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LogiQA 2.0 — An Improved Dataset for Logical
Reasoning in Natural Language Understanding

Hanmeng Liu, Jian Liu, Leyang Cui, Zhiyang Teng, Nan Duan, Ming Zhou, Yue Zhang†

Abstract—NLP research on logical reasoning regains momen-
tum with the recent releases of a handful of datasets, notably
LogiQA and Reclor. Logical reasoning is exploited in many
probing tasks over large Pre-trained Language Models (PLMs)
and downstream tasks like question-answering and dialogue
systems. In this paper, we release LogiQA 2.0. The dataset is
an amendment and re-annotation of LogiQA in 2020, a large-
scale logical reasoning reading comprehension dataset adapted
from the Chinese Civil Service Examination. We increase the data
size, refine the texts with manual translation by professionals, and
improve the quality by removing items with distinctive cultural
features like Chinese idioms. Furthermore, we conduct a fine-
grained annotation on the dataset and turn it into a two-way
natural language inference (NLI) task, resulting in 35k premise-
hypothesis pairs with gold labels, making it the first large-scale
NLI dataset for complex logical reasoning. Compared to Question
Answering, Natural Language Inference excels in generalizability
and helps downstream tasks better. We establish a baseline for
logical reasoning in NLI and incite further research.

Index Terms—Reading Comprehension, Logical Reasoning,
Natural Language Inference, Textual Inference

I. INTRODUCTION

The capability of logical reasoning is a crucial part of nat-
ural language understanding (NLU) [1] [2] [3]. Investigation
of linguistic reasoning dates back to the 1950s, at the dawn of
computer science and artificial intelligence [4] [5] [6] [7] [8].
However, with limited computing power and primitive NLU
technologies, formal logical reasoning gradually dominated
the research field in the 1970s and became a key area of AI
research over a long period [9] [10].

Recently, with the advance of deep learning technology,
NLU has witnessed significant improvements [13] [14], with
competitive results being reported over typical tasks, includ-
ing natural language inference (NLI) [15] [16] and machine
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Premise: Met my first girlfriend that day.
Hypothesis: I didn't meet my first girlfriend until later.
Label: Contradiction

(a) An NLI example from the MNLI [11] dataset.

 Passage: In meteorology, precipitation is any product of the condensation of
atmospheric water vapor that falls under gravity. The main forms of
precipitation include drizzle, rain, sleet, snow, graupel and hail... Precipitation
forms as smaller droplets coalesce via collision with other rain drops or ice
crystals within a cloud. Short, intense periods of rain in scattered locations are
called “showers”.

Question 1: What causes precipitation to fall?
Answer: gravity
Question 2: What is another main form of precipitation besides
drizzle, rain, snow, sleet and hail?
Answer: graupel
Question 3: Where do water droplets collide with ice crystals to
form precipitation?
Answer: within a cloud

(b) An MRC example from the SQuAD [12] dataset.

Fig. 1: Examples of traditional NLU benchmarks.

reading comprehension (MRC) [17] [18]. Figure 1 illustrates
the two NLU tasks. In Figure 1(a), an NLI model takes the
premise and hypothesis as input and predicts whether the
premise entails the hypothesis. In Figure 1(b), an MRC model
takes a passage and question pair as input to predict the correct
answer. There is a fundamental connection between machine
reading comprehension and natural language inference [15],
both tasks rely heavily on reasoning skills, and both are
general because many NLP tasks can be cast into MRC
[19] [20] or NLI [21]. For both NLI and MRC tasks, the
current state-of-the-art approaches make use of a sizeable pre-
trained language model such as BERT [13], and RoBERTa
[22], fine-tuned using the benchmark-specific training data.
Benefiting from large-scale pre-training, such models have
achieved performances close to or surpass the human level
on popular benchmarks [23] [24].

The recent advance in NLU leads to the natural question
of whether it is time to revisit traditional linguistic reasoning
tasks. Relevant to this question, some work has shown evi-
dence that the current deep learning technologies have the po-
tential to conduct logical reasoning [25]. From the application
perspective, harnessing logical reasoning benefits downstream
tasks and NLP applications, such as dialogue systems [26],
information extraction [27], and question answering [28] [29].
However, for both NLI and MRC, most existing datasets
are designed to evaluate the capabilities of basic linguistic
understanding, as Figure 1 shows. Relatively few benchmarks
are available for systematically measuring the performance of
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David, Jack and Mark are colleagues in a company. David supervises
Jack, and Jack supervises Mark. David gets more salary that Jack.

Q: What can be inferred from the above statements?

A: Jack gets more salary than Mark.

B: David gets the same salary as Mark.

C: One employee supervises another who gets more salary than himself.

D: One employee supervises another who gets less salary than himself.

Fig. 2: An example from the LogiQA 1.0 dataset. (✓ indicates
the correct answer.)

NLP models concerning formal logical reasoning. This limits
our exploration not only of linguistic reasoning per se but
also potential investigations of more generalizable and more
explainable NLP models that resemble human learning, in
which logical reasoning plays a role [30] [31] [32] [33].

To address these issues, we constructed an MRC dataset
named LogiQA [34], with a focus on logical reasoning. One
example of the dataset is shown in Figure 2. As can be seen
from the figure, to find the correct answer, the model needs
to integrate information from multiple sentences. In particular,
it needs to make valid logical inferences among David, Jack,
and Mark to compare their level and salary, while none of
the Four options is explicitly described in the context. In
contrast, for traditional MRC tasks, such as SQuAD [12], and
HotpotQA [35], only explicit evidence integration is necessary.
LogiQA contains 8,678 paragraph-question pairs, each with
four candidate answers. Using this dataset, we evaluated the
capacity of pre-trained language models, in particular, BERT
[13] and RoBERTa [22], for logical MRC. Results show a
significant gap between model performance (around 35%) and
human level (around 86%), revealing the shortcomings of pre-
trained LMs despite their success on traditional datasets. Our
dataset facilitated subsequent research on the critical exam-
ination of existing datasets [36] [37], investigating various
reasoning skills [38] [39], and designing new neural structures
for language models [40].

The original LogiQA dataset, however, has three noteworthy
limitations. First, LogiQA 1.0 categorizes 651 test samples
into five reasoning types, namely categorical reasoning, suffi-
cient conditional reasoning, necessary conditional reasoning,
disjunctive reasoning, and conjunctive reasoning. However, it
does not categorize the whole dataset, limiting the use of
the dataset for investigating a sub-category of challenges in
isolation or for fine-grained evaluation of reasoning capabili-
ties. Second, as the original LogiQA dataset has been highly
challenging to neural models [41], with the best-reported
results being 39.32% accuracy [40], leaving a steep curve for
research on more effective models. To this end, a binary NLI
classification task can potentially reduce the ambiguity in the
output from 4 choices to 2, which offers a different perspective
to logical NLU. However, NLI is not included in LogiQA
1.0. Third, the quality of the English dataset needs improving
because it has been translated using machine translation and
human post-editing. One example of the test input is shown
in Figure 4(a). As can be seen, the ambiguity of the original
translation of option B undermines the truth value. As a
result, the quality of translation can affect the effectiveness

Hypothesis 1: To create a novel, you must have enough life experience.


Entailed          Not Entailed
Hypothesis 2: Poets and novelists cannot be young.


Entailed          Not Entailed
Hypothesis 3:  It's all the old people's business to write novels.


Entailed          Not Entailed
Hypothesis 4: Writing novels depends on luck.


                                   Entailed          Not Entailed


Premise: Literary works are inseparable from real life. It is impossible for
people without in-depth experience in life to write excellent works.

Hypothesis: Some southerners don't like chili.


                                   Entailed          Not Entailed

Premise: All Cantonese are southerners. Some Cantonese don't like chili.

(a) NLI examples from the LogiQA 2.0.

Question: Which of the following is the correct interpretation of this
paragraph?


Options: A. To create a novel, you must have enough life experience.


                B. Poets and novelists cannot be young.


                C. It's all the old people's business to write novels.


                D. Writing novels depends on luck.

Text: Literary works are inseparable from real life. It is impossible for people
without in-depth experience in life to write excellent works.


Question: Which of the following question can verify above argument?

Options: A. Some Cantonese like to eat chili.

                B. Some people who like to eat chili are southerners.

                C. All Cantonese are southerners.

                D. Some Cantonese don't like chili or sweets.


Text: Some Cantonese don't like chili. Therefore, some southerners don't like
chili.

Reading Comprehension

(b) MRC examples from the LogiQA 2.0.

Fig. 3: Tasks examples of the LogiQA 2.0 dataset. (✓
indicates the correct answer. We use different font colors to
separate the minor premise from the major premise.)

