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Balancing Precision and Recall for Neural
Biomedical Event Extraction

Fangfang Su , Yue Zhang , Member, IEEE, Fei Li , and Donghong Ji

Abstract—Biomedical event extraction is an essential task in
the biomedical research. Existing models suffer from the issue of
low recall due to the large proportion of unrecognized events and
inflexible event argument combination. To address this issue, we
propose an end-to-end multi-task approach for biomedical event
extraction. Our model is able to achieve balanced precision and
recall with several nichetargeting designs. First, neural encoders
with rich lexical and syntactic features are used and shared by
multiple subtasks such as event trigger recognition and argument
relation extraction, in order to enhance the generalizability of the
model. Second, a novel auxiliary subtask is added to identify the
proteins that participate in the events, which helps decreasing the
challenge of mining event-related proteins from the large candidate
space. Third, event argument combination is performed using a
strong neural network rather than inflexible rules or templates, to
further increase the recall, especially for complex nested events.
To demonstrate the effectiveness of our model, we evaluate it on
two widely-used biomedical event extraction datasets used in the
BioNLP 2011 and 2013 shared tasks. Our model achieves the state-
of-the-art results (63.15% and 55.67% in F1 score) by significantly
improving the recalls (compared with DeepEvnetMineSciBERT ,
4.65% and 5.0%) on the two datasets. Further experiments and
analyses show the effectiveness of our proposed features and mod-
ules in the model.

Index Terms—Argument combination, biomedical event
extraction, dependency graph, graph convolutional network,
multi-task approach.

I. INTRODUCTION

B IOMEDICAL event extraction is the task of capturing
important information from the unstructured biomedical

text and presenting them in the form of logic and structure. It
can help researchers gain a quick understanding of literature
knowledge and facilitate computational biomedical research.
While the task is essential and valuable, it is challenging to
extract event information from biomedical text accurately.

Manuscript received September 8, 2021; revised December 16, 2021 and
March 7, 2022; accepted March 7, 2022. Date of publication March 22, 2022;
date of current version May 12, 2022. This work was supported in part by
the National Natural Science Foundation of China under Grant 62176187, in
part by the National Key Research and Development Program of China under
Grant 2017YFC1200500, and in part by the Research Foundation of Ministry of
Education of China under Grant 18JZD015. The associate editor coordinating
the review of this manuscript and approving it for publication was Dr. Jing
Huang. (Corresponding author: Donghong Ji.)

Fangfang Su, Fei Li, and Donghong Ji are with the Key Laboratory of
Aerospace Information Security and Trusted Computing, Ministry of Educa-
tion, School of Cyber Science and Engineering, Wuhan University, Wuhan,
Hubei 430072, China (e-mail: fangsu@whu.edu.cn; foxlf823@wias.org.cn;
dhji@whu.edu.cn).

Yue Zhang is with the Department of Engineering, Westlake University,
Hangzhou 310024, China (e-mail: yue.zhang@wias.org.cn).

Digital Object Identifier 10.1109/TASLP.2022.3161146

Fig. 1. A biomedical event example in BioNLP 2011.

Fig. 2. A biomedical event extraction example of nested structure.

As shown in Fig. 1, biomedical event extraction aims to
discover event triggers with specific types and a set of their
arguments in a given text. The whole task can be broken into
several components, such as trigger recognition (underlined red
font), relation extraction (the Theme role between the trigger
“complexes” and the candidate argument “STAT5A”), and ar-
gument combination (“STAT5A” and “STAT5B” are arguments
of the triggers “complexes” and “binding”; these two arguments
and the trigger “complex” form a complete event, yet form two
different events with the trigger “binding”).

One challenge of this task is that an event could serve as
an argument of another event, leading to a nested structure. In
addition, a trigger with different arguments can form multiple
events in a sentence. Fig. 2 shows an example of a nested event
structure in the biomedical domain. In Fig. 2(a), the sentence
is marked with three events: a Phosphorylation event and two
Regulation events.

The entities STAT3, Vav, and Rac-1 (in boxes) are proteins, and
the words above dashed lines (i.e., phosphorylation and involve)
are triggers. The words below dashed lines (i.e., Phosphorylation
and Regulation) denote the types of triggers. An arc shows that
one entity or event is an argument of another entity. The arc
points from the trigger to the argument, and the arc label is the
role of the argument. Fig. 2(b) gives the types and arguments
of the three events in the sentence of Fig. 2(a). We can see that
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E1 is a simple event, which is one argument of E2 and E3,
thus forming two nested events. In addition, the trigger, involve,
generates two different events E2 and E3. These examples show
that nested events and overlapping events drastically increase
the complexity of biomedical event extraction.

Earlier studies on biomedical event extraction are feature-
based [1]–[4], adopting traditional methods such as support
vector machine (SVM [5]). With the development of deep
learning, biomedical event extraction has acquired considerable
progress [6]–[9] by leveraging continuous representations of
neural networks. However, these methods also show weak-
nesses. In particular, previous research results show that they
obtained higher precision but lower recall (e.g., precision is
71.73% and recall is 53.21%). For a specific type of event,
recall reflects the number of true examples found by the model
compared with the total number of existing positive examples in
corpora. Thus, recall is an essential evaluation criterion for event
extraction. Existing methods give relatively low recall values
for trigger recognition and relation extraction, thus suffering
from significant proportions of undetected events. In addition,
for the argument combination task, most previous research uses
hand-crafted sentence templates for constructing events [3] or
a traditional binary classification that relies on a manually de-
signed set of features [4], where even joint methods [2], [10]
also deal with the argument combination module separately.
This leads to low performance, especially low recall for Binding
events and Complex events.

