQN-
solution increases about 0.31% compared to NOSL so-
lIution. The accuracy of the two baselines also increase
with 0.23% and 0.25% respectively, and the accuracy of
the DQN-solution is further better than the T'SL and
RD solutions. Similar results can be observed for the
Newsgroup, Weblogs and Emails scenarios, as shown in
Table 1.

E. Training characteristics

We also recorded the performance of the tagger during
the training. Fig. 2 shows the training performance of the
pos-tagging scenarios. We can observe that the perfor-
mance of the DQN-solution increases slowly by adding
the increasing number of unlabeled instances in all four
scenarios (up to 0.3%). This shows that the DQN-based
self-learning is effective in improving the training perfor-
mance. Similar training trends can be observed for the
NER. This is because our DQN-solution converges slowly
than traditional method. As a result, our DQN-solution
is able to utilize more unlabeled sentences effectively to
promote the self-training performance.

V. ANALYSIS

We investigate the sentences selected by each solution,
and find that TSL selects the sentences most with no enti-
ties (around 95.6% of the selected sentences) for English.
This might be due to the fact that sentences with no entities
are usually associated with larger confidence values. In
contrast, DON favors the sentences with richer entities,
resulting that around 54.1% of the selected sentences
contain at least one entity. Similar results are observed
for Spanish and German.



D Instance TSL DQN

1 [Wayne Ferrei ralppg [South Africalpoc | Yes Yes
beat [Jiri Novak]pgr [Czech]; oc.
2 The rapporteur wants assistants working in | No Yes

[Brussels]poc to be covered by [Commu-
nity rules]org.

(98]

says is first state to apply for new welfare. | Yes No

4 Commissioner [Frattini]pgr wants | No Yes
[Europe]poc to attract a skilled workforce.

Table III
SELECTED INSTANCES OF ENGLISH NER TASK (BLUE: CORRECT
PREDICTION, VIOLET: WRONG ANSWER.)
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Figure 3. NER tag distributions on instances selected by TSL, instances
selected by DON and the original English training dataset.

Table III shows some instances selected by TSL and
DON for the English NER task. All entities in Instance
1 are tagged accurately. Both TSL and DON select this
instance. Community rules is wrongly tagged as ORG in
Instance 2, leading to a small confidence score. As a result,
TSL did not select this useful instance. In contrast, DQN
successfully accepts this prediction result. The LOC entity
in this instance is correctly tagged. A similar phenomenon
can be found in Instance 4, both the PER and LOC entities
are tagged with a very small confidence score, TSL rejects
this instance, whereas DQN accepts this prediction. TSL
assigns Instance 3 a very large confidence score since there
are no named entities at all, while DQN learns to reject this
instance, which is not useful for self training.

In addition, compared with TSL, DQN produces a much
closer entity tag distribution to that of the original English
dataset, as shown in Fig 3. TSL produces surprisingly large
number of PER entities and small number of MISC and
ORG entities, while DON gives less spiky distributions.

VI. CONCLUSION

We proposed a deep Q-network for automatically learn-
ing to self learn, accepting model predictions based on
instance-level linguistic characteristics and model-level
outputs. Results on NER and POS tagging tasks show
that our approach is consistently better than the random
sampling baseline and the traditional confidence-based
self-learning solutions.
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