There are 4 cups on the table, each with a sentence written on it. The first
cup: "Beer is in all cups". The second cup: "Cola in this cup". The third cup:
"No coffee in this cup". Fourth cup: "Some cups have no beer". Only one of
the 4 sentences is true.

Q: So which of the following is true?

A: Beer is in all cups.

B: No Cola in all cups.

C: Coffee in the third cup.

D: Cola in the second cup.

(a) LogiQA 1.0 example with neural translation and post-editing.

There are four cups on the table, each with a sentence written on it: the
first cup says "all cups are beer"; the second cup says "this cup is Cola";
The third cup says "this cup is not coffee"; the fourth cup says "some cups
are not beer". Only one sentence written on the four cups is true.

Q: Which of the following must be true?

A: All cups are beer.

B: Every cup is not Cola.
C: The third cup is coffee.

D: The second cup is Cola.

(b) LogiQA 2.0 example with human translation.

Fig. 4: Quality improvements of the same instance in LogiQA
1.0 and LogiQA 2.0.

of the dataset as an effective benchmark for evaluating logical
reasoning capabilities.1

We present LogiQA 2.0, an improved version of the LogiQA
dataset. Figure 3 shows examples of two tasks in the LogiQA
2.0 dataset. The LogiQA 2.0 dataset has four salient changes.

1 The Chinese dataset is not affected as it is entirely human-curated.
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Paragraph Question-Answers Reasoning Type

P1: David knows Mr. Zhang's friend Jack, and Jack knows David's friend Ms.
Lin. Everyone of them who knows Jack has a master's degree, and everyone
of them who knows Ms. Lin is from Shanghai.

Q: Who is from Shanghai and has a master's degree?

A. David.

B. Jack. 

C. Mr Zhang.
D. Ms. Lin.

Categorical
reasoning

(32.7%)

P2: Jimmy asked Hank to go to the mall the next day. Hank said, "If it doesn't
rain tomorrow, I'll go climbing." The next day, there was a drizzle. Jimmy
thought that Hank would not go climbing, so he went to pick up Henry to the
mall. Nevertheless, Hank went climbing the mountain. When the two met
again, Jimmy blamed Hank for not keeping his word. 

Q: Which of the following comments is appropriate?

A. This argument between Jimmy and Hank is meaningless.

B. Jimmy's reasoning is illogical.

C. Two people have different understandings of a drizzle.
D. Hank broke his promise and caused the debate.

Sufficient condition
reasoning

(25.1%)

P3: Only if the government reinforce basic education can we improve our
nation's education to a new stage. In order to stand out among other nations,
we need to have a strong educational enterprise. 

Q: Which can be inferred from the statement above?

A. The whole society should be focused on education.

B. In order to stand out among nations, we should
reinforce basic education.

C. In order to improve our education to a new stage, it is
necessary to increase the salary of college teachers.
D. In order to reinforce basic education, all primary school
teachers must have a bachelor degree or above.

Necessary condition
reasoning

(21.0%)

P4: Last night, Mark either went to play in the gym or visited his teacher
Tony. If Mark drove last night, he didn't go to play in the gym. Mark would go
visit his teacher Tony only if he and his teacher had an appointment. In fact,
Mark had no appointment with his teacher Tony in advance.

Q: Which is true based on the above statement?

A. Mark went to the gym with his teacher Tony last night.

B. Mark visited his teacher Tony last night.

C. Mark didn't drive last night.
D. Mark didn't go to the gym last night.

Disjunctive reasoning

(17.4%)

P5: The coach of a national football team found that the best cooperative
arrangement of the players U, V, W, X, Y, and Z during the training are: (1) V
and X cannot be on the field at the same time, and neither can be off the
field the same time. (2) V is not on the field only if U is not on the field. (3) If
W is on the field, then X is on the field. (4) If Ｙ and Ｚ are on the field, then
W must be on the field. This arrangement can yield the best performance.

Q: If U and Z are both on the field, for best performance, which
of the following arrangement is appropriate?


A. X is on the field and Y is not on the field. 

B. V is on the field and Y is not on the field.
C. V and W are both on the field.
D. V and Y are not on the field.

Conjunctive reasoning

(25.0%)

Fig. 5: Examples of each type of logical reasoning in LogiQA 2.0. (✓ indicates the correct answer.)

First, we enlarged the dataset from 8678 instances to 15708
instances by collecting more logical test materials. Second,
as shown in Figure 4(b), the quality of the English data is
largely improved with fully professional human translation.
Third, an NLI dataset is further added by making adaptations
to the original MRC instances. Fourth, we give a fine-grained
analysis of different logical reasoning types according to the
division of logical reasoning types.

We reran typical baseline state-of-the-art NLP models on
LogiQA 2.0, finding that the MRC task achieves better
performance. For LogiQA 2.0, BERT-base achieves 48.12%
accuracy, compared to 33.83% on LogiQA 1.0. We further
quantify the influence of the English translation quality and
the size of data, both of which have theoretical and practical
significance. For the logical NLI task, which is not included in
LogiQA 1.0, models achieve an average accuracy of 57.36%.
with BERT-base achieving 54.97% accuracy. In addition to
BERT-base and RoBERTa, which we experimented with in
LogiQA 1.0, we additionally evaluate BART [14], GPT-2 [42]
and GPT-3 [43] for both LogiQA 1.0 and LogiQA 2.0, which
represent pre-trained models of different architectures. The
best-performing GPT-3 gives results of 54.93% and 68.65%
on LogiQA 2.0 MRC and NLI, respectively. Though much
higher compared with BERT-base, the results lag much behind
the 90% human level, which shows that logical reasoning is a
challenging issue for both tasks.

This article is a significant extension to our LogiQA 1.0
conference paper [44], with rewritten introduction and related
work sections, a new dataset release, updated results, and
extended experimental discussion details. All the resources are

released at https://github.com/csitfun/LogiQA2.0.

II. DATASET

This section describes the LogiQA 2.0 dataset, a superset
of LogiQA 1.0 with quantity and quality improvements. For
brevity, we do not re-introduce LogiQA 1.0 but give the major
differences between the two versions in Section II-E.

A. MRC Data Collection and Translation
Our data source is public materials from the Chinese Civil

Service Exam, which is held annually in provinces of China
2. Experts design formal logical reasoning questions to test
candidates’ critical thinking and problem-solving skills. The
exams take the form of multi-choice question answering,
and testees need to select the correct options to answer the
question. The testing materials are released online after each
year’s examination. LogiQA 2.0 increases the data size by
including more logical reasoning tests.

We collect our data from the web 3, obtaining 16490 text-
question-options triples. Each item contains one paragraph
of text, a question, and four options. The correct answer or
answers are labeled for each item. Discrimination is provided
during collecting to rule out instances that are not self-
contained by the texts, i.e., instances are neglected if they
contain charts or tables; we did not include questions that
need to fill in the blanks. After the data cleaning process, the
resulting dataset contains 15937 paragraph-questions pairs. We
release the data as a Chinese MRC corpus for LogiQA 2.04.

2 http://bm.scs.gov.cn/pp/gkweb/core/web/ui/business/home/gkhome.html
3 URL links of the data sources can be found in our dataset repository.
4 https://github.com/csitfun/LogiQA2.0 Chinese
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Parameter LogiQA 2.0 MRC task Parameter LogiQA 2.0 NLI task

train dev test train dev test

# Paragraph-Question Pairs 12,567 1569 1572 # Premise-Hypothesis Pairs 31,531 3941 3942
Avg./Max. # T / Paragraph 69.82 / 290 70.31 / 228 68.27 / 215 Avg./Max. # T / Premise 71.67 / 292 71.47 / 247 71.65 / 292
Avg./Max. # T / Question 13.58 / 88 13.38 / 44 13.47 / 53 Avg./Max. # T / Hypothesis 17.92 / 104 17.89 / 103 17.69 / 107
Avg./Max. # T / Answer 16.84 / 108 17.05 / 104 16.84 / 107 # E / N Labels 15749 / 15782 2027 / 1914 1931 / 2011

TABLE I: Statistics of LogiQA 2.0. (“T” — tokens; “E” — entailment relations; “N” — non-entailment relations.)

For LogiQA 2.0, we then set up a translation project to
translate the dataset into English, along with further data
cleaning procedures. Professional translators are hired to
translate the dataset from Chinese to English. Through this
process, known issues of all the instances in LogiQA 1.0 are
manually fixed. We remove all the instances that center on
Chinese distinctive culture and language phenomena that are
difficult to understand by a foreign culture (Chinese idioms,
ancient poetry, Chinese philology, etc. Examples are given in
Appendix A). In total, 667 translator hours (about 20 problems
per hour) are spent with an average pay rate of 67 RMB (≈
10 USD) per hour. Figure 3(b) in the introduction shows one
instance of the LogiQA 2.0 MRC task.