To address the above issues, we aim to build a neural model
that gives a stronger balance between precision and recall so that
more useful events can be detected for downstream tasks. To this
end, we consider an end-to-end neural model that includes the
three sub-tasks. We consider three key factors for improving
recall. First, neural encoders with multiple feature sources (e.g.,
syntax, sequence, and pre-training) are shared across tasks so
that the chance of overfitting to certain task-specific spurious
patterns on training data can be reduced [11]–[15]. Second,
intermediate steps are added to shortlist structural candidates
for further screening so that the challenge of identifying cer-
tain proteins from a large candidate space is reduced, and the
learning challenge is reduced as well. Third, neural models are
used instead of rules or templates to avoid extracting only a
small fraction of specific targets, while omitting other instances.
Fig. 3 shows the flow chart of our method involving trigger
recognition, relation extraction, and argument combination. As
shown in Fig. 3, for trigger recognition, we introduce an auxiliary
task to identify the proteins that participate in the events as a
preprocessing step, which we call jprot. This task can not only
give valuable features for the subsequent trigger recognition
task, but also reduce the difficulty of trigger recognition by re-
ducing the candidate space. We adopt the widely-used GCN for
information extraction task. Although the overall performance
is not high after applying it to biomedical event extraction, this
approach can balance precision and recall. Last but not least, a
neural network method is designed for argument combination,
which is jointly trained with trigger recognition and relation
extraction. This gives our model more flexibility compared to
post-processing rules [4], [16]–[18].

Fig. 3. Flow chart of biomedical event extraction.

We evaluate our model on the BioNLP 2011 (GE11), and
BioNLP 2013 (GE13) shared task. Experimental results show
the effectiveness of the neural method for improving recall.
Our final model achieves the state-of-the-art on both datasets,
achieving 63.15% and 55.67% F1 scores on the GE11 and
GE13 test datasets, respectively, and obtaining up to 3.48%
and 3.95% absolute gains in terms of recall compared with
previous state-of-the-art methods on the GE11 and the GE13 test
data, respectively. In addition, jprot gives much improvement
for trigger recognition. By sharing two encoders with relation
extraction, argument combination significantly improves Bind-
ing and Complex events. Finally, compared with most existing
work [3], [8], [19], our end-to-end model for biomedical event
extraction removes the cost for manual efforts. We release our
code at https://github.com/appleml/event_extraction.

II. TASK DEFINITION

The task of biomedical event extraction was proposed in
2009 [20]. As shown in Fig. 3, a biomedical event has a structural
representation, usually composed of a trigger with one or more
arguments. The argument can be a protein or other events.
Necessary subtasks for biomedical event extraction include
protein identification involved in events, trigger recognition,
relation extraction, and argument combination. Our method of
biomedical event extraction consists of four stages. The overall
process of biomedical event extraction for an example sentence
is illustrated in Fig. 3

A. Jprot Identification

The proteins annotated in advance can be divided into two
categories according to whether they participate in the events
or not. We call the proteins involved in events jprot. As shown
in Fig. 3(b), IL-2, STAT5A, and STAT5B are proteins, and IL-
2 is not a jprot because it is not involved in any events. We
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introduce jport identification as a separate sequence labeling
task following named entity recognition [21], [22]. Considering
that there are a large number of multi-word proteins, we apply
the BIO scheme, where B, I and O indicate that a token is the
Beginning(B), Inside(I), and Outside(O) of an entity mention,
respectively. We apply the BiLSTM-CRF framework, effective
in sequence labeling, to recognize jprot.

B. Trigger Recognition

Trigger identification is a primary task of biomedical event
extraction. The types of triggers can be roughly divided into three
categories: Simple type, Binding type, and Complex type. For
the Simple type, a trigger has only one Theme argument, which
must be a protein. The Binding triggers have one or more protein
arguments. The Complex triggers have one or two arguments,
which can be proteins or other events. The relation between a
trigger and an argument can be Theme or Cause, which are also
called roles.

Note that we ignore some special trigger cases (e.g., for a
trigger with multiple types or the case of overlapping) but only
keep simple types. As shown in Fig. 3(c), we recast trigger
recognition as sequence labeling and adopt BiLSTM-CRF with
different features compared to jprot identification.

C. Relation Extraction

Relation extraction aims to extract the relationship (a.k.a.
role) between triggers and candidate arguments. There are only
two role types in this task: Theme and Cause. The Simple and
Binding triggers can have one or two Theme arguments, which
are proteins. The Complex events have one obligatory Theme
and one optional Cause, each of which can be either a protein
or another event, thus resulting in nested events. We simplify
nested events by judging the relationship between triggers and
the triggers of argument events.

We combine syntactic information and sequence information
for relation extraction. As shown in Fig. 3(d), a pair of orange
brackets indicates the relation between a trigger and an argument
that has been identified.

D. Argument Combination

Since triggers may be involved in more than one events with
shared arguments, after relation extraction, we need further
to generate events from the results of relation extraction. To
this end, most existing researches manually define templates
and rules [3], [16], [17] or use manual features with SVM to
judge whether two arguments belong to the same event [4],
[18]. In this paper, we use the neural network method to gener-
ate events. Binding and Complex events, which contain three
complex types, namely Regulation, Positive_Regulation, and
Negative_Regulation, account for a more significant proportion
in the training set. The ability to effectively combine arguments
has an enormous impact on the performance of the final result.
This subtask can be solved as a binary classification problem. As
shown in Fig. 3(e), yellow braces indicate the events extracted
from the sentence.

E. Formal Definition

Given a sentence x = [x1, x2, . . ., xn] of n tokens, where xi

denotes the i-th token in the sequence, we denote the protein set
for the sentence x as Σ.

Jprot Identification: Jprot identification outputs are token-
level labels P = [p1, p2, ..., pn], defined by a label set
with the standard BIO labeling scheme [23], [24], namely
pi ∈ [B-jprot, I-jprot, O].

Trigger Recognition: We use E ∪O to denote the trigger label
alphabet, where E represents trigger types, and O indicates that
the token is not a trigger. For trigger recognition, this subtask
identifies the tag of each token with BIO tag scheme. We useT =
[t1, t2, ..., tm] (m� n) to represent a trigger set for sentence x.

Relation Extraction: Let R∪ ϕ denote a set of pre-defined
relation types describing the semantic relations among triggers
and arguments. The task is to predict a relation r for every pair
of trigger ti and argument aj (ti ∈ T , aj ∈ (T ∪ Σ), r(ti, aj) ∈
(R∪ ϕ)).

Argument Combination: Here ai, aj are two arguments
(ai, aj ∈ (T ∪ Σ)). r(ai, aj) = 1 if and only if the two argu-
ments ai and aj are in the same event, and 0 otherwise.

III. OUR APPROACH

The overview of our model is given in Fig. 4, which is a
multi-task approach for biomedical event extraction based on
pre-trained language models. We describe our sequence labeling
model in Section III-A, the relation extraction model in Sec-
tion III-B, and the primary objective function for biomedical
event extraction in Section III-C.

A. Entity Recognition Model

As mentioned earlier, we regard jprot identification and trig-
ger recognition as sequence labeling tasks and employ BiLSTM-
CRF models to solve them.

Feature Embedding: We adopt a pre-trained language
model (e.g., SciBERT) to obtain contextualized representations
embword

i for each input token xi, which is tuned during train-
ing. On this base model, we introduce three different types of
additional features, including character-level information, POS
tags, and entity labels as common features for entity recog-
nition. We use embchari , embposi and embproti represent their
embeddings, respectively. The character embedding embchari is
learned following prior work [22] by using convolutional neural
networks [25] to encode character-level information of a word.
The embeddings embposi and embproti are initialized randomly.
We concatenate these embedding for the i-th word to obtain:

embcommon
i = [embword

i ; embposi ; embchari ; embproti ]

In addition to the common features given above, we introduce
a set of new features for jprot identification. If one protein
is the argument of a trigger in the previous sentences of the
same document (that is, it has been involved in events in piror
sentence), the protein may also participate in other events in this
sentence. These proteins are called cjprot. We check whether
each protein in the current sentence participates in the events
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Fig. 4. Our end-to-end neural model architecture.

of previous sentence, and use such information as features to
determine whether the protein is jprot.

embjproti = [embcommon
i ; embcjproti ]

These embeddings are concatenated as input for BiLSTM.
The output hidden states h = [h1, h2, ..., hn] is further fed into
the CRF layer to obtain the target sequence.

For trigger recognition, one unique feature is jprot, since in
most cases, protein and trigger words are very close in the text.
Besides, words that are the triggers in previous sentences of the
same document may also be the triggers in the current sentence.
We call them ctrig. These two extra features can boost the recall
of biomedical event extraction. The final input embedding is:

embtrigi = [embcommon
i ; embjproti ; embctrigi ]

BiLSTM Layer: We use one-layer bi-directional LSTMs [26]
for sequence tagging. The forward computes a representation−→
hi of the left context of the sentence at the i-th word, and the
backward LSTM reads the same sequence in reverse, generating
a representation of the right context

←−
hi at each step. The hidden

state h at the position i of BiLSTM can be expressed as follows:

−→
hi = LSTMf (xi,

−→
h i−1;

−→
θ )

←−
hi = LSTMb(xi,

←−
h i+1;

←−
θ )

where
−→
θ and

←−
θ are trainable parameters. We concatenate the

hidden state vectors of the two directions’ LSTM units corre-
sponding to each word as its output vector, hi = [

−→
hi ;
←−
hi ]. The

output of BiLSTM h = [h1, h2, ..., hn] is further fed into the
subsequent layer to find the target sequence.

CRF Layer: CRF [27] has been widely applied in sequence
tagging [22], [28], [29], which explicitly models label depen-
dencies by adding transition scores between neighboring labels
and optimizing the model at the sequence level. Training and

decoding can be solved efficiently by adopting the Viterbi al-
gorithm [30]. The score of a named entity sequence for a given
word sequence is defined as:

s(x, y) =

n−1∑
i=0

Tyi−1,yi
+

n∑
i=1

Pi,yi
(1)

where Tyi−1,yi
represents the transmission score between the

current tag yi at time i and its predecessor yi−1, Pi,yi
is the

emission score of the current tag yi on the word i-th word from
BiLSTM encoder.

CRF defines a family of conditional probability p(y|x) over
all possible tag sequences y given x. We define the probability
of the tag sequence as:

p(y|x) = exp(s(x, y))∑
ỹ∈y exp(s(x, ỹ))

(2)

During training, we maximize the log probability of the
correct predictions. The objective of decoding is to find a tag
sequence that maximizes the score for a given word sequence
and model parameters:

y∗ = argmax
ŷ∈y

score(x, ŷ)

B. Relation Extraction Model

As shown in Fig. 4, we integrate two neural encoders for
relation extraction. The first is a graph convolutional network
(GCN) [31] for modeling syntactic dependency structures. The
second is built on top of deep pre-trained language models [32],
following the work of [33] for introducing additional knowledge.

Graph Convolutional Networks: A graph convolutional net-
work (GCN) [31] operates on graph-structured data. For every
node in the graph (in our case, a word in a sentence), GCN
encodes relevant information over its neighborhood as a real-
valued feature vector. One layer GCN encodes information about
immediate neighbors, and K layers are used to encode K-order
neighborhoods.
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Formally, consider an undirected graph G = (V,E), where
V (|V | = n) and E are sets of nodes and edges, respectively,
and n is the length of sentence in our case. We can represent
the graph structure with an n× n adjacency matrix A, where
Aij = 1 if there is an edge going from node i to node j (the
opposite direction of a dependency arc is also included, Aji =
1). In addition, we add a self-loop for each node in the graph,
where Aii = 1. The convolution computation for node i at the
l-th layer takes the input feature representation h(l−1) as input
and outputs the induced representation h

(l)
i :

h
(l)
i = σ

⎛
⎝ ∑

j∈N (i)

AijW
(l)h

(l−1)
j + b(l)

⎞
⎠

where W (l) is the weight matrix which is randomly initialized
and optimized during training, b(l) is the bias vector, andN (i) is
the set of one-hop neighbors of node i, Here i ∈ N (i) (because
of self-loops) and σ is an activation function (e.g., RELU). h(0)

i

is the output of BiLSTM for word xi.
We additionally introduce the dependency type as a feature.

The final entity representation with syntactic information is
given by:

h
(l)
i = σ

⎛
⎝ ∑

j∈N (i)

AijW
(l)h

(l−1)
j +AijL(Lij)b

(l)

⎞
⎠

where L is a linear mapping, Lij is the dependency type em-
bedding of the arc label of dependency edge between node i and
node j. Similarly, self-loops have label self, and the type is other
if there is no edge between i and j.