B. The NLI Section of LogiQA 2.0

The NLI task was first introduced in the PASCAL Recog-
nizing Textual Entailment Challenge [15] in the 2000s. The
task is to decide the entailment relationship between two text
fragments and has a natural connection with logical reasoning.
Researchers used expert-designed datasets to explore different
aspects of textual entailment [16], [45]. Crowdsourced meth-
ods were also introduced to construct large-scale NLI datasets
[46], [47] in the 2010s. A typical example of the NLI datasets
is shown in Figure 1(a). In general, the process of generating
high-quality NLI datasets is costly. Due to the scarcity of NLI
datasets, work has been done to obtain golden labeled NLI
data from other NLU tasks, such as question-answering [48],
[49], and summarization [50].

Following the work of Demszky et al. [49], we use rule-
based method5 to extract the premise and hypotheses from the
concatenation of text, question, and options of each MRC in-
stance in LogiQA 2.0. As an NLI dataset for logical reasoning,
the NLI section of LogiQA 2.0 complies with the formulation
of classical NLI tasks. It decides the entailment relationship
between two text fragments (one is called the premise, and the
other is the hypothesis) with a two-way classification scheme.

As shown in Figure 3(a), because the premise of each NLI
instance is at the multi-sentence level, we follow the concept
of syllogism [51] [52] and further add fine-grained labels to
the premise, differentiating its major components. Such labels
can optionally be used in training NLI models, which are
illustrated in the coloring of Figure 3(a). One similar NLI
dataset is the FraCaS Textual Inference Problem Set [16],
derived from the FraCaS project [53]. There are 346 problems,
each containing one or more premises and a hypothesis. Below
is an illustrated example:

P1 A Swede won a Nobel prize.

5 https://github.com/nli-for-qa/conversion

P2 Every Swede is a Scandinavian.
H A Scandinavian won a Nobel prize.
In this example, categorical reasoning is the key reasoning

skill to decide the entailment relation. P2 is the major premise
[54], a statement of a general or universal nature; P1 is the
minor premise, a statement regarding a particular case, related
to the subject of the major premise [55]. Compared to the
FraCaS dataset, our NLI section of the LogiQA 2.0 is larger
in data size, and the context of the premise is longer.

Such additional fine-grained labels are designed to suit the
setting of logical reasoning in the NLI setting, and can poten-
tially facilitate research in syllogism (conditional, categorical,
disjunctive) reasoning. Our labeling is done using hand-crafted
rules.6 As shown in Figure 3(a), each item is annotated with
one of the two labels, Entailed and Not Entailed. One premise
may have multiple hypotheses.

The resulting dataset consists of 39,414 premise-hypothesis
pairs, covering a broad spectrum of logical reasoning types
and a large genre of topics. Figure 3(a) in the introduction
shows one instance of the LogiQA 2.0 NLI task. To the best
of our knowledge, the NLI version of LogiQA 2.0 is the
first large-scale expert-designed logical reasoning dataset for
NLI beyond the sentence level featuring optional fine-grained
premise labeling.

C. Reasoning Types

For both the MRC section and the NLI section of our
dataset, we categorize the instances according to the five types
of formal logical reasoning defined by Hurley [56], which
are categorical reasoning, sufficient conditional reasoning,
necessary conditional reasoning, disjunctive reasoning, and
conjunctive reasoning. Human workers manually assign all the
reasoning type labels based on the reasoning type definitions.
The reasoning type of each question is assigned by a total of 5
workers, and each of them corresponds to one reasoning type.
We give the description of reasoning types to the workers.
The reasoning type of each question is a collection of 5
workers’ decisions. The representative examples of different
reasoning types and their proportion are illustrated in Figure
5. Note that the sum of total values is bigger than 100% for
the reason that one instance may involve multiple reasoning
types. These types of reasoning belong to deductive reasoning,
for which a definite conclusion can be derived given a set of
premises. As a result, such reasoning can be most suitable
for evaluating performances quantitatively. Formally, the five
types of reasoning can be described as follows:

6 An illustration is shown in Appendix B
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• Categorical reasoning: The goal is to reason whether
a specific concept belongs to a particular category. This
type of reasoning is commonly associated with quantifiers
such as “all/everyone/any”, “no”, and “some”, etc.

• Sufficient conditional reasoning: The type of hypothet-
ical reasoning is based on conditional statements of the
form “If P, then Q”, in which P is the antecedent and Q
is the consequent.

• Necessary conditional reasoning: This type of hypothet-
ical reasoning is based on conditional statements of the
form “P only if Q”, “Q whenever P”, etc., where Q is a
necessary condition for P.

• Disjunctive reasoning: In this type, the premise is dis-
junctive, in the form “either . . . or . . .”, where the
conclusion holds as long as one premise holds.

• Conjunctive reasoning: In this type of reasoning, the
premise is conjunctive, in the form “both . . . and. . . ”,
where the conclusion holds only if all the premises hold.

D. Data Statistics

The detailed statistics of the LogiQA 2.0 MRC task are
summarized on the left of Table I. We have 15708 paragraph-
question pairs in the MRC section of our dataset. The average
paragraph length is relatively small compared with existing
reading comprehension datasets since logical reasoning prob-
lems do not rely heavily on complex context. We randomly
split the dataset, using 12567, 1569, and 1572 instances for
training, development and testing, respectively.

The statistics of the LogiQA 2.0 NLI task are summarized
on the right of Table I. It is converted from the MRC
section and has 39414 premise-hypothesis pairs. Compared
to traditional one-sentence NLI datasets, the average premise
length is 71.65, much longer due to the multi-sentence context.
We randomly split the dataset, using 31531 instances for
training, 3941 instances for development, and 3942 instances
for testing.

E. LogiQA 2.0 versus LogiQA 1.0

The main differences between LogiQA 2.0 and LogiQA 1.0
are 4-fold. The first is the data size. LogiQA 1.0 contains
8678 question instances, and LogiQA 2.0 extended it to
15,708 question instances. The second is the task framework.
LogiQA 1.0 is a dataset solely for MRC in the form of four-
option question answering; LogiQA 2.0 added a two-way
NLI task with 39,414 premise-hypothesis pairs, making it a
dataset containing multiple tasks. The third is data quality. We
enhanced the data quality with retranslation and amendments;
elusive instances that may hinder the understanding of broader
audiences are removed from the dataset. The fourth is more
fine-grained annotation than the previous version. LogiQA 1.0
only annotated the test set with detailed reasoning types; for
LogiQA 2.0 MRC task, we conduct in-depth annotations to the
original data source by assigning each instance with reasoning
types. We additionally provide the LogiQA 2.0 NLI task,
featuring multi-sentence premise labels with additional major
and minor premises for each premise-hypothesis pair.

Dataset Accuracy
SNLI [46] 89.42

GLUE MNLI [57] 83.79
GLUE RTE [57] 65.34

SciTail [58] 93.79
GLUE QNLI [57] 90.73
LogiQA 2.0 NLI 54.97

TABLE II: A comparison of BERT-base fine-tuning with
different NLI datasets.

Model Dev Test

Accuracy F1-score Accuracy F1-score
BERT-base 54.97 57.39 54.87 59.61

RoBERTa-base 55.41 56.13 55.43 57.96
XLNet-base 55.42 58.78 55.89 60.12
BART-base 56.83 57.41 57.08 56.89
GPT-2-base 55.01 57.84 54.75 57.32

GPT-3 66.49 69.55 67.78 68.65
Human Performance 86.63 84.06 89.36 91.40
Ceiling Performance 98.00 99.31 96.67 97.97

TABLE III: Results on LogiQA 2.0 NLI (accuracy%).

III. NLI MODELS

We use the state-of-the-art pre-trained language models to
establish baselines for LogiQA 2.0 and empirically understand
such models’ effectiveness on logical NLI. In addition, human
performance is evaluated as a reference metric.

A. Pre-trained Language Models

We take the following pre-trained models:
BERT [13] is a Transformer-based [62] language model

that uses a masked language modeling objective.
RoBERTa [22] extends BERT using a more dynamic sen-

tence masking method. It uses a similar architecture as BERT
but has a different pre-training scheme.

XLNet [60] is a generalized autoregressive pre-training
method that uses a permutation language modelling objective
to combine the advantages of autoregressive and autoencoding
methods.

BART [14] is a sequence-to-sequence model with a de-
noising bidirectional autoecoder and a left-to-right decoder.
The BART model works both for text generation tasks and
comprehension tasks.

GPT-2 [61] is the second generation of the Generative Pre-
Trained (GPT) [63] language model that uses the decoder part
of the transformers architecture. GPT-2 is trained on a very
large corpus of English texts with a ”predict the next word”
unsupervised fashion.

GPT-3 [43] is the third generation of GPT; it is an autore-
gressive language model that can generate human-like texts.
The architecture of GPT-3 is based on the transformer network
with a generative training objective on Internet-scale text data.

We apply fine-tuning for BERT, RoBERTa, XLNet, BART,
and GPT-2. Following Devlin et al., given a premise p and a
hypothesis h, we concatenate the premise-hypothesis pair as
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Category Model LogiQA 1.0 LogiQA 2.0 Chinese LogiQA 1.0 Chinese LogiQA 2.0

Dev Test Dev Test Dev Test Dev Test

Random(theoretical) 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00

Rule-based Word Matching [59] 27.49 28.37 30.25 31.17 26.55 25.74 29.48 30.31

Pre-trained

BERT [13] 33.83 32.08 48.12 47.90 30.46 34.77 37.10 31.14
RoBERTa [22] 35.85 35.31 49.88 48.76 39.22 37.33 38.54 35.64

XLNet [60] 35.02 33.17 50.86 47.84 38.92 35.41 40.60 34.11
BART [14] 35.49 35.61 48.80 46.31 37.16 36.88 38.21 38.94
GPT-2 [61] 33.93 33.48 47.05 47.32 32.67 30.84 33.12 31.09
GPT-3 [43] 51.53 49.17 56.21 54.93 - - - -

Human Human Performance - 86.00 - 84.00 - 88.00 - 87.00
Ceiling Performance - 95.00 - 98.00 - 96.00 - 95.00

TABLE IV: Main results on LogiQA 2.0 MRC task (accuracy%).

a new sequence [CLS] + p + [SEP ] + h + [SEP ], where
[CLS] and [SEP ] are special symbols for classification token
and separator token, respectively. After encoding, the last
layer’s hidden representation from the [CLS] token is fed in
an MLP+softmax for classification. For the encoder-decoder
models BART, we take [CLS] from the decoder module. For
the decoder model GPT-2, the last token [SEP ] is used for
classification instead of the first [CLS] token. In addition to
the standard NLI setting, we conduct separate experiments
to examine the role of additional fine-grained premise labels.
We add the leading symbol [Major premise] before the major
premise texts, and [Minor premise] before the minor premise
texts, resulting in the sequence [CLS] + [Major premise] +
pmajor + [Minor premise] + pminor + [SEP ] + h+ [SEP ] as
the input.

For the GPT-3 model, we use in-context learning to explore
GPT-3’s few-shot learning ability by using a few examples.
Specifically, we use 5 examples, each of which represents a
typical reasoning skill as discussed in Section II-C. For the
NLI task, each example is organized in a uniform format:
Given the fact: {premise}
Does it follow that: {hypothesis}
Yes or no? {label}

B. Human Performance
To measure human performance on the LogiQA 2.0 NLI

dataset, we randomly select 300 context-hypothesis pairs from
the test set. Four testees were recruited, who are master
students in computer science, and two had the experience of
preparing for the Chinese Civil Service Exam. We report hu-
man performance by the mean score. The ceiling performance
is obtained by considering the proportion of questions with at
least one correct answer.

IV. MRC MODELS

We evaluate the performances of typical reading comprehen-
sion models, including rule-based and deep learning methods
based on pre-trained contextualized embedding. In addition,
similar to NLI, human performances are evaluated, and ceiling
performances are reported.

A. Rule-Based Methods
We adopt one rule-based method relying on simple lexical

matching. In particular, word matching [59] is a baseline
that selects the candidate answers with the highest degree of
unigram overlap with the given paragraph-question pair.

B. Pre-trained Language Methods

We take the same pre-trained models discussed in Section
III-A for our experiments.

For BERT, RoBERTa, XLNet, BART, and GPT-2, we con-
catenate the paragraph, question, and each candidate answer
as one sentence. Then use a pre-trained contextualized embed-
ding model to encode the sentence for calculating its score.
In the multi-choice scenario, as four candidate answers in our
dataset, four concatenated sentences are constructed by pairing
each candidate answer with the paragraph and question. The
one with the highest model score is chosen as the answer.
In particular, we treat the paragraph as sentence A and the
concatenation of the question and each candidate as sentence
B, before further concatenating them into [CLS] A [SEP] B
[SEP] for encoding; the hidden state of the [CLS] token is
used for MLP + softmax scoring. For the encoder-decoder
models BART, we take [CLS] from the decoder module. For
the decoder model GPT-2, the last token [SEP ] is used for
classification instead of the first [CLS] token. The embedding
models are fine-tuned during training.

For GPT-3, because of the few-shot learning scenario, we
use the 5 typical examples discussed in Section II-C as in-
context. each example is organized in a uniform format:
Write a multi-choice question for the

following article:
Article: {text}
Question: {question}
Options: \n {option1} \n {option2}
\n {option3} \n {option4}
Answer: {answer}

C. Human Performance

To measure human performance on the LogiQA 2.0 MRC
dataset, we randomly select 100 MRC instances from the test
set. The number of instances is proportional to that of the NLI
section. We use the same group of testees as the NLI section
for measuring human performance. The human performance is
reported by average scores, and the human ceiling performance
is obtained by considering the proportion of questions with at
least one correct answer.

V. EXPERIMENTS

We report the main results of the aforementioned models in
Section III and IV on the LogiQA 2.0 NLI and MRC sections,
respectively, to make a comparison between the performances
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of different types of models, and between the state-of-the-art
models and human level. In addition, for the MRC section, we
also compare results on LogiQA 2.0 and those on LogiQA 1.0
to understand the improvements we made to the datasets.

A. Settings

We re-implement the rule-based methods strictly following
Yih et al. [59] for MRC. For both NLI and MRC, we follow
the HuggingFace implementation [64] and use the OpenAI
API, taking the off-the-shelf model BERT-base, RoBERTa-
base, XLNet-base BART-base, and GPT-2 for LogiQA 2.0, and
Chinese BERT-base [65], Chinese RoBERTa-base [65], Chi-
nese XLNet-base [66], Chinese BART-base [67] and Chinese
GPT-2 [42] for the Chinese LogiQA 2.0 MRC section. All
models are trained for 20 epochs. We find hyper-parameters
using grid search: batch size ∈ {8, 16, 32} learning rate
∈ {1e−5, 2e−5, 3e−5, 4e−5, 5e−5} and gradient accumulate
step ∈ {1, 2, 4}. We set the max length to 256 tokens for
all models. All hyper-parameters are decided by the model
performance on the development sets.

B. NLI results

Table III shows the results of models discussed in Sec-
tion III. Following the NLI benchmark-setting [46] [11], we
employ the overall accuracy as the main evaluation method.
Furthermore, to give a more detailed analysis, we also cal-
culate the precision (P), recall (R), and F1-score (F1). The
F1-score of human performance on the test set is 91.40%,
and the human accuracy performance is 89.36% for LogiQA
2.0; BERT-base yields 54.87% accuracy, and the F1-score
is 59.61%; RoBERTa-base gives slightly better results with
55.43% accuracy and 57.96% F1-score. XLNet, BART and
GPT-2 give similar results. The GPT-3 model gives the best
performance with 67.78% accuracy and 68.65% F1-score.
This shows that pre-training is effective for the task, and the
contrast between GPT-2 and GPT-3 shows the effectiveness
of increased model size. In addition, there is still a significant
gap between the performance of pre-trained language models
and human performance. The result concurs with the work
of Clark et al. [68]. That is, although yes/no questions fre-
quently occur in real-world scenarios, binary classification is
notoriously hard for language models [68].

We rerun a series of experiments of BERT-base model fine-
tuning on several NLI benchmarks, and the results are shown
in Table II. Each experiment is trained for 10 epochs with the
same hyperparameters. As seen from Table II and Table III,
compared to their performance on traditional NLI benchmarks
and human performance, there is still a gap, which shows that
LogiQA 2.0 is challenging for the NLU models.

C. MRC results

Table IV shows the results of the models discussed in
Section IV. In particular, the human performance is 84.00%,
and the ceiling performance is 98.00% for LogiQA 2.0,
which shows that the difficulty level of the dataset is not
high for human testees. In contrast, all algorithmic models

Model LogiQA 2.0 LogiQA 1.0 2.0 portion

Dev Test Dev Test Dev Test
BERT 48.12 47.90 33.83 32.08 36.75 32.71

RoBERTa 49.88 48.76 35.85 35.31 36.98 36.56
XLNet 50.86 47.84 35.02 33.17 36.53 34.22
BART 48.08 47.84 35.49 35.61 35.98 36.30
GPT-2 47.05 47.32 33.93 33.48 35.56 35.14

TABLE V: LogiQA 2.0 vs. LogiQA 1.0 (accuracy%)

perform significantly worse than humans, demonstrating that
the methods are relatively weak in logical-reasoning intensive
reading comprehension. In addition, results on the Chinese
dataset are on the same level as those on the English dataset.