Through GCN module, we obtain the sequence encode h(l) =

[h
(l)
1 , h

(l)
2 , . . . , h

(l)
n ], the span of the two entities have been

defined above, namely t = [t1, . . . , tp](1 < t1 < tq < n) and
a = [a1, . . . , aq](1 < a1 < aq < n). We apply average pooling
over the final hidden h(l) by using t and a to get the embedding
of trigger and candidate argument as follows:

et = avgpool[h
(l)
t1
, . . . , h

(l)
tp
]

ea = avgpool[h
(l)
a1 , . . . , h

(l)
aq ]

Previous studies [21] show that the types of entities are
beneficial for relation extraction. We concatenate these entity
vectors and type vectors to derive the final representation:

ht = [et; e
type
t ]

ha = [ea; e
type
t ]

where “;” is the concatenation operation, etypet and etypea are
randomly initialized, which are tuned during training.

Sequence Encoder Model: Following the work on relation ex-
traction [33], [34], we process each pair of subject-object spans
ei and ej independently given an input sentence x, where tei , tej
(tei , tej ∈ E ∪ φ) are types of subject-object spans respectively.
We define text markers as 〈s : ttype〉, 〈/s : ttype〉, 〈o : atype〉,
and 〈/o : atype〉 by using s and o to differentiate between the
entities. Existing studies [35] also show that entity types are
beneficial for relation extraction, and thus we add the types

of two entities to the markers. Then, we augment sentence x
with four text markers to denote the beginning and end of each
entity mention to highlight two entities (Fig. 4(b)). Finally, this
modified sequence x̃ is computed as:

x̃ = · · · , 〈s : ttype〉, xstart(t), . . . , xend(t), 〈/s : ttype〉,
· · · , 〈o : atype〉, xstart(a), . . . , xend(a), 〈/o : atype〉

For a given sentence x̃, we feed its token sequence into SciB-
ERT [32] to calculate the word embedding. These embeddings
are fed to a BiLSTM network to calculate hidden representations
for words. The start markers vector h̃t and h̃a of the two
entities 〈s : ttype〉 and 〈o : atype〉 are extracted from the output
h̃ = [h̃1, h̃2, . . . , h̃n] of BiLSTM according to the location of
the start markers.

Biaffine Layer: The GCN encoder gives trigger and argument
representations ht, ha. From the sequence encoder, we obtain
the corresponding entities representations h̃t and h̃a. The final
representation ht, ha are obtained by adding them, namely:

ht = ht + h̃t

ha = ha + h̃a

Next, we use the biaffine classification [36] to determine the
relation between the trigger and argument:

r = htU
(1)ha + (ht ⊕ ha)

TU (2) + b

where r is the relation between two entities, U (1) and U (2) are
both weight matrices, which are randomly initialized and tuned
during training, b is bias, and ⊕ is concatenation operation.

Sigmoid Layer: Now we have a GCN to encode syntactic de-
pendency information and a sequence encoder with text markers
to encode the positions of the entities in the sentence. We com-
bine the information learned from the two encoders to represent
arguments. The vectors of the first and second arguments are
denoted as ht and ha:

Then to determine the propability whether two arguments
belong to the same event, With the addition of the hidden
states of two arguments, (i.e., r = ht + ha), we use a sigmoid
layer with r = ht + ha as features to obtain the probability P
(0 < P < 1). When the probability exceeds a certain threshold
ρ (we set ρ = 0.5), we consider that two arguments belong to
the same event, such process can be formalized as:

P = Sigmoid(r)

C. Training Objective

We update all parameters using Adam [37] with gradient clip-
ping and L2-regularization, fine-tuning the pre-trained language
models using task-specific losses. We also apply dropout [38] to
the embedding layer and the hidden layers for entity recognition
and relation extraction.

Entity: Let θe = (We, be) denote the set of model parameters
associated with the entity recognition model, where We is the
set of the weight matrices in the BiLSTM and the CRF layer,
and be is the set of the bias vectors. To train the NER model,
we minimize the negative log-likelihood of the correct label
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TABLE I
STATISTICS OF THE GENIA 2011 AND GENIA 2013 DATASET

sequences over the training set. The objective for θe is defined
as follows:

Le = −
1

N

N∑
i=1

log(p(yi|xi, θe))

whereN is the number of training examples,xi is input sequence
and yi is the ground truth tag sequence.

Relation: We denote θr = (Wr, br) as parameters for relation
extraction, where Wr and br are the weight and bias parameters.
We minimize a multi-class cross-entropy loss:

Lr = − 1

N

N∑
i=1

∑
(e1,e2)∈Si

logP (r(e1,e2)|(e1, e2), θr)

where N is the number of training examples, and i denotes the
sentence index. Here Si is the entity pair set in i-th sentence,
r(e1,e2) represents the gold relation type of span pair e1, e2 in the
training data. For training the relation model, we only consider
the gold entities Sr in the training set and use the gold entity
labels as the input of the relation model.

Finally, The overall objective J (θ) is defined as:

J (θ) = Le + Lr

IV. EXPERIMENTS

A. Datasets and Evaluation Metric

We evaluate our model on the BioNLP 2011 and BioNLP 2013
benchmark datasets for biomedical event extraction: the Genia
event task 2011 (GE11) [39] and the Genia event task 2013
(GE13) [40]. These tasks are toward fine-grained information
extraction in the biomedical domain. These corpora comprise
both abstracts and full-texts, and consist of the annotations for
protein entities and 9 fine-grained event types. The detailed
statistics of GE11 and GE13 are summarized in Table I.

Our model is validated on the development set and tested
on the test set. All experiment results are measured using the
primary micro precision (P), recall (R), and F1 score (F1)
on biomedical event extraction, and we give the results of
biomedical event extraction on the nine event types with online
evaluation1 using the test set. In line with previous work, we
evaluate our approach according to the approximate span and
recursive matching criteria [7], [41].