In particular, the rule-based methods give accuracies of
30.25% and 31.17% on the development set and test set,
respectively, slightly higher than a random guess baseline. This
shows that using lexical matching alone makes the questions
extremely difficult to solve. The first problem in Figure 3(b)
serves as one intuitive example. Option C of the problem has
the least lexical overlapping yet is the right answer; the lexical
matching method fails in such cases.

On LogiQA 2.0, such models perform better than the meth-
ods without contextualized embeddings. It has been shown
that pre-trained models have a certain degree of commonsense
and logical capabilities [69]. However, the best result by
GPT-3 is 56.21%, still much below human performance. This
shows that knowledge in pre-trained models is rather weak
for logical reasoning. It remains an open question how deep
learning machine readers can be equipped with solid reasoning
capability. In addition, the better results on NLI in Table III
as compared to MRC in Table IV by the same models result
from the fact that NLI is a binary classification task, which
offers a playground for testing logical reasoning capabilities
with fewer answer-level ambiguities.

LogiQA 2.0 versus LogiQA 1.0. We nearly double the data
size from the LogiQA 1.0 to the LogiQA 2.0 MRC section.
To examine how the MRC data size affects the performance of
pre-trained models, we compare the performance of the same
data portion of LogiQA 2.0 as in LogiQA 1.0 versus the Full
LogiQA 2.0. As shown in Table IV and V, the RoBERTa-
base result on the test set of the whole data is 45.42%
accuracy, significantly higher than that of the partial data,
which is 36.56% accuracy. We see a significant performance
improvement on the LogiQA 2.0 MRC task for state-of-the-art
MRC models, which happens due to the enhanced data quality
and increased data size.

The influence of English translation quality on LogiQA
2.0. We reran experiments using the same data as LogiQA
1.0, but with the new English translation. We use the same
training set for training and the same dev and test set for
testing. The results are shown in the “2.0 portion” column
Table V. On the dev set, the accuracy of BERT improved from
33.83% to 36.75%, RoBERTa gives an accuracy of 36.98%,
higher than on LogiQA 1.0. Similarly, the accuracy of the other
models also improved. This shows that the quality of English
translation has a positive influence on the MRC result.
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Fig. 6: RoBERTa results on the ablation tests (accuracy%).

VI. ANALYSIS

We give a detailed analysis based on the empirical results
of both NLI and MRC models on the LogiQA 2.0 test sets.

A. Ablation Tests

Following recent studies [70] [71], we conduct a set of abla-
tion experiments using RoBERTa to measure bias in the dataset
by checking the performance based on partial information. To
verify the data quality against bias and artifacts [72] For the
NLI ablation test, we report the hypothesis-only and context-
only results of the RoBERTa model. For the MRC ablation
test, we report the paragraph & option result, the question
& option result, and the option-only result for the RoBERTa
model. In addition, the NLI and MRC tasks’ random results
are theoretically given, respectively. Figure 6 shows the results.

The LogiQA 2.0 NLI task. As we can see from Figure 6,
training on context-only data yields 47.15% accuracy, and
training RoBERTa on hypothesis-only data yields 50.92%
accuracy. The results show that the RoBERTa model cannot
decide the entailment relation between premise and hypothesis,
given only one party. This shows that LogiQA 2.0 NLI does
not have noticeable data artefacts [71].

The LogiQA 2.0 MRC task. As can be seen, the results
of the MRC ablation test show that there is a significant
drop in accuracy without the paragraph, the question, or
both, which indicates that the bias on the dataset is weak.
In particular, without the input paragraph, the accuracy drops
from 45.42% to 29.47%; If we omit the question, the accuracy
of the RoBERTa model is 35.37%, still 10% lower than the
performance of RoBERTa on the complete data; The accuracy
of the RoBERTa model on option-only data is 28.06%, slightly
higher than a random guess. The ablating question causes
a relatively minor performance drop as compared with the
paragraph, which is consistent with observations by Huang et
al. [69]. This is likely because the diversity of questions is
lower than the paragraph. The above results show that our
dataset does not have a strong bias.

B. Transfer Learning

Recent studies have shown the benefit of fine-tuning models
on similar datasets for knowledge transfer [69]. The set of ex-
periments below aims to understand the underlying correlation

(a) LogiQA 2.0 NLI task transfer learning (accuracy%).

Model Dev Test

Random (theoretical) 50.00 50.00
RoBERTaMNLI 49.62 47.18

RoBERTaMNLI−→LogiQA 2.0 NLI 58.02 57.44

(b) LogiQA 2.0 MRC task transfer learning (accuracy%).

Model Dev Test

Random (theoretical) 25.00 25.00

RoBERTaLogiQA 2.0 MRC 47.36 45.42

RoBERTaRACE 27.02 28.79
RoBERTaCOSMOS 29.36 31.71

RoBERTaRACE−→LogiQA 2.0 MRC 36.83 33.65
RoBERTaCOSMOS−→LogiQA 2.0 MRC 37.43 36.82

RoBERTaLogiQA 2.0 NLI−→LogiQA 2.0 MRC 48.47 48.28

TABLE VI: Transfer learning results on LogiQA 2.0.

and contrasts between the NLI and MRC sections in LogiQA
and relevant existing NLI and MRC benchmarks.

Knowledge transfer from MNLI to the LogiQA 2.0 NLI
task. For the LogiQA 2.0 NLI task, we explore the MNLI [47]
dataset for knowledge transfer. In particular, we first train
RoBERTa with MNLI training data (RoBERTa-NLI), and then
we use the trained model for fine-tuning the LogiQA 2.0 NLI
data. As shown in the second rows of Table VI(a), RoBERTa-
NLI only achieves 47.18% on the test set of LogiQA 2.0, much
lower than 55.43% (Table III) when trained on LogiQA 2.0,
and even lower than the theoretical random baseline, which
shows that features learned over MNLI cannot directly transfer
to LogiQA. After fine-tuning models on the NLI section
of LogiQA 2.0, BART-NLI-FT gives a better performance
of 57.44% which is slightly better than training only on
LogiQA 2.0, which shows that LogiQA is unique compared
to traditional NLI benchmarks because the reasoning types it
needs are drastically different.

Knowledge transfer from RACE/COSMOS to the
LogiQA 2.0 MRC task. Similarly, for the MRC section
of the LogiQA 2.0, we conduct a set of transfer learning
experiments to understand the degree of overlap in terms
of necessary knowledge for solving problems in our dataset
and existing datasets. In particular, we first fine-tune the
RoBERTa model on a source dataset before fine-tuning the
model on LogiQA 2.0. The model performance is expected
to increase if the required knowledge is similar. RACE and
COSMOS are adopted as the source datasets. The former
tests English reading skills, while the latter tests commonsense
knowledge. As shown in Table VI(b), the RoBERTa model
trained only on either source dataset gives significantly lower
accuracies on the LogiQA 2.0 test set compared with the
RoBERTa model trained on LogiQA 2.0. The performance
of RoBERTa trained on RACE is even close to the random
guess baseline. In addition, further fine-tuning on LogiQA 2.0
leads to improvements over the source-trained baselines, but
the resulting models do not outperform a model trained only
on LogiQA 2.0. The observation is different from most other
datasets [69], [73], demonstrating that LogiQA 2.0 contains
highly different challenges compared with existing datasets.
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Fig. 7: RoBERTa performance across different lengths

Transfer learning from the LogiQA 2.0 NLI task to
the LogiQA 2.0 MRC task. Natural language inference for
downstream tasks is explored in recent research [74] [75]
[76]. NLI models are used to verify the correctness of QA
systems’ prediction because logical entailment provides more
information than selecting the highest score from multi-choice
options. [75]. We conduct a transfer learning experiment across
the LogiQA 2.0 NLI and the LogiQA 2.0 MRC tasks, using
RoBERTa-base for our experiment. The result is shown in
Figure VI(b). The RoBERTa model is first trained on the
LogiQA 2.0 NLI section. Then we use the LogiQA 2.0
MRC section to fine-tune the RoBERTa model trained on
the LogiQA 2.0 NLI section, which yields an accuracy of
48.28% on the test set, the highest score of the RoBERTa
model. The results show that a model trained on a natural
language inference dataset can improve the downstream tasks
like question answering after fine-tuning.