1[Online]. Available: http://bionlp-st.dbcls.jp/GE/2011/eval-test/

B. Implementation Details

Each document is first processed by the sentence splitter2

of Stanford CoreNLP. The GENIA tagger3 is used to obtain
fine-grained words and part-of-speech tags, chunk tags, and
named-entity tags, which are specifically tuned for biomedical
text such as MEDLINE abstracts. We convert a sentence into
the corresponding dependency tree using a biaffine parser [36],
which is trained on the Genia Corpora.4

We train the model end-to-end on a Transformer frame-
work [42], adopting SciBERT [32] as the textual encoder, which
has been pre-trained on large-scale scientific data. The entire
framework is optimized using Adam [37]. The learning rate is
tuned in 1e-5 for SciBERT parameters and 1e-4 for the model
parameters, and the gradient clipping is set as 5. The max training
epoch is set as 80.

We initialize all model parameters by Kaiming initializa-
tion [43], and randomly initialize POS-embedding and NER-
embedding with 30 dimensions. We set prot-embedding, jprot-
embedding and cjprot-embedding to be 2-dimensional respec-
tively, ctirg are 10-dimensional. We choose two layer GCNs,
and the GCN hidden size is set to 200 dimensions, where
dependency type embedding is set to 30 dimensions. Dropout
is employed to the input layer for jprot and trigger recognition,
relation extraction and argument combination. All the above
hyperparameters are tuned on the development dataset. The
optimal hyperparameter settings are tuned by using grid search
conducted on GE11 development set.

C. Developmental Results

We report some developmental experiments to determine the
most critical factors of our final model. All the experiments are
performed on the GE11 development set.

1) Impact of Jprot and Ctrig Features: We select fifteen
different random seeds to do several rounds of experiments on
the trigger recognition subtask to verify the effectiveness of jprot
and ctrig features. Fig. 5 compares the averages and standard
deviations of F1 scores for trigger recognition with regard to
training epochs on the GE11 development dataset. Overall, the
average F1 score using these two features is better than that
without these two features. In addition, the standard deviation
using these two features decreases as training epochs increase,
while the standard deviation without these two features does not
seem to change much. The observation indicates that the triggers
are generally near the proteins and these two features are helpful
and competently for trigger recognition.

2) Impact of Dependency Types: We examine the influence
of the dependency types for event extraction. Fig. 6 shows
the precision, recall, and F1 score curves of the GCN encoder
with dependency types and without dependency types. First, the
F1 scores are best using two layers of GCN with and without
dependency types. We thus set the layers of the GCN encoder to
2. Second, dependency types effectively improve the F1 score

2[Online]. Available: https://stanfordnlp.github.io/CoreNLP/ssplit.html
3[Online]. Available: http://www.nactem.ac.uk /GENIA/tagger/
4[Online]. Available: http://www.geniaproject.org/

Authorized licensed use limited to: Westlake University. Downloaded on December 29,2022 at 04:55:22 UTC from IEEE Xplore.  Restrictions apply. 



SU et al.: BALANCING PRECISION AND RECALL FOR NEURAL BIOMEDICAL EVENT EXTRACTION 1643

Fig. 5. The performance comparison of trigger recognition with or without
jprot and ctrig features.

Fig. 6. The performance comparison of biomedical event extraction using
dependency type information or not.

TABLE II
EVENT STATISTICS OF DIFFERENT ARGUMENT NUMBERS FOR THE BINDING

AND COMPLEX EVENTS

for event extraction and narrow the precision and recall gap.
The observation indicates that dependency types are essential
for event extraction.

3) Impact of Argument Combination: Table II gives the statis-
tics of the Binding and Complex types with one argument and two
arguments in the corpora, which shows the necessity of argument
combination. Table III compares the performance of the argu-
ment combination of pipeline training and joint training. Argu-
ment combinationpipeline is the model where trigger recognition
and relation extraction are jointly trained, but argument combi-
nation is processed separately. For this model, argument com-
bination uses the same encoders as relation extraction but does

TABLE III
EXPERIMENT RESULT OF JOINT LEARNING AND PIPELINE LEARNING FOR

ARGUMENT COMBINATION

. Bind refers to Binding;

. Regu refers to Regulation

. Posi refers to Positive_Regulation

. Nega refers to Negative_Regulation

not share with relation extraction. Argument combinationjoint
refers to the joint training of three subtasks. Table III shows that
the joint strategy is better than the pipeline for the Binding and
Complex event types. Argument combinationjoint corrects the
errors in the first two stages, showing the enormous advantage
in finding events with two arguments for Binding and Complex
event types.

In addition, as shown in Table III, we observe that compared
with the performance of argument combinationjoint, the F1
score of argument combinationpipeline for the Complex events
decreases slightly, while the performance of the Binding events
decreases heavily. The reasons behind this may be (1) Events
with two arguments account for 29.43% of the total number
of the Binding and Complex events, which are not sufficient
to train the neural network model with large parameters. (2) A
particularity of the Complex events is that the roles of the two
arguments are different. For Complex events, there are some
hard constraints when generating events, that is, one Theme
argument and one Cause argument form an event. By contrast
the two arguments of Binding can be both the Theme roles, so
the combination of two arguments can be more arbitrary. This
leads to low performance in the Binding events. Given the above
observations, we take the joint model design.

D. Main Results

We compare our method with the following SOTA models on
the BioNLP 2011 shared task test sets.

1) QA with BERT adopts the multi-turn question answering
approach introducing the notion of a question template that
defines different types of questions.

2) GEANet-SciBERT proposes graph edge conditioned at-
tention networks to integrate domain knowledge from a
hierarchical knowledge base.

3) HANN presents stacked hypergraph aggregation neural
network layers, in which a two-level model is used to
model the interaction between local and global contexts
for biomedical documents.

4) DeepEventMine is a representative neural model extract-
ing nested events from a sentence in an end-to-end manner.
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TABLE IV
EXPERIMENT RESULTS ON THE GENIA 2011 AND GENIA 2013 TEST SET

“*” means that original paper leverage the external knowledge base.