C. Performance Across Different Input Lengths

We measure the accuracy of RoBERTa against the input
size for both NLI and MRC. In particular, for the NLI task,
we concatenate the premise and hypothesis to calculate the
context length for each instance; for the MRC task, the number
of words in the paragraph, the question, and the candidate
answers are added together as the length of a test instance.
The results are all shown in Figure 7, where the model
performances are not negatively associated with the input size,
which is different from most NLP benchmarks [77]. This
shows that the level of challenge in logical reasoning can be
independent of the input verbosity for both NLI and MRC.

D. Lexical Overlap

Lexical overlap between input and output components has
been shown to lead to typical spurious features for various
NLP tasks [78] For the NLI task, we examine the overlap ratio
between premises and hypotheses to understand the surface
matching bias of the NLI data section. For the MRC task,
we aim to understand the bias of models in selecting the
candidate answers that have the best surface matching with
the paragraph. To this end, we calculate the unigram overlap
between each candidate answer and the given paragraph for
each problem and mark the best-matching candidate.

(a) LogiQA 2.0 NLI

Model Overlap Ratio Accuracy(%)

BERT 33.47 64.04
RoBERTa 32.78 65.91

Gold-standard 29.04 100.00

(b) LogiQA 2.0 MRC

Model Overlap Ratio Accuracy(%)

BERT 33.47 46.71
RoBERTa 32.78 49.16

Gold-standard 27.85 100.00

TABLE VII: Overlap ratio (%) against the model type.

P2:	Flower	Bay	is	an	ideal	river	for	salmons	swimming.	If	there	is	a	hydropower
dam	downstream,	then	salmons	will	not	be	able	to	swim	here.	Salmons	swim	here
only	 if	 the	 trees	on	 the	shore	of	Flower	Bay	have	 lost	 their	 leaves.	 If	many	sea
eagles	and	brown	bears	gather	in	this	river	bay,	then	you	can	tell	that	the	salmons
are	migrating.	Now	there	are	a	lot	of	salmons	swimming	in	Flower	Bay.	

	Q:	Based	on	the	above	statements,	which	of	the	following	can	be	derived?
A.	The	leaves	on	the	shore	of	Flower	Bay	are	gone.
B.	There	are	many	sea	eagles	and	brown	bears	in	Flower	Bay.
C.	There	is	a	hydropower	dam	downstream	of	Flower	Bay.
D.	Sea	Eagle	and	Brown	Bear	Feed	on	Salmon.

P3:	A	company	decided	to	select	4	people	from	3	women	(A,	B,	C)	and	5	men
(D,	 E,	 F,	 X,	 Y)	 to	 set	 up	 a	 group	 for	 an	 important	 negotiation.	 Here	 are	 the
prerequisites:	(1)	The	group	members	must	have	both	women	and	men.	(2)	D	and
A	cannot	be	selected	at	the	same	time.	(3)	B	and	C	cannot	be	selected	at	the	same
time.	(4)	If	Y	is	selected,	then	F	won't	be	selected.

	Q:	If	D	must	be	selected,	which	of	the	following	can	be	derived?
A.	If	the	company	selects	F,	then	need	also	select	Y.
B.	If	the	company	selects	E,	then	need	also	select	X.
C.	Either	selecting	Y	or	X.
D.	Either	selecting	B	or	C.

P1:	Children's	products	are	any	products	intended	for	play	or	use	by	children	12
years	of	age	or	younger.

	Q:	Based	on	the	above	definition,	which	of	the	following	are	children's	products?
A.	Milk	powders	for	infants	aged	from	0	to	1.
B.	Comic	books	suitable	for	kids	around	10	years	old.
C.	Brightly	packed	lollipops.
D.	Bumper	cars	in	the	amusement	park	children	love	to	play.

Fig. 8: Example mistakes of RoBERTa. (✓ indicates the
correct answers and ✗ indicates the RoBERTa prediction.)

We report the “Overlap Ratio” by calculating the accuracy
between model prediction and the best-matching candidate.
The results are shown in Table VII. For NLI, Table VII(a)
shows that the gold-standard output of the NLI data has an
accuracy of 29.04%, lower than that of pre-trained models,
which indicates a certain level of surface matching by the
models. As seen in Table VII(b), the gold-standard output
of the MRC data has an accuracy of 27.85%, whilst all of
the models give accuracies above this number, which shows
a tendency of superficial matching. In particular, RoBERTa
gives a lower matching accuracy, showing that it relies the
least on lexical patterns than BERT. As can also be seen from
the tables, surface patterns can be a spurious feature, leading
to lower results.
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Reasoning Type NLI section MRC section

Acc Ratio Acc Ratio

Categorical reasoning 78.06 43.09% 59.61 30.53%
Sufficient conditional reasoning 55.92 21.40% 28.47 27.34%
Necessary conditional reasoning 49.11 22.06% 22.18 19.37%
Disjunctive reasoning 47.15 16.87% 22.93 20.77%
Conjunctive reasoning 49.58 31.63% 25.40 16.71%

TABLE VIII: Test accuracy (%) per reasoning type.

E. Reasoning Types

Table VIII gives the performances of RoBERTa over the
5 reasoning types discussed in Section II-C. For both NLI
and MRC, the method gives the best accuracy on categorical
reasoning. However, the results are significantly lower for the
other four reasoning types. We give qualitative discussion via
case study to understand why these tasks are challenging.

a) Categorical reasoning: P1 of Figure 8 shows a typical
example where the definition of children’s products is given
in the paragraph, and the testee is asked to select a correct
instance. A key here is the age range (i.e., under 12). RoBERTa
incorrectly chooses the candidate that is superficially similar
to the paragraph while ignoring the reasoning process.

b) Conditional reasoning: P2 of Figure 8 is a represen-
tative example of the most challenging conditional reasoning
questions. In particular, a variety of sufficient and necessary
conditional relations are given in the paragraph, which in-
cludes:

x = “Salmons swim”

y = “Sea eagles and brown bears gather”
z = “Hydropower dam exists downstream”

w = “Trees lose leaves”
x => w (Necessary conditional relation)
y => x (Sufficient conditional relation)
x => z (Sufficient conditional relation)

The correct answer depends on fully understanding both the
necessary and sufficient conditional reasoning facts. RoBERTa
makes a mistake by ignoring the “not” operator in the x => z̄
condition, which coincides with prior observations on BERT
and negation [79].

c) Conjunctive and disjunctive reasoning: P3 of Figure 8
represents one of the most challenging questions in the dataset,
where the premises and candidate give a set of constraints
in both conjunctive and disjunctive forms, and the question
asks which candidate conforms to the premises. The testee is
expected to enumerate different possible situations and then
match the cases to the candidates by thoroughly understand-
ing the candidates also. Intuitively, RoBERTa is not directly
equipped with such reasoning capacity.

In summary, the observations above indicate that RoBERTa
can rely on relatively superficial patterns to resolve ambiguities
for both NLI and MRC, rather than learning to use formal logi-
cal reasoning. As a result, it learns spurious features [80]–[82],
which can lead to accuracies below random guess baselines
when the training and testing distributions consistently differ.

Model With Major/Minor Original

Accuracy F1-score Accuracy F1-score

BERT-base 54.96 59.39 54.87 59.61
RoBERTa-base 55.44 57.96 55.43 57.96
BART-base 57.84 56.94 57.08 56.89
GPT-2-base 54.75 57.32 54.75 57.32
GPT-3 68.49 68.97 67.78 68.65

TABLE IX: Models performance on LogiQA 2.0 NLI test set
w/o major/minor premise annotation. (accuracy%)

F. The Role of Major/Minor Premise Annotation

The optional major and minor premises (Section II) are
potentially useful for logical reasoning in NLI. We conduct
experiments to examine the role of major/minor premise
annotation. As mentioned in Section III-A, special tokens are
added to the beginning of both major and minor premises. We
use the same hyperparameters as the main NLI experiments.
The results are shown in Table IX. While BART and GPT-
3 give better accuracy and F1-score with the major/minor
premise indicators, results of BERT-RoBERTa and GPT-2 are
relatively less improved. Overall, major and minor premises
show a positive influence on model performance. We leave a
further investigation of how to effectively make use of such
labels to future work.

VII. RELATED WORK

A contrast between LogiQA 2.0 and related datasets is
shown in Table X. To our knowledge, LogiQA is the first
dataset to investigate different types of formal logical reason-
ing in both MRC and NLI tasks.