We also compare with high-performance methods on the
BioNLP 2013 shared task:

5) SVM pipeline & MLN(joint) combines the power of
Markov logic networks and support vector machines and
attempts to overcome error propagation using many high-
dimensional sophisticated features.

6) ErrorDetectionLearning gives an error detection model
based on representation for unlabeled data, where selected
samples are added to enrich the training dataset and im-
prove the classification performance.

7) TEES-CNN is a pipeline method with four classification
stages implemented as multiclass classification tasks using
a neural network with various vector space embeddings as
input features.

As shown in Table IV, SVM pipeline & MLN(joint) [44]
achieves the highest F1 score with a 58.07% and a 53.61% on
the BioNLP 2011 and 2013 shared tasks and gains the best recall
among all traditional methods. Compared with the above model,
our approach significantly advances event performances, i.e., an
absolute F1 score of +5.03% and +2.81% on the BioNLP 2011
and 2013 shared task, respectively.

With the application of neural network to this task, for in-
stance, TEES-CNN [6] of early neural network work attains
58.10% and 53.00% F1 scores on the BioNLP 2011 and 2013
shared tasks. Compared with traditional methods, the neural

network models improve the precision, but the recall decreases
significantly, and the overall performance does not increase
greatly. Compared to this baseline, our model gains 5% and
3.42% improvement on F1 on both datasets.

After introducing external resources based on neural net-
works, for instance, GEANETSciBERT [16] attains a 64.61%
precision, a 56.11% recall, and a 60.06% F1 score on the
BioNLP 2011 shared tasks. The recall and overall performance
of this model improve significantly. It shows the effectiveness
of external resources for the task. In contrast, without using
external knowledge, our approach achieves a 2.84% better pre-
cision, a 3.17% better recall, and a 3.04% better F1 score than
GEANETSciBERT , respectively.

DeepEventMineSciBERT is the state-of-the-art model on the
BioNLP 2011 and 2013 shared tasks. It achieves the highest F1
scores of 63.02% and 54.83% on the BioNLP 2011 and 2013
shared tasks. More specifically, it attains a 71.71% precision
and a 56.20% recall on the BioNLP 2011 shared task. However,
the precision and recall gap grows. Compared with this leading
method, our approach achieves 0.13% and 0.84% better F1
scores, respectively. It is important to note that our model gains
3.48% and 3.95% improvement on the event recall. The preci-
sion and recall gap is 4.81% and 2.83% on the BioNLP 2011 and
2013 shared tasks, much lower than DeepEventMineSciBERT ’s
15.51% and 11.18%.
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TABLE V
PRECISION, RECALL AND THEIR GAP COMPARISION ON GE11 TEST SET ABOUT NIGH FINE-GRAINED EVENT TYPES

As shown in the Table IV, the model using Glove vectors
achieves 60.64% and 53.57% F1 scores on the BioNLP 2011
and 2013 shared tasks, while the F1 scores of our approach
using SciBERT are 2.51% and 2.1% better than those of the
Glovebased model. In addition, the result using SciBERT [32]
outperforms BioBERT [45], demonstrating the effectiveness of
SciBERT on biomedical event extraction. Our model consis-
tently outperforms the state-of-the-art models on the BioNLP
2011 and BioNLP 2013 shared tasks, achieving the best perfor-
mance and yielding a new state-of-the-art with an F1 score of
63.15% and 55.67%, respectively.

E. Results on the Recall

Table V compares the precision and recall gap of our method
and the previous best models.

1) Stacked Generalization proposes a stack model using
SVM-based models with token and sentence-level hand-
crafted features.

2) KB-driven Tree-LSTM adopts an external knowledge
base with type and sentence embeddings into a Tree-
LSTM model.

3) BEESL recasts the task as sequence labeling and uses
a multi-label aware decoder with BERT in a multi-task
sequence labeling model.

Our method significantly reduces the precision-and-recall gap
among the nine fine-grained biomedical event types on the
BioNLP 2011 shared task compared to the three approaches
mentioned above. From a coarse-grained perspective, for Simple
events, the precision-and-recall gaps of Stacked Generalization,
KBTL, and BEESL are 14.54%, 13.33%, and 9.19%, respec-
tively. In contrast, our model can strike a balance between
precision and recall, with a gap of only 2.82%. For Binding
event, BEESL (using the neural network) has an enormous gap of
24.63%. KBTL (with external knowledge) has a gap of 15.48%.
In contrast, our model gives relatively little difference between
precision and recall. For Complex events, the gaps for three
baselines are 18.79%, 14.00%, and 17.40%, respectively. Our
approach vastly reduces the precision-and-recall gap to 10.73%.

TABLE VI
RESULT OF NINE EVENT TYPES ON THE TEST DATA OF THE BIONLP 2013

SHARED TASK

For the Stacked Generalization model, six out of the nine
event types have precision and recall gap of more than 15%.
KBTL and BEESL have five event types. In our result, in contrast,
no type exceeds 15%, and only two types of events exceed
10%. As shown in Table IV, our method also outperforms other
approaches by a large margin on recall (i.e., an absolute improve-
ment of +3.48% over the QA with Bert model [17] and +4.65%
in comparison with DeepEventMine [41] for biomedical event
extraction on GE11 task). In addition, as shown in Table VI, the
results of our model in the BioNLP 2013 shared task also verify
that our model can effectively improve the recall.

As shown in Table V, the results of four models, including our
approach, show that the recall of Localization among the Simple
events is much lower than precision on the GE11 test set. The
same phenomenon emerges on the GE13 test set from Table VI.
The reasons behind this may be: first, the number of Localization
event type labeled in the GE11 training set is too small and
only has 281 events. However, Phosphorylation type has 3385
events. Furthermore, of 32% triggers marked as Localization
type are also triggers of other event types. For example, the word
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TABLE VII
ABLATION EXPERIMENTS ON THE GE11 TEST DATA

“expressed” is a Localization event trigger, yet in most cases, this
word is labeled as a Gene_expression type in the GE11 training
set or labeled as a Phosphorylation type in rare cases. Finally,
we analyze the experimental results of trigger recognition and
relation extraction on the 2011 shared task development set.
For trigger recognition, the recall is 10.24% lower than the
precision for Localization and 8.33% for the relation extraction.
Few examples of Localization types and enormous annotation
ambiguity are the main reasons for the poor performance.

F. Ablation Study

We conduct ablation experiments to demonstrate the effec-
tiveness of each component in our framework. The results for
the verifing the effectiveness of each feature type and learning
module are shown in Tables IV and VII. From the Table VII,
we can see that the two features, jprot and ctrig contribute
more significant improvements on recall, gaining an absolute im-
provement of +1.08% F1 score over the model. After introducing
dependency types information, the GCN encoder has achieved
3.93% improvements on recall. Sequence encoder adding the
BiLSTM model attains the best precision of 68.68%. Combining
syntactic information and sequence information gives a new
state-of-the-art with an F1 score of 63.15%.

1) Effect of Jprotand CtrigFeatures: As shown in the first
four rows of Table VII, without the jprot and ctrig features,
our approach obtains a 62.07% F1 score but only a 56.92%
recall on the GE11 test set. The recall is largely improved by
using independent jprot or ctrig features, and the precision-and-
recall gap is reduced. We obtain the state-of-the-art F1 score
on the GE11 and GE13 test sets by using these two features
simultaneously. This is because, in most cases, the triggers are
not too far away from their arguments, and therefore, using
the recognized jprot as a feature can be helpful for the trigger
model to identify the triggers effectively. The previous and
subsequent sentences generally describe similar events. Thus
the triggers in the previous sentence may still be triggers in the
current sentence, which can improve the triggers’ recall, thus is
subsequently helpful to the promotion of the event recall.

Fig. 7. Effect of GCN layers with or without dependency types.

2) Effect of Dependency Type Information: As shown in the
fifth and sixth rows in Table VII, when the GCN encoder encodes
only unlabeled trees, the event extraction F1 is only 54.28%.
When we further add dependency types into the model, the
precision and recall are balanced, and further improved. Finally,
F1 score is increased from 54.28% to 56.12%. It shows that
the dependency type is helpful for biomedical event extraction.
Fig. 7 shows when using 2-layer GCN, the F1 scores are the
best with dependency type or without on the GE11 test set. With
increasing numbers of GCN layers, the performance decreases
seriously. This can likely be that the model is overfitted. Further-
more, we can see that the performance of the GCN encoder with
dependency type is better than that without dependency type.

c) Effect of the Sequence Encoder: Compared with the GCN
encoder, the sequence encoder is more effective in biomedical
event extraction. As shown in the seventh and eighth rows of
Table VII, by inserting markers with entity types before and
after entities, our model achieves a 61.57% F1 score. The recall
of biomedical event extraction reaches 59.97%, which is the
highest reported value. In summary, in addition to the two
features, jprot and ctrig, another reason for the high recall of our
model comes from the sequence encoder. After further adding a
BiLSTM layer, there can be a slight improvement in the F1 score.
It can be seen that the precision can be significantly improved,
but it does not affect on the recall.

To highlight the importance of entity labels, we remove the
GCN encoder (i.e., Fig. 4(a) of relation extraction). We replace
two pairs markers 〈S : type〉, 〈/S : type〉 and 〈O : type〉, 〈/O :
type〉with 〈S〉, 〈/S〉 and 〈O〉, 〈/O〉 to check whether the entity
type is essential. As shown in Table IX, both precision and recall
decrease significantly, which shows that the entity type is vital
for relation extraction and argument combination.

4) Effect of Combines Encoders: As shown in the bottom of
Table VII, using either dependency types or BiLSTM alone,
the results have around 1% improvement in F1 score compared
with the model without them (i.e., the 9th row in Table VII).
Consistent with the previous results, using BiLSTM alone does
not improve the recall, but using dependency types can signifi-
cantly improve the recall. When using the dependency types in
the GCN encoder and BiLSTM layer in the sequence encoder
simultaneously, the recall increased from 56.02% to 60.85%,
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TABLE VIII
PERFORMANCE COMPARISION OF THE BINDING AND COMPLEX EVENTS ON THE

GE11 TEST SET

“-” means that original paper do not give.

TABLE IX
SECOND ENCODER PERFORMANCE OF EVENT EXTRACTION ON THE GE11 TEST

SET

leading to a significant F1 score improvement of 2.08%. It shows
that the GCN encoder based on the dependency parsing tree can
capture semantics between two entities far apart in the sentence,
making up for the shortcomings of the sequence encoder. We
combine syntactic information and sequence information for
relation extraction, and argument combination is valid.

5) Effect of the Argument Combination: : To understand the
effectiveness of the neural argument combination module, we
present a detailed analysis from a coarse-grained perspective.
Table VIII compares the F1 scores of our method to the previ-
ous best models on the Binding and Complex categories. Our
method achieves the best performance on the Binding type and
a comparable result on the Complex type on the GE11 test set.
The result shows that the neural argument combination module
benefits the four particular event types, which may have one
or two arguments and occupy a large proportion of the dataset.
Compared with manually defined features and sentence pattern
templates [16], [17] as well as traditional binary classifiers [4],
[18], our neural argument combination module is highly effec-
tive.

As shown in Table VIII, For Binding type, we achieve
a 58.41% F1 score which is a 6.31% higher than EDPR.
ForComplex type, we obtain a 52.22% F1 score, lower than
DeepEventMine (with an F1 score of 54.37%). The reason is
that the latter focuses on nested events and builds a representative
model that captures nested event structures. The emphasis of our
model is solving argument combination after relation extraction.
It is also worth noting that our approach obtains the highest
recall than other methods in both the Binding type and the
Complex type, achieving 8.69% and 2.05% recall improvements
compared to the EDPR and DeepEventMine.