Datasets for Traditional Natural Language Inference.
Different schemes of entailment relations are investigated in
NLI research, where two-way [96]–[98] and three-way [46],
[47] classification are most frequently used in NLI datasets.
The task of Natural Language Inference was first introduced
as Recognizing Textual Entailment (RTE-1) [96]. It classi-
fies sentence pairs into either entailment or non-entailment,
a two-way classification scheme. The advantage of binary
classification is that it avoids the vagueness between neutral
and contradiction, which undermines the annotation quality
for crowd-sourcing datasets. Similar to the RTE dataset, we
use binary classification in the NLI version of LogiQA 2.0.
However, the RTE dataset is different from our dataset in that
the context of the dataset is only a single sentence, and it is
not designed for logical reasoning.

The FraCas test suite [53] is hand-crafted by experts with
hundreds of NLI questions. Similar to our dataset, it covers
logic phenomena like quantifiers and comparatives. However,
unlike our dataset, it is not designed for complex logical rea-
soning with multiple sentence inputs. In addition, the dataset
is rather small and thus more suitable for validating rule-
based methods. The first large-scale NLI dataset that can be
used for the training of neural models is SICK [89]. Different
from our work, the SICK dataset is crowd-sourced and has
unreliability issues being reported [99], and is not widely used
in training neural models. Finally, SICK introduces a three-
way NLI scheme instead of a two-way classification.
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Dataset Task Logic Context Source Size Schemes
SQuAD [12] Reading Comprehension ✗ Passage Wikipedia 100K Question Answering

TriviaQA [83] Reading Comprehension ✗ Passage Trivia Websites 95K Question Answering
DuoRC [84] Reading Comprehension ✗ Passage Movie 186K Question Answering

NarrativeQA [85] Reading Comprehension ✗ Passage Movie 46K Question Answering
DROP [86] Reading Comprehension ✗ Passage Wikipedia 96k Question Answering

COSMOS QA [69] Reading Comprehension ✗ Passage Webblog 35588 Question Answering
MuTual [87] Next Utterance Prediction ✗ Dialogue Exam 8860 Multi-choice Selection
ReClor [88] Reading Comprehension ✓ Passage Exam 6138 Question Answering
LogiQA [34] Reading Comprehension ✓ Passage Exam 8678 Question Answering

LogiQA 2.0 (MRC) Reading Comprehension ✓ Multi-Sentence Exam 16K Question Answering
FraCaS [53] Natural Language Inference ✓ One-Sentence Diverse 346 Question Answering

RTE (GLUE) [57] Natural Language Inference ✗ One-Sentence Diverse 5K Two-way Classification
SICK [89] Natural Language Inference ✗ One-Sentence Captioning 10K Three-way Classification
SNLI [46] Natural Language Inference ✗ One-Sentence Captioning 570K Three-way Classification

MultiNLI [11] Natural Language Inference ✗ One-Sentence Diverse 433K Three-way Classification
ENTAILMENTBANK [90] Natural Language Inference ✗ Passage Exam 1840 Question Answering

RuleTaker [25] Natural Language Inference ✓ Passage Synthetic 800K Question Answering
MED [91] Natural Language Inference ✗ One-Sentence Crowd-sourcing 5382 Two-way Classification
HELP [92] Natural Language Inference ✗ One-Sentence PMB [93] 36K Two-way Classification

ConjNLI [94] Natural Language Inference ✗ One-Sentence Wikipedia 1623 Three-way Classification
TaxiNLI [95] Natural Language Inference ✗ One-Sentence MNLI 10K Three-way Classification
ConTroL [44] Natural Language Inference ✗ Passage Exam 8325 Three-way Classification

LogiQA 2.0 (NLI) Natural Language Inference ✓ Multi-Sentence Exam 35K Two-way Classification

TABLE X: Comparison between our dataset and existing benchmarks of MRC and NLI. (✓ indicates datasets addressing
logical reasoning. ✗ indicates datasets not particular for logical reasoning.)

For neural models, the most popular NLI datasets for
NLU benchmarks are the SNLI [46] and the Multi-genre
NLI (MNLI) [11] datasets, which are inspired by the SICK
dataset. Compared to SICK, the two datasets improve in
data scale, label quality, and also coverage of genres. They
catalyze the development of models with better representation
abilities and become the go-to benchmark for natural language
understanding research. Through SNLI and MNLI are widely
used in NLP research, researchers find that they contain biases
that can be exploited by models to achieve high scores without
the real inference abilities [78] [100]. Datasets generated
through crowd-sourcing are prone to annotation artefacts [72].
On the contrary, our dataset is sourced from expert-designed
logical reasoning tests, making it more reliable in data quality.
ENTAILMENTBANK [90] is a dataset for multistep, multi-
premise textual entailment in the form of question-answering.
The dataset is derived from grade-school-level multi-choice
science questions. Annotators are instructed to construct en-
tailment trees given a hypothesis (question-answer pair) and
relevant text. With the hypothesis and its context from each
instance, the dataset can be used for the NLI task. Similar to
our dataset, the context of ENTAILMENTBANK is beyond the
sentence level. However, it does not explore logical reasoning,
which is the main focus of our dataset.

Datasets for Logical Reasoning NLI. RuleTaker [25]
is a synthetic dataset to examine the reasoning ability of
transformers [62] over natural language rules. With input
facts and input rules as context, the output is a binary true-
or-false answer. Although originally designed for question-

answering, the dataset can be easily converted into NLI-style.
Different from the expert-designed LogiQA 2.0, the dataset is
in synthetic English following templates. MED [91] and HELP
[92] are two NLI datasets focusing on monotonicity reasoning,
which is an essential concept in Natural Logic [101]. The
datasets are generated through monotonicity rules and only
investigate monotonicity-related inference specifically. Similar
to the NLI section of our dataset, MED and HELP investigate
basic logic phenomena in natural language, which is mono-
tonicity in particular. However, unlike their work, our dataset
is human written, and tackles more complex formal logical
reasoning over multiple sentences.

ConjNLI [94] is a challenging stress test for NLI over
conjunctive sentences, where the premise differs from the
hypothesis by having conjuncts being removed, added, or
replaced. Similar to LogiQA 2.0, Logical reasoning about
conjunctions is heavily tested. However, our dataset covers
broad logical reasoning types. Moreover, in ConjNLI, premise-
hypothesis pairs are created automatically by applying con-
junct operations on collected conjunctive sentences. Different
from their work, our NLI version of LogiQA is converted from
question-answering tests, which is more diverse.

TaxiNLI [95] is an NLI dataset re-annotated on the MNLI
dataset with fine-grained category labels. The annotation in-
cludes logical categories like connectives, mathematical, and
deduction, which is similar to our dataset. However, unlike
our dataset, TaxiNLI contains only a small fraction of logical
reasoning examples and is not designed particularly for logical
reasoning. ConTRoL [44] is an NLI dataset that further
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investigates contextual reasoning under the NLI framework.
It has 36.2% of premise-hypothesis pairs under the category
of logical reasoning. Similarly, it has a portion of instances
addressing multi-sentence logical reasoning. However, it is
not an NLI dataset solely for formal logical reasoning but for
contextual reasoning in general. Therefore, to enlarge the NLI
version of LogiQA 2.0, we incorporate the logical reasoning
instances into our new NLI dataset.

Datasets for Traditional Machine Reading Comprehen-
sion. A seminal dataset for large-scale reading comprehension
is SQuAD [12], which requires selecting a factual answer
from all possible spans in a given passage. Many neural
methods have been developed for this dataset, achieving
results that rival human testees. As a consequence, more
reading comprehension datasets with increasing challenges
are proposed. These datasets can be classified according to
the main challenges. In particular, TriviaQA [83] requires
evidence integration across multiple supporting documents to
answer the questions. DuoRC [84] and Narrative QA [85] raise
challenges by introducing two passages about the same facts.
Welbl et al. [102] and HotpotQA [35] test models for text
understanding with sequential multi-step reasoning. Drop [86]
tests discrete numerical reasoning over the context. MuTual
[87] tests dialogue reasoning ability via the next utterance
prediction task. The answer (or candidate in multi-choice-
questions) is mostly a text span in the given passage for
the above datasets. Several types of reasoning are necessary,
such as geolocational reasoning and numerical computation.
Unlike these datasets, our dataset contains answers not directly
included in the input passage and requires comprehensive
reasoning methods beyond text-matching-based techniques.

Similar to our dataset, recent datasets for commonsense
reasoning, including MCScript [103] and COSMOS [69], also
contain candidate answers not directly included in the input
passage. They test a model’s capability of making use of
external background knowledge about spatial relations, cause
and effect, scientific facts, and social conventions. In contrast,
our dataset focuses on logical reasoning, and most necessary
facts are not directly included in the given passage. In addition,
most of the existing datasets are labeled by crowd-sourcing.
In contrast, our dataset is based on examination problems
written by human experts for students and therefore has a
better guarantee of quality. This is particularly important for
datasets that involve abstract reasoning skills.