6) Cause Analysis of Low Performance of Complex Events:
For the Complex events, complicating the situation, nested
events and multi-level nesting are covering up to 37.17% of the
total number of events, which is also the principal reason for the

TABLE X
TRIGGER AND ARGUMENT EXTRACTION PERFORMANCE OF COMPLEX EVENTS

ON THE GE11 DEVELOPMENT SET

. Regu refers to Regulation

. Posi refers to Positive_regulation

. Neag refers to Negative_regulation

TABLE XI
CASE STUDY AND ERROR ANALYSIS

low F1 score of Complex event extraction. There are 4156 Theme
role types and 1493 Cause role types in complex events. If an
argument is both the Theme role of one event and the Cause role
of another event, the Cause role is often incorrectly identified in
the relation extraction process. This is also one of the reasons for
low recall of Complex events because Complex events with two
arguments are difficult to find. We also evaluate the extraction
effect of the Theme argument and the Cause argument on the
GE11 development set. As shown in Table X, it can be seen that
the recognition effect of the Cause argument is much lower than
that of the Theme argument. The experimental results also verify
the above analysis.

G. Case Study

We give three concrete examples in Table XI, highlighting
the proteins and triggers in red and blue, respectively. Each
brace pair represents a gold event. Sentence S1 contains two
Positive_regulation events triggered by “enhanced”. The event
triggered by “induced” and the event triggered by “expression”
are Theme argument of the trigger “enhance,” the protein “throm-
bin” is a Cause argument of the trigger “enhanced”. Previous
methods adopt the Theme and Cause combination strategy for
Complex events, and the events they identified are as follows:

1) {enhanced:Positive_regulation, Theme:induced, Cause:
thrombin}

2) {enhanced:Positive_regulation, Theme: expression,
Cause: thrombin}

However, the Cause argument “thrombin” and the Theme
argument “expression” with the trigger “enhanced” should not
form an event. In contrast, our model employs a neural argument
combination strategy to judge whether two arguments are in the
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same event (for instance, the event triggered by“expression” as
Theme role and “thrombin” as a Cause role of “enhanced” do not
show in the same event). Our model can recognize such patterns,
showing that the model can well capture this type of correlation
among prediction results.

As a qualitative error analysis, the second example S2 shows
a trigger recognition problem. In S2, the word “Level” is a
trigger, which triggers two different event types. One event
is a Transcription event and the other is a Gene_expression
event. Our model adopts sequence labeling to simultaneously
recognize triggers, failing to recognize the two types of one
entity. One possible solution is to exhaustively consider all
possible spans of a sentence with sizes less than or equal to
the maximum span size and perform multi-label classification
for each span.

The existing models cannot effectively solve the problem
given in S3, the word “binding” generates two Binding events,
and event e2 is part of event e1. The two proteins “Sp1” and
“LAL” appear in the same event through argument combination,
but we cannot confirm which protein participates in another
independent event with the trigger “binding,” or the two proteins
form two complete events or neither protein forms an inde-
pendent event with the trigger “binding”. A practical method
is to integrate relation extraction and argument combination,
generating the events in one step after trigger recognition.

V. RELATED WORK

Previous work has heavily relied on manually designed fea-
tures and domain expertise knowledge. For instance, Majumder
et al. [19] propose a SVM-based stack model to process multi-
subtask with hand-crafted lexical and syntactic features. More
recently, with the rapid development of neural network methods,
Li et al. [48] explore a dynamic extended tree containing two
entities using the LSTM networks framework. Björne et al. [6]
develop a convolutional neural network and use incoming and
outgoing dependency vectors as input features to get better
results. Zhu et al. [8] use a hybrid deep neural network to
detect triggers, extract relations, and then construct the events by
solving an optimization problem. To further enhance the neural
network models for this task, extra knowledge has been proved
effective [16], [46]. The experimental results show that these
neural network models obtain superior performance compared
to traditional shallow methods.

The aforementioned studies achieve good results, yet there are
some defects: (1) Tradition methods heavily rely on manually
designed features. (2) Many models focus on trigger recogni-
tion and relation extraction, ignoring argument combination,
which is also solved by sentence templates or traditional binary
classification. Our model adopts a neural network model for
biomedical event extraction compared to the aforementioned
studies. The model containing a neural argument combination
obtain excellent performance.

Current approaches for event extraction fall into two main
categories: pipeline methods and joint methods. Pipeline meth-
ods break down a task into multitiple tasks but ignore their
interaction. Miwa. et al. [49] use a pipeline-based SVM model

to extract events with the shortest paths features. Lately, most
current works focus on joint methods to solve this problem.
Liu et al. [18] propose a pairwise model that transforms event
extraction into a simple multi-class problem of classifying pairs
of text entities. Riedel et al. [2] apply a joint stacked model for
biomedical event extraction, based on a discriminatively trained
model that jointly predicts trigger labels, event arguments, and
protein pairs in the Binding types. Vlachos et al. [3] decom-
pose event extraction into a set of classification tasks that can
be learned jointly using the search-based structured prediction
framework. Ramponi et al. [7] introduce a joint end-to-end
neural information extraction model, which recasts biomedical
event extraction as sequence labeling, taking advantage of a
multi-label aware encoding strategy and jointly modeling the
intermediate tasks via multi-task learning.

Despite the success of existing methods, they generally suffer
from some limitations: (1) Pipeline methods simplify the prob-
lem but ignore the interaction between the sub-tasks and make
the process prone to accumulating errors. (2) The joint methods
focus on predicting the triggers and arguments simultaneously
but deal with argument combination separately. (3) Some mod-
els take advantage of syntactic information to extract relation
yet abandon dependency type information, which contains rich
clues for event extraction. Compared with the aforementioned
methods, we adopt an end-to-end multi-task model to extract
events, training trigger recognition, relation extraction, and argu-
ment combination jointly. In addition, we consider dependency
types, which have not been exploited for the task, showing that
they are helpful for biomedical event extraction.

VI. CONCLUSION

We proposed a neural biomedical event extraction model
using the end-to-end multi-task learning method. We studied
two features jprot and ctrig, which can not only effectively
improve trigger recognition but also improve the overall result
of biomedical event extraction, and in particular, the recall. We
also combined the features of syntactic structure information
and sequence information for relation extraction and argument
combination via GCN and BERT-based encoders. Experiments
on two public datasets demonstrate that our model outperforms
previous competitive methods for biomedical event extraction.
To our knowledge, we are the first to make a fully end-to-end
neural model for complex event extraction, achieving the best
recall over standard benchmarks.
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