Datasets for Logical Reasoning Reading Comprehension.
LogiQA 1.0 [34], our previous dataset, was one of the earliest
datasets for testing logical MRC. Reclor [88] is another
reading comprehension dataset requiring logical reasoning. It
collects question-answering examples from the LSAT exams
7, which are targeted to test human logical reasoning abilities.
Compared to our dataset, the size of Reclor is smaller; and the
reasoning types that Reclor uses are the same as the question
types of the original tests, such as “Identify a Flaw”, which is
informally defined. In contrast, we annotate formally defined
logic reasoning types for LogiQA and investigate formal logic.

7 https://www.lsac.org/lsat

NLI Datasets Converted from MRC Datasets. While
multiple MRC datasets are available, obtaining high-quality
NLI datasets is difficult [48]. Moreover, annotating large-scale
NLI datasets through crowd-sourcing is costly and suffers from
human artefacts [104]. Thus, converting question-answering
datasets into natural language inference datasets has become
a promising research direction [48] [105] [75]. This approach
is awarded for the fact that abundant large-scale MRC datasets
exist, making it an efficient way of creating high-quality NLI
datasets. The Question-answering NLI (QNLI) dataset [57] is
an NLI dataset automatically derived from the Stanford Ques-
tion Answering Dataset (SQuAD), an MRC dataset we talked
about in VII. The dataset was converted into sentence pair
classification by forming a sentence pair between the question
and each sentence in the corresponding context and filtering
out pairs with low lexical overlap between the question and the
context. The task is to determine whether the context sentence
contains the answer to the question. Similar to our dataset,
QNLI is derived from question-answering datasets, and the
framework is also a two-way classification. However, different
from their work, the LogiQA 2.0 NLI section is converted
from expert-designed logical reasoning questions other than
Wikipedia passages; the premise of each instance is multi-
sentence other than single-sentence.

Similarly, QA-NLI [105] converts question-answering pairs
into their declarative forms and obtains 500K NLI examples.
The source datasets come from existing MRC benchmarks.
Different from our dataset, QA-NLI adopts a three-way clas-
sification scheme; it is not a dataset for logical reasoning.

Other Datasets Addressing Logical Reasoning. Apart
from the datasets we mentioned above, there have been
existing datasets related to logical reasoning in other NLP
tasks. In particular, Habernal et al. [106] designs a dataset for
argument reasoning, where a claim is given, and the model
is asked to choose a correct premise from two candidates to
support the claim. Similar to our dataset, the dataset concerns
deductive reasoning. The most significant difference between
our dataset and this dataset is that they focus on computational
argumentation. The form of their task is neither a reading
comprehension nor a textual entailment task. In addition, our
dataset has more instances (15,708 vs. 1,970), more choices
per question (4 vs. 2), and is written by relevant experts rather
than being crowd-sourced. CLUTRR [107] is a dataset for
inductive reasoning over family relations. The input is a given
passage and a query pair, and the output is a relationship
between the pair. The task is reasoning on a fixed domain (i.e.,
family relationship), which is in line with prior work on social
relation inference [108]. In contrast, our dataset investigates
formal logical reasoning with various types.

VIII. CONCLUSION

We presented LogiQA 2.0, a new version of LogiQA
with increased data size, refined translation, and a new NLI
counterpart to the original MRC task. Experiments show that
the extension leads to better performance with a variety of
pre-trained models due to quality improvements and data size
augmentation. In addition, comparison experiments between
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model and human performances show that the current state-
of-the-art methods still lag far behind the human level for
logical NLU. To our knowledge, the NLI section of LogiQA
2.0 is the first large-scale expert-designed NLI benchmark for
logical reasoning.
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APPENDIX

APPENDIX A
DATA AMENDMENTS

To construct LogiQA2.0 dataset, we:
1. Collect more newly released exam questions and practice

questions. There are about 20 provinces in China that hold the
exam annually. The exam materials are publicly available on
the Internet after the exams. Besides, practice questions are
provided by various sources.

2. Hire professional translators to re-translate the dataset
from Chinese to English; verify the labels and annotations with
human experts. This program is conducted by Speechocean,
a data annotation service provider. The project is funded by
Microsoft Research Asia.

3. Introduce a new NLI task to the dataset. The NLI
version of the dataset is converted from the MRC version
of the dataset, following previous work such as Transforming
Question Answering Datasets into Natural Language Inference
Datasets.

To maintain the universality of our English dataset, we
delete the problems which emphasize Chinese cultural fea-
tures, public service issues, and so on. There are examples
shown in Figure 9. For the first example, the reading compre-
hension problem is about Chinese currency, it argues about the
two different Chinese characters for the basic unit of RMB,
this problem is hard to understand for a non-Chinese speaker.
The second example talks about idioms from ancient books,
by translating, it would lose its original context.

To retain the truthfulness of each problem, the translation
team follows the following translation style and method:

1. Maintain a unified style, and the translated English
questions need to inherit the logic of the original questions;

人民币票面上所标示的货币单位无一例外是"圆"字，但从法
理角度看，《中国人民银行法》规定：人民币的单位为元，

人民币辅币单位为角，分。这明白清楚地从法律角度对人民
币单位作了规定，即元为人民币合法的货币单位。圆有表达

货币单位的意思，那是指在历史上。《中国人民银行法》颁
行后，元便是合法的人民币货币单位，而圆则不再是作为人
民币货币单位的规范汉字。

从这段文字可以推出?
A."圆"与"元"可以通用。
B.以我们日常生活经验及思维习惯，此"圆"即"元"之意。
C."圆"并不是人民币的货币单位，人民币纸币上所印
之"圆"很可能是一个原则性的错误。
D.在法制社会里不能想像同时存在着两种不同的货币单位。

对于春秋时期的某国，如果仓廪实或衣食足，则民知礼节或
知荣辱。如果民知礼节或知荣辱，则或者国富，或者民强。

如果民强，则百业兴。事实上该国并非国富,而且并非百业
兴。
由此可推出?
A.该国仓廪实但并非衣食足。
B.该国并非仓廪实但衣食足。
C.该国仓廪实且衣食足。
D.该国并非仓廪实且并非衣食足。

Fig. 9: Examples of items deleted from the dataset.

2. The pronoun in the question needs to be unique, and
the translation needs to be unique and consistent without
ambiguity;

3. The translated English conforms to the form of a proper
question. That is, it is a clear question from the perspective of
the respondent;

APPENDIX B
ANNOTATION PROCESS

The label credibility is manually verified after the translation
is done to maintain the truthfulness of the original text. 3
workers run a consistency test on each example; if 2 or more
workers give different answers than the original answer, the
translation would be redone to guarantee the correct label.

The reasoning type of each question is assigned by a total
of 5 workers, and each of them corresponds to one reasoning
type. We give the description of reasoning types (which can
be found in our paper) to the workers. The reasoning type of
each question is a collection of 5 workers’ decisions.

Figure 10 shows the process of annotating a reading com-
prehension data instance into a natural language inference data
instance with divided major and minor premises.
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Hypothesis 1: Half of the province is humid and cold3.


Entailed          Not Entailed
Hypothesis 2: Most of the province is hot4.


Entailed          Not Entailed
Hypothesis 3: Most of the province is either dry or warm5.


 Entailed          Not Entailed
Hypothesis 4: The climate is not cold and humid in the whole province6.


                                     Entailed          Not Entailed


Major Premise: It is difficult for cactus to survive in humid climates; citrus is
difficult to grow in cold climates1. 

Minor Premise: In most parts of a province, at least one species is not difficult
to survive and grow between cactus and citrus2.

Hypothesis: Some southerners don't like chili3.


                                   Entailed          Not Entailed

Major Premise: All Cantonese are southerners1. 


Minor Premise: Some Cantonese don't like chili2.

Question: If the above assertion is true, which of the followings must
be false?

Options: A. Half of the province is humid and cold3.

                B. Most of the province is hot4.

                C. Most of the province is either dry or warm5.

                D. The climate is not cold and humid in the whole province6.

Text: It is difficult for cactus to survive in humid climates; citrus is difficult to
grow in cold climates1. In most parts of a province, at least one species is not
difficult to survive and grow between cactus and citrus2.

Question: Which of the following question can verify above argument?

Options: A. Some Cantonese like to eat chili.

                B. Some people who like to eat chili are southerners.

                C. All Cantonese are southerners1.

                D. Some Cantonese don't like chili or sweets.


Text: Some Cantonese don't like chili2. Therefore, some southerners don't like
chili3.

Reading Comprehension Natural Language Inference

Fig. 10: Converting a multi-choice reading comprehension data into a Natural Language Inference data.